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ABSTRACT – This paper presents an automatic analog layout 
resizing tool that can generate a new layout incorporating the 
target technology process and the target transistor sizes. The 
tool automatically preserves the analog layout integrity by 
extracting layout symmetry and matching, and then solving the 
constrained layout generation problem using a combined linear 
programming and graph-theoretic approach. The tool has been 
applied successfully to integrate specified transistor sizes and to 
migrate layouts for various analog designs from TSMC 0.25um 
CMOS to TSMC 0.18um CMOS process with comparable 
performances to re-design.  

1. Introduction* 
The scaling of feature size in VLSI circuits, both digital and 
analog, has been one of the strongest driving forces toward the 
rapid development of electronics technology.  For digital circuits, 
the shrinkage of transistor sizes (for example from 0.25um to 
0.18um to 0.13um) is the main reason microprocessors rapidly 
increase in speed.  In the analog or mixed signal layouts, the 
circuit performances also benefit from smaller minimum feature 
size. 

When there is a change in technology process, digital designers 
can utilize benefits from the new technology without much effort 
by using existing high-level VHDL or Verilog designs, scalable 
cell libraries, and readily available automatic place & route tools 
to generate a new circuit layout with better performances, or by 
layout retargeting tools.  In contrary, analog designers do not have 
the comparable ability, which means they have to go through a 
full time-consuming cycle of redesigning, testing and drawing 
layouts.  Therefore, an automated tool for re-layout of analog 
circuits will be essential in significantly reducing the design time 
for mixed-signal circuit technology migration.  

In this paper, we present, for the first time, a computer-aided 
design tool that can automatically resize an existing analog 
layout for some modestly new processes.  The tool is developed 
based on the existing algorithms [2-5] related to layout 
compaction.  Its interface is shown in figure 1.  The automatic 
analog layout resizer reads an original layout and its technology 
file, a new target technology file, and new transistor sizes.  Then, 
it automatically generates a new layout that satisfies all the 
design rules while preserving all the analog layout integrities 
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such as matching and symmetry constraints.  The methodology 
we propose here is based on “recycling” already fine-tuned 
analog layouts.  As high performance analog circuits are layout-
sensitive and require device/wiring alignment, matching and 
symmetry, the method of recycling the layouts will be able to 
conserve the above requirements.  Moreover, it will preserve all 
the unique aspects intended by engineers on any particular 
layout.  
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Figure 1:  Interface of the automatic analog layout retargeting tool. 

      This paper is structured as follows.  Section 2 presents the 
proposed analog layout retargeting flow and the implementation 
of important sections.  Section 3 describes results using this new 
retargeting tool.  Section 4 concludes the paper.  

2. Automatic Layout Resizing Procedure 
In order to automatically retarget an analog layout to a new 
technology process, three main considerations - namely new 
technology restriction, new device sizes, and layout structure 
preservation - have to be taken into account.  The original design 
is used as a starting point for our program, with the purpose of 
maintaining the layout property.  Our approach consists of layout 
representation and extraction [1,2], symmetry detection [3], 
technology conversion, circuit components resizing, and layout 
compaction [2,5].  The flow is shown in Figure 2, which 
important sections are described as follow. 

2.1 Layout Representation and Symmetry Detection 

First, the layout is represented by the corner stitching data 
structure [1], which recognizes each rectangle and its neighbors 
for every layer.  The transistors and nets are then extracted from 
the layout.   

The symmetry axes can be detected automatically between 
transistor pairs, based on the algorithm from [3].  However, this 
method may create many unnecessary symmetry axes.  To 
overcome this problem, we introduce a user-specified option, 
which instructs the detection function to check and compare only 
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between specified transistors or blocks.  The symmetry axes then 
become one of the main criteria that the retargeting tool has to 
maintain.   

Figure 2:  Proposed analog layout resizing flow. 

2.2 Technology Migration Constraints 

In order to facilitate the layout technology process migration and 
device resizing, a constraint graph that consists of nodes 
(representing the rectangles edges) and directed-weighted arcs 
(representing the constraints between edges) has to be created.  
One way of obtaining the graph is by using the sweeping line 
method [2].  First, the design rules for the target technology have 
to be acquired.  Here, we categorize the design rules into three 
groups – minimum width, spacing, and extension.  The sweeping 
line will start from the most left edge of the layout.  While the 
line is traversing to the right, all required constraints from the 
current edge to the visible edges on its left will be added.  The 
sweeping line algorithm also reduces redundant constraints, thus 
speeding up the solution solving.  The example of constraints 
generated is shown in Figure 3. 

As the sweeping line algorithm preserves the layout structure, 
our resizing tool requires two conditions:  the target technology 
that covers all layers employed in the original layout, and the 
design that can be retargeted to the new process.  Therefore, we 
shall call such process a modestly new process.  

