LM2907/LM2917
Frequency to Voltage Converter

General Description

The LM2907, LM2917 series are monolithic frequency to voltage converters with a high gain op amp/comparator designed to operate a relay, lamp, or other load when the input frequency reaches or exceeds a selected rate. The tachometer uses a charge pump technique and offers frequency doubling for low ripple, full input protection in two versions (LM2907-8, LM2917-8) and its output swings to ground for a zero frequency input.

The op amp/comparator is fully compatible with the tachometer and has a floating transistor as its output. This feature allows either a ground or supply referred load of up to 50 mA. The collector may be taken above V_{CC} up to a maximum V_{CE} of 28V.

The two basic configurations offered include an 8-pin device with a ground referenced tachometer input and an internal connection between the tachometer output and the op amp non-inverting input. This version is well suited for single speed or frequency switching or fully buffered frequency to voltage conversion applications.

The more versatile configurations provide differential tachometer input and uncommitted op amp inputs. With this version the tachometer input may be floated and the op amp becomes suitable for active filter conditioning of the tachometer output.

Both of these configurations are available with an active shunt regulator connected across the power leads. The regulator clamps the supply such that stable frequency to voltage and frequency to current operations are possible with any supply voltage and a suitable resistor.

Advantages

- Output swings to ground for zero frequency input
- Easy to use: \(V_{OUT} = f_{IN} \times V_{CC} \times R1 \times C1 \)
- Only one RC network provides frequency doubling
- Zener regulator on chip allows accurate and stable frequency to voltage or current conversion (LM2917)

Features

- Ground referenced tachometer input interfaces directly with variable reluctance magnetic pickups
- Op amp/comparator has floating transistor output
- 50 mA sink or source to operate relays, solenoids, meters, or LEDs
- Frequency doubling for low ripple
- Tachometer has built-in hysteresis with either differential input or ground referenced input
- Built-in zener on LM2917
- ±0.3% linearity typical
- Ground referenced tachometer is fully protected from damage due to swings above V_{CC} and below ground

Applications

- Over/under speed sensing
- Frequency to voltage conversion (tachometer)
- Speedometers
- Breaker point dwell meters
- Hand-held tachometer
- Speed governors
- Cruise control
- Automotive door lock control
- Clutch control
- Horn control
- Touch or sound switches

Block and Connection Diagrams Dual-In-Line and Small Outline Packages, Top Views

![Block and Connection Diagrams](image-url)
Block and Connection Diagrams Dual-In-Line and Small Outline Packages, Top Views (Continued)

Order Number LM2907M or LM2907N
See NS Package Number M14A or N14A

Order Number LM2917M or LM2917N
See NS Package Number M14A or N14A
Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage 28V
Supply Current (Zener Options) 25 mA
Collector Voltage 28V
Differential Input Voltage
 Tachometer 28V
 Op Amp/Comparator 28V
Input Voltage Range
 Tachometer LM2907-8, LM2917-8 ±28V
 LM2907, LM2917 0.0V to +28V
 Op Amp/Comparator 0.0V to +28V

Power Dissipation
LM2907-8, LM2917-8 1200 mW
LM2907-14, LM2917-14 1580 mW

Operating Temperature Range −40˚C to +85˚C
Storage Temperature Range −65˚C to +150˚C

Soldering Information
 Dual-In-Line Package Soldering (10 seconds) 260˚C
 Small Outline Package Vapor Phase (60 seconds) 215˚C
 Infrared (15 seconds) 220˚C

See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” for other methods of soldering surface mount devices.

Electrical Characteristics

$V_{CC} = 12V_{DC}, T_A = 25˚C$, see test circuit

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>TACHOMETER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Thresholds</td>
<td>$V_{IN} = 250 mV_{p-p} @ 1 kHz (Note 2)$</td>
<td>±10 ±25 ±40 mV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hysteresis</td>
<td>$V_{IN} = 250 mV_{p-p} @ 1 kHz (Note 2)$</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offset Voltage</td>
<td>$V_{IN} = 250 mV_{p-p} @ 1 kHz (Note 2)$</td>
<td>3.5 10 5 15 mV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OH}</td>
<td>$V_{IN} = 50 mV_{DC}$</td>
<td>0.1 1 μA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OL}</td>
<td>$V_{IN} = +125 mV_{DC} (Note 3)$</td>
<td>8.3 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_2, I_3</td>
<td>$V_{IN} = -125 mV_{DC} (Note 3)$</td>
<td>2.3 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_3 Leakage Current</td>
<td>$V_2 = V_3 = 6.0V (Note 4)$</td>
<td>140 180 240 μA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K Gain Constant</td>
<td>(Note 3)</td>
<td>0.9 1.0 1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linearity</td>
<td>$f_{IN} = 1 kHz, 5 kHz, 10 kHz (Note 5)$</td>
<td>−1.0 0.3 +1.0 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OP/AMP COMPARATOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{DS}</td>
<td>$V_{IN} = 6.0V$</td>
<td>3 10 mV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{BIAS}</td>
<td>$V_{IN} = 6.0V$</td>
<td>50 500 nA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Common-Mode Voltage</td>
<td>$V_{IN} = 0$</td>
<td>$V_{CC} - 1.5V$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Gain</td>
<td></td>
<td>200 V/mV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Sink Current</td>
<td>$V_{C} = 1.0$</td>
<td>40 50 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Source Current</td>
<td>$V_{E} = V_{CC} - 2.0$</td>
<td>10 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturation Voltage</td>
<td>$I_{SINK} = 5 mA$</td>
<td>0.1 0.5 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{SINK} = 20 mA$</td>
<td>$I_{SINK} = 50 mA$</td>
<td>1.0 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZENER REGULATOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulator Voltage</td>
<td>$R_{DROP} = 470Ω$</td>
<td>7.56 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Series Resistance</td>
<td></td>
<td>10.5 15 Ω</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Stability</td>
<td></td>
<td>+1 mV/˚C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL SUPPLY CURRENT</td>
<td></td>
<td>3.8 6 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: For operation in ambient temperatures above 25˚C, the device must be derated based on a 150˚C maximum junction temperature and a thermal resistance of 101˚C/W junction to ambient for LM2907-8 and LM2917-8, and 79˚C/W junction to ambient for LM2907-14 and LM2917-14.

