General Purpose High Current NPN Transistor Array

The CA3083 is a versatile array of five high current (to 100mA) NPN transistors on a common monolithic substrate. In addition, two of these transistors (Q1 and Q2) are matched at low current (i.e., 1mA) for applications in which offset parameters are of special importance.

Independent connections for each transistor plus a separate terminal for the substrate permit maximum flexibility in circuit design.

Features

• High IC .. 100mA (Max)
• Low VCE sat (at 50mA) 0.7V (Max)
• Matched Pair (Q1 and Q2)
 - VIO (VBE Match) ±5mV (Max)
 - IO (at 1mA) 2.5µA (Max)
• 5 Independent Transistors Plus Separate Substrate Connection

Applications

• Signal Processing and Switching Systems Operating from DC to VHF
• Lamp and Relay Driver
• Differential Amplifier
• Temperature Compensated Amplifier
• Thyristor Firing
• See Application Note AN5296 “Applications of the CA3018 Circuit Transistor Array” for Suggested Applications

Ordering Information

<table>
<thead>
<tr>
<th>PART NUMBER (BRAND)</th>
<th>TEMP. RANGE (°C)</th>
<th>PACKAGE</th>
<th>PKG. NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA3083</td>
<td>-55 to 125</td>
<td>16 Ld PDIP</td>
<td>E16.3</td>
</tr>
<tr>
<td>CA3083M (3083)</td>
<td>-55 to 125</td>
<td>16 Ld SOIC</td>
<td>M16.15</td>
</tr>
<tr>
<td>CA3083M96 (3083)</td>
<td>-55 to 125</td>
<td>16 Ld SOIC Tape and Reel</td>
<td>M16.15</td>
</tr>
</tbody>
</table>

Pinout

![CA3083 Pinout Diagram]
Absolute Maximum Ratings

The following ratings apply for each transistor in the device:

- Collector-to-Emitter Voltage, V_{CEO} 15V
- Collector-to-Base Voltage, V_{CBO} 20V
- Collector-to-Substrate Voltage, V_{CIO} (Note 1) 20V
- Emitter-to-Base Voltage, V_{EBO} 5V
- Collector Current (I_C) ... 100mA
- Base Current (I_B) .. 20mA

Operating Conditions

- Temperature Range .. -55°C to 125°C

Thermal Information

- Thermal Resistance (Typical, Note 2) θ_{JA} (°C/W) θ_{JC} (°C/W)
 - PDIP Package ... 135 N/A
 - SOIC Package ... 200 N/A
- Maximum Power Dissipation (Any One Transistor) 500mW
- Maximum Junction Temperature (Plastic Package) 150°C
- Maximum Storage Temperature Range -65°C to 150°C
- Maximum Lead Temperature (Soldering 10s) 300°C (SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. The collector of each transistor of the CA3083 is isolated from the substrate by an integral diode. The substrate must be connected to a voltage which is more negative than any collector voltage in order to maintain isolation between transistors and provide normal transistor action. To avoid undesired coupling between transistors, the substrate Terminal (5) should be maintained at either DC or signal (AC) ground. A suitable bypass capacitor can be used to establish a signal ground.

2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications

For Equipment Design, $T_A = 25°C$

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-to-Base Breakdown Voltage</td>
<td>$V_{BR(CBO)}$</td>
<td>$I_C = 100\mu A, I_E = 0$</td>
<td>20</td>
<td>60</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Collector-to-Emitter Breakdown Voltage</td>
<td>$V_{BR(CEO)}$</td>
<td>$I_C = 1mA, I_B = 0$</td>
<td>15</td>
<td>24</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Collector-to-Substrate Breakdown Voltage</td>
<td>$V_{BR(CIO)}$</td>
<td>$I_C = 100\mu A, I_B = 0, I_E = 0$</td>
<td>20</td>
<td>60</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Emitter-to-Base Breakdown Voltage</td>
<td>$V_{BR(EBO)}$</td>
<td>$I_E = 500\mu A, I_C = 0$</td>
<td>5</td>
<td>6.9</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Collector-Cutoff-Current</td>
<td>I_{CEO}</td>
<td>$V_{CE} = 10V, I_B = 0$</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>Collector-Cutoff-Current</td>
<td>I_{CBO}</td>
<td>$V_{CB} = 10V, I_E = 0$</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>µA</td>
</tr>
<tr>
<td>DC Forward-Current Transfer Ratio (Note 3) (Figure 1)</td>
<td>h_{FE}</td>
<td>$V_{CE} = 3V$</td>
<td>40</td>
<td>76</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Base-to-Emitter Voltage (Figure 2)</td>
<td>V_{BE}</td>
<td>$V_{CE} = 3V, I_C = 10mA$</td>
<td>0.65</td>
<td>0.74</td>
<td>0.85</td>
<td>V</td>
</tr>
<tr>
<td>Collector-to-Emitter Saturation Voltage (Figures 3, 4)</td>
<td>$V_{CE SAT}$</td>
<td>$I_C = 50mA, I_B = 5mA$</td>
<td>-</td>
<td>0.40</td>
<td>0.70</td>
<td>V</td>
</tr>
<tr>
<td>Gain Bandwidth Product</td>
<td>f_T</td>
<td>$V_{CE} = 3V, I_C = 10mA$</td>
<td>-</td>
<td>450</td>
<td>-</td>
<td>MHz</td>
</tr>
</tbody>
</table>

FOR TRANSISTORS Q1 AND Q2 (As a Differential Amplifier)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute Input Offset Voltage (Figure 6)</td>
<td>$</td>
<td>V_{IO}</td>
<td>$</td>
<td>$V_{CE} = 3V, I_C = 1mA$</td>
<td>-</td>
<td>1.2</td>
</tr>
<tr>
<td>Absolute Input Offset Current (Figure 7)</td>
<td>$</td>
<td>I_{IO}</td>
<td>$</td>
<td>$V_{CE} = 3V, I_C = 1mA$</td>
<td>-</td>
<td>0.7</td>
</tr>
</tbody>
</table>

NOTE:

3. Actual forcing current is via the emitter for this test.
Typical Performance Curves

FIGURE 1. h_{FE} vs I_C

FIGURE 2. V_{BE} vs I_C

FIGURE 3. $V_{CE\ SAT}$ vs I_C

FIGURE 4. $V_{CE\ SAT}$ vs I_C

FIGURE 5. $V_{BE\ SAT}$ vs I_C

FIGURE 6. V_{IO} vs I_C (TRANSISTORS Q_1 AND Q_2 AS A DIFFERENTIAL AMPLIFIER)
Typical Performance Curves (Continued)

![Typical Performance Curves Graph](image)

FIGURE 7. I_{O} vs I_{C} (TRANSISTORS Q_1 AND Q_2 AS A DIFFERENTIAL AMPLIFIER)