Figure 3: A layout of two transistors of only active layer (stripes) and 
poly layer (gray).  Shown in numbers are examples of design rules: (1) 
minimum-width (2) spacing and (3) extension.  The letters denote edges 
of active (a) rectangles and poly (p) rectangles, where (s) is a symmetry 
axis.  Here are the constraints generated from this figure in horizontal 
direction. (Example design rules are taken from TSMC 0.25um) 
 a2-a1≥≥≥≥ 3 a4-a3≥≥≥≥ 3 p6-p5≥≥≥≥ 2 p8-p7≥≥≥≥ 3 
 p5-a1≥≥≥≥ 3 a2-p6≥≥≥≥ 3 p7-a3≥≥≥≥ 3 a4-p8≥≥≥≥ 3 
 a3-a2≥≥≥≥ 3 s0-p6=p7-s0 p6-p5=p8-p7 

2.3 Transistor Resizing 

Typically, it is necessary to resize transistors to accomplish the 
same or better performance when a design is targeted on a new 
process. The target transistor sizes can be found either by manual 
simulations or, preferably, by some automatic transistor sizing 
tools. 

Transistor resizing is accomplished by adding to the constraint 
graph the fixed-width constraints for each transistor to reflect 
new widths (added to active rectangles) and lengths (added to 
poly rectangles).  This needs to be done on both horizontal and 
vertical direction.  For symmetric transistor pairs, all the pairs 
have to be resized with exactly the same dimensions.  

While performing transistor resizing, there is one difficulty 
regarding the number of active to metal-one contacts.  Since the 
transistors sizes can be either tightened or widened, when 
decreasing transistors width, the reduced active area may not be 
able to fit all existing contacts.  Thus a contact removal scheme 
has to be executed.  After the addition of size-constraints, all 
active to metal-one contacts that reside by the transistors are 
removed.  We, then, need to add two constraints between the 
metal-one rectangle edges and active rectangle edges, as shown 
in Figure 4, in order to preserve the connectivity between the two 
areas.  After the constraint graph problem is solved, rows of 
contacts will be placed back in the right location.   

2.4 Constrained Layout Generation  

The new layout can be achieved by solving the constrained linear 
programming problem, which can be mathematically described 
as 

 min (xr,o – xl,o) subject to layout constraint 
 (a) xi – xj ≥ w min-width, spacing, extension 
 (b) xi – xj = w fixed-width 
 (c) xi – xj = 0 connectivity 
 (d) xi – sym = sym – xj symmetry 

where variables xr,0, xl,0, and xi or xj are the most-right edge of 
the layout, the most-left edge of the layout, and any rectangles 
edges respectively. 
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Figure 4: Contact removal in transistor resizing.  (a) Transistor layout.  
(b) Original constraint graphs for only lower drain/source side with 
active contacts.  (c) After removing contacts, two constraints are added 
for connectivity (metal->active and active->metal).  Note: Constraints 
weights are taken from TSMC 0.25um process and in unit of lambda. 

If we ignore the symmetry constraints, the above linear 
programming problem can be converted to the shortest path 
problem of the constraint graph represented by nodes as the 
layout rectangle variables and directed-weighted arcs as the 
design rule constraints.  

From Section 2.2, constraint (a) x1 – x2 ≥ w can be expressed 
with a directed arc of weight w from node x1 to x2.  Constraint 
(b) and (c) can be divided into two constraints of x1 – x2 ≥ w and 
x2 – x1 ≥ -w, which also can be specified in the graph.  Without 
the symmetry constraints, the minimum distance from one side of 
the layout to the other can be solved quickly with a graph-based 
shortest path algorithm (i.e. Bellman-Ford [6]). 

However, in the presence of symmetry constraints, the linear 
programming is still necessary.  Okuda et al. [4] has established 
an algorithm to solve this problem more efficiently by using 
advantages from both fast graph-based and linear programming 
technique.  Instead of employing linear programming on a large 
problem, a smaller equivalent problem consisting of only the 
layout boundary variables and variables associated with 
symmetry axes are generated, and then solved with linear 
programming.  The solution will give us the exact location of all 
variables in the equivalent problem.  After that, we can replace 
each symmetry constraints with two fixed-width constraints and 
solve the compaction problem with the graph-based shortest path 
algorithm.  Examples are 

 x1 – sym = sym – x2 ⇒ x1 – sym = b  and  sym – x2 = b 
 x3 – x4 = x5 – x6 ⇒  x3 – x4 = c and x5 – x6 = c 

One weakness of the basic shortest path algorithm is that it tries 
to find the minimum distance from every variable to the starting 
(most-left) variable, which creates excessive leftward extension 
in some rectangles.  It consequently results in bad performances 
due to surplus parasitic resistance and capacitance.  Therefore, 
after solving the problem, minimization of individual rectangles 
as described in [2] or [5] has to be performed to secure good 
performance.   