Note 2: Hysteresis is the sum $+V_{TH} - (-V_{TH})$, offset voltage is their difference. See test circuit.

Note 3: V_{OH} is equal to $\frac{3}{4} V_{CC} - 1 V_{BE}$, V_{OL} is equal to $\frac{1}{4} V_{CC} - 1 V_{BE}$ therefore $V_{OH} - V_{OL} = V_{CC}/2$. The difference, $V_{OH} - V_{OL}$, and the mirror gain, I_2/I_3, are the two factors that cause the tachometer gain constant to vary from 1.0.
Electrical Characteristics (Continued)

Note 4: Be sure when choosing the time constant R1 x C1 that R1 is such that the maximum anticipated output voltage at pin 3 can be reached with I3 x R1. The maximum value for R1 is limited by the output resistance of pin 3 which is greater than 10 MΩ typically.

Note 5: Nonlinearity is defined as the deviation of V_OUT (pin 3) for f_IN = 5 kHz from a straight line defined by the V_OUT @1 kHz and V_OUT @10 kHz. C1 = 1000 pF, R1 = 68k and C2 = 0.22 mF.

Test Circuit and Waveform

[Diagram of test circuit and waveform]
Typical Performance Characteristics

Total Supply Current

Zener Voltage vs Temperature

Normalized Tachometer Output vs Temperature

Normalized Tachometer Output vs Temperature

Tachometer Currents I_2 and I_3 vs Supply Voltage

Tachometer Currents I_2 and I_3 vs Temperature

Tachometer Linearity vs Temperature

Tachometer Linearity vs Temperature

Tachometer Linearity vs R1

www.national.com
Applications Information

The LM2907 series of tachometer circuits is designed for minimum external part count applications and maximum versatility. In order to fully exploit its features and advantages let's examine its theory of operation. The first stage of operation is a differential amplifier driving a positive feedback flip-flop circuit. The input threshold voltage is the amount of differential input voltage at which the output of this stage changes state. Two options (LM2907-8, LM2917-8) have one input internally grounded so that an input signal must swing above and below ground and exceed the input thresholds to produce an output. This is offered specifically for magnetic variable reluctance pickups which typically provide a single-ended ac output. This single input is also fully protected against voltage swings to ±28V, which are easily attained with these types of pickups.

The differential input options (LM2907, LM2917) give the user the option of setting his own input switching level and still have the hysteresis around that level for excellent noise rejection in any application. Of course in order to allow the inputs to attain common-mode voltages above ground, input protection is removed and neither input should be taken outside the limits of the supply voltage being used. It is very important that an input not go below ground without some resistance in its lead to limit the current that will then flow in the epi-substrate diode.

Following the input stage is the charge pump where the input frequency is converted to a dc voltage. To do this requires one timing capacitor, one output resistor, and an integrating or filter capacitor. When the input stage changes state (due to a suitable zero crossing or differential voltage on the input) the timing capacitor is either charged or discharged linearly between two voltages whose difference is VCC /2. Then in one half cycle of the input frequency or a time equal to 1/2 fIN the change in charge on the timing capacitor is equal to VCC /2 x C1. The average amount of current pumped into or out of the capacitor then is:

\[
\Delta Q = i_c(AVG) = C1 \times \frac{V_{CC}}{2} \times (2f_{IN}) = V_{CC} \times f_{IN} \times C1
\]

The output circuit mirrors this current very accurately into the load resistor R1, connected to ground, such that if the pulses of current are integrated with a filter capacitor, then VO = I2 x R1, and the total conversion equation becomes:

\[V_O = V_{CC} \times f_{IN} \times C1 \times R1 \times K \]

Where K is the gain constant—typically 1.0.

CHOOSING R1 AND C1

There are some limitations on the choice of R1 and C1 which should be considered for optimum performance. The timing capacitor also provides internal compensation for the charge pump and should be kept larger than 500 pF for very accurate operation. Smaller values can cause an error current on R1, especially at low temperatures. Several considerations must be met when choosing R1. The output current at pin 3 is internally fixed and therefore VO/R1 must be less than or equal to this value. If R1 is too large, it can become a significant fraction of the output impedance at pin 3 which degrades linearity. Also output ripple voltage must be considered and the size of C2 is affected by R1. An expression that describes the ripple content on pin 3 for a single R1C2 combination is:

\[V_{RIPPLE} = \frac{V_{CC}}{2} \times \frac{C1}{C2} \times \left(1 - \frac{V_{CC} \times f_{IN} \times C1}{I2} \right) \]

It appears R1 can be chosen independent of ripple, however response time, or the time it takes VOUT to stabilize at a new voltage increases as the size of C2 increases, so a compromise between ripple, response time, and linearity must be chosen carefully.

As a final consideration, the maximum attainable input frequency is determined by VCC, C1 and I2:

\[f_{MAX} = \frac{I2}{C1 \times V_{CC}} \]

USING ZENER REGULATED OPTIONS (LM2917)

For those applications where an output voltage or current must be obtained independent of supply voltage variations, the LM2917 is offered. The most important consideration in choosing a dropping resistor from the unregulated supply to the device is that the tachometer and op amp circuitry alone require about 3 mA at the voltage level provided by the zener. At low supply voltages there must be some current flowing in the resistor above the 3 mA circuit current to operate the regulator. As an example, if the raw supply varies from 9V to 16V, a resistance of 470Ω will minimize the zener voltage variation to 160 mV. If the resistance goes under 400Ω or over 600Ω the zener variation quickly rises above 200 mV for the same input variation.
Typical Applications

Minimum Component Tachometer

VARIABLE RELUCTANCE MAGNETIC PICK UP

+ V_{OUT} = 67 Hz/V

"Speed Switch" Load is Energized When f_{IN} \geq \frac{1}{2RC}

V_{CC} = 15V

www.national.com
Typical Applications (Continued)

Zener Regulated Frequency to Voltage Converter

\[V_{CC} = 12V \]

\[+V_{OUT} = 66 \text{ Hz/V} \]

Breaker Point Dwell Meter
Typical Applications (Continued)

Voltage Driven Meter Indicating Engine RPM

\[V_O = 6\text{ V} @ 400\text{ Hz or 6000 ERPM (8 Cylinder Engine)} \]

Current Driven Meter Indicating Engine RPM

\[I_O = 10\text{ mA} @ 300\text{ Hz or 6000 ERPM (6 Cylinder Engine)} \]
Typical Applications (Continued)

Capacitance Meter

\[V_{\text{OUT}} = 1\text{V} - 10\text{V} \text{ for } C_X = 0.01 \text{ to } 0.1 \text{ mF} \]
(R = 111k)

Two-Wire Remote Speed Switch
Typical Applications (Continued)

100 Cycle Delay Switch

\[V_{CC} \times C_1 \]
\[\frac{1}{C_2} \]
for each complete input cycle (2 zero crossings)

Example:
if \(C_2 = 200 \, C_1 \) after 100 consecutive input cycles.
\(V_3 = \frac{1}{2} \, V_{CC} \)

Variable Reluctance Magnetic Pickup Buffer Circuits

Precision two-shot output frequency equals twice input frequency.

\[\text{Pulse width} = \frac{V_{CC} \times C_1}{2} \]

\[\text{Pulse height} = V_{ZENER} \]
Typical Applications (Continued)

Finger Touch or Contact Switch

Flashing LED Indicates Overspeed

Flashing begins when $f_{in} \geq 100$ Hz.
Flash rate increases with input frequency increase beyond trip point.
Typical Applications (Continued)

Frequency to Voltage Converter with 2 Pole Butterworth Filter to Reduce Ripple

![Circuit Diagram for Frequency to Voltage Converter](image)

\[f_{\text{POLE}} = \frac{0.707}{2\pi RC} \]

\[T_{\text{RESPONSE}} = \frac{2.57}{2\pi f_{\text{POLE}}} \]

Overspeed Latch

![Circuit Diagram for Overspeed Latch](image)

Output latches when

\[f_{\text{IN}} = \frac{\frac{R_2}{R_1 + R_2} \cdot \frac{1}{RC}} \]

Reset by removing \(V_{CC} \).
Some Frequency Switch Applications May Require Hysteresis in the Comparator Function Which can be Implemented in Several Ways:
Typical Applications (Continued)

Changing the Output Voltage for an Input Frequency of Zero

Changing Tachometer Gain Curve or Clamping the Minimum Output Voltage
Anti-Skid Circuit Functions

"Select-Low" Circuit

V_{OUT} is proportional to the lower of the two input wheel speeds.

"Select-High" Circuit

V_{OUT} is proportional to the higher of the two input wheel speeds.

"Select-Average" Circuit

V_{OUT} = V_{CC} \cdot \left(\frac{f_1}{f_1 + f_2} \right)

www.national.com
This connection made on LM2907-8 and LM2917-8 only.

**This connection made on LM2917 and LM2917-8 only.
LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.