3. Examples 
This section presents the results of applying our resizing tool on 
a single-ended folded-cascode and a two-stage operational 
amplifier.  Both circuits are initially designed using the TSMC 
0.25um CMOS process, and laid-out manually using Cadence’s 
Virtuoso with multi-finger transistor structures.  The target 
technology is the TSMC 0.18um CMOS process. 

The CIF format files and the Cadence format technology file are 
imported from Virtuoso to our program.  Once resizing is 
finished, the target CIF layout is exported back to Virtuoso, and 
a design-rule checking is performed.  Finally, the netlists from 
both layouts are simulated by Hspice to compare their 
functionalities and performances. 

3.1 Folded Cascode Operational Amplifier 

Figure 5 shows the schematic of a folded cascode operational 
amplifier with 14 transistors (43 transistors if each finger is 
counted as a separate transistor). The original layout in the 
TSMC 0.25um process is shown in Figure 6, where the three 
symmetry axes A, B and C represented are {M1}:{M2}, 
{M3}:{M13} and {M4,M6,M8,M10}:{M5,M7,M9,M11}. 
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Figure 5:  Schematic of a single-output folded-cascode opamp. 

 

Figure 6: Original layout of the folded cascode operational amplifier in 
TSMC 0.25um.  A, B and C are transistors symmetry blocks. 

 

Figure 7: Resized layout of folded cascode opamp in TSMC 0.18um.  



Figure 7 shows the resized layout in the TSMC 0.18um process.  
The transistor sizes are selected such that general operational 
amplifier specifications are met.  The statistics on the 
performances and silicon area of the resized layout are 
summarized in Table 1, where “resize” and “no-resize” 
represent, respectively, the results with resized (the modified 
width and length from design engineers) transistors and no-
resized (the same width and length as in the original layout) 
transistors. 

Table 1: Performances comparison of folded-cascode opamp. 

 0.25um 0.18um no-resize 0.18um resize 

Vdd 2.5 V 1.8 V 1.8 V 

Load Cap. 1.0 pF 0.7 pF 0.7 pF 

Gain 60.9 dB 61.9 dB 60.6 dB 

Bandwidth 51.7 MHz 71.7 MHz 63.5 MHz 

Phase Margin 63 deg 42 deg 71 deg 

Gain Margin 12.5 dB 12.4 dB 10.5 dB 

Power 1.48 mW 1.07 mW 0.88mW 

Area 4,813 um2 3,000 um2 2,083 um2 

3.2 Two-Stage Operational Amplifier 

The schematic of a two-stage operational amplifier, shown in 
Figure 8, comprises of 1 MOS capacitor and 8 transistors (48 as 
each finger counted).  There is one symmetry axis between two 
pairs of transistors {M1,M4}:{M2:M5}.  The original layout (on 
TSMC 0.25um) is illustrated in Figure 9.  The resizing is 
performed on width and length of all transistors, including the 
MOS capacitor.  The target layout (in TSMC 0.18um) is depicted 
in Figure 10.  The statistics on the performances and silicon area 
of the resized layout are summarized in Table 2. 
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Figure 8:  Schematic of a two-stage opamp. 

 

Figure 9: Original layout of the two-stage opamp in TSMC 0.25um. 

 

Figure 10: Resized layout of the two-stage opamp in TSMC 0.18um. 

Table 2: Performances comparison of two-stage opamp. 

 0.25um 0.18um no-resize 0.18um resize 

Vdd 2.5 V 1.8 V 1.8 V 

Load Cap. 1.0pF 0.7pF 0.7pF 

Gain 57.7 dB 39.6 dB 64.4 dB 

Bandwidth 135 MHz 181 MHz 104 MHz 

Phase Margin 50 deg 56 deg 56 deg 

Gain Margin 9.6 dB 12.5 dB 9.2 dB 

Power 4.82 mW 3.56 mW 3.46 mW 

Area 3,648 um2 2,664 um2 2,745 um2 

The runtime for the folded cascade opamp is 39.2 seconds and 
the two stage opamp is 37.6 seconds on a 440MHz SUN 
ultrasparc10 workstation. 

4. Conclusion 
An automatic tool for re-targeting existing analog layouts to new 
technology processes and new device sizes is presented.  Layout 
recycling with symmetry detection and layout conservation 
scheme is applied in order to preserve the properties of analog 
circuit layout.  Additionally, the tool has the ability to consider 
new transistor sizes to achieve better performances as part of the 
re-targeting process. 
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