
Automatic Analog Layout Retargeting for New Processes
and Device Sizes

Nuttorn Jangkrajarng, Sambuddha Bhattacharya, Roy Hartono, and C.-J. Richard Shi

Department of Electrical Engineering, University of Washington
Seattle, WA 98195 USA

{njangkra,sbb,rhartono,cjshi}@ee.washington.edu

ABSTRACT – This paper presents an automatic analog layout
resizing tool that can generate a new layout incorporating the
target technology process and the target transistor sizes. The
tool automatically preserves the analog layout integrity by
extracting layout symmetry and matching, and then solving the
constrained layout generation problem using a combined linear
programming and graph-theoretic approach. The tool has been
applied successfully to integrate specified transistor sizes and to
migrate layouts for various analog designs from TSMC 0.25um
CMOS to TSMC 0.18um CMOS process with comparable
performances to re-design.

1. Introduction*
The scaling of feature size in VLSI circuits, both digital and
analog, has been one of the strongest driving forces toward the
rapid development of electronics technology. For digital circuits,
the shrinkage of transistor sizes (for example from 0.25um to
0.18um to 0.13um) is the main reason microprocessors rapidly
increase in speed. In the analog or mixed signal layouts, the
circuit performances also benefit from smaller minimum feature
size.

When there is a change in technology process, digital designers
can utilize benefits from the new technology without much effort
by using existing high-level VHDL or Verilog designs, scalable
cell libraries, and readily available automatic place & route tools
to generate a new circuit layout with better performances, or by
layout retargeting tools. In contrary, analog designers do not have
the comparable ability, which means they have to go through a
full time-consuming cycle of redesigning, testing and drawing
layouts. Therefore, an automated tool for re-layout of analog
circuits will be essential in significantly reducing the design time
for mixed-signal circuit technology migration.

In this paper, we present, for the first time, a computer-aided
design tool that can automatically resize an existing analog
layout for some modestly new processes. The tool is developed
based on the existing algorithms [2-5] related to layout
compaction. Its interface is shown in figure 1. The automatic
analog layout resizer reads an original layout and its technology
file, a new target technology file, and new transistor sizes. Then,
it automatically generates a new layout that satisfies all the
design rules while preserving all the analog layout integrities

* This research was supported by NSF-ITR and DARPA NeoCAD grant.

such as matching and symmetry constraints. The methodology
we propose here is based on “recycling” already fine-tuned
analog layouts. As high performance analog circuits are layout-
sensitive and require device/wiring alignment, matching and
symmetry, the method of recycling the layouts will be able to
conserve the above requirements. Moreover, it will preserve all
the unique aspects intended by engineers on any particular
layout.

Original Layout

Design Engineers
or

Optimization Tools

Automatic Analog
Layout Resizer

Target
Technology

Target Layout
device
sizes

New Design
Specification

Figure 1: Interface of the automatic analog layout retargeting tool.

 This paper is structured as follows. Section 2 presents the
proposed analog layout retargeting flow and the implementation
of important sections. Section 3 describes results using this new
retargeting tool. Section 4 concludes the paper.

2. Automatic Layout Resizing Procedure
In order to automatically retarget an analog layout to a new
technology process, three main considerations - namely new
technology restriction, new device sizes, and layout structure
preservation - have to be taken into account. The original design
is used as a starting point for our program, with the purpose of
maintaining the layout property. Our approach consists of layout
representation and extraction [1,2], symmetry detection [3],
technology conversion, circuit components resizing, and layout
compaction [2,5]. The flow is shown in Figure 2, which
important sections are described as follow.

2.1 Layout Representation and Symmetry Detection

First, the layout is represented by the corner stitching data
structure [1], which recognizes each rectangle and its neighbors
for every layer. The transistors and nets are then extracted from
the layout.

The symmetry axes can be detected automatically between
transistor pairs, based on the algorithm from [3]. However, this
method may create many unnecessary symmetry axes. To
overcome this problem, we introduce a user-specified option,
which instructs the detection function to check and compare only

Layout Extractor
&

Corner Stitching Data Structure

Generating, Solving and Translating
Symmetry Core Problem

Transistor Resizing
(Update Weight)

Symmetry Detection

Sweeping Line
Constraints Graph Generation

Target Technology
Design Rule

Bellman Ford
&

Wirelength inimization

Target Layout

Original Technology
Design Rule

New Transistors Sizes

Repeat from Sweeping Line step for
the other layout direction

Symmetry Constraints

Original Layout

between specified transistors or blocks. The symmetry axes then
become one of the main criteria that the retargeting tool has to
maintain.

Figure 2: Proposed analog layout resizing flow.

2.2 Technology Migration Constraints

In order to facilitate the layout technology process migration and
device resizing, a constraint graph that consists of nodes
(representing the rectangles edges) and directed-weighted arcs
(representing the constraints between edges) has to be created.
One way of obtaining the graph is by using the sweeping line
method [2]. First, the design rules for the target technology have
to be acquired. Here, we categorize the design rules into three
groups – minimum width, spacing, and extension. The sweeping
line will start from the most left edge of the layout. While the
line is traversing to the right, all required constraints from the
current edge to the visible edges on its left will be added. The
sweeping line algorithm also reduces redundant constraints, thus
speeding up the solution solving. The example of constraints
generated is shown in Figure 3.

As the sweeping line algorithm preserves the layout structure,
our resizing tool requires two conditions: the target technology
that covers all layers employed in the original layout, and the
design that can be retargeted to the new process. Therefore, we
shall call such process a modestly new process.

Figure 3: A layout of two transistors of only active layer (stripes) and
poly layer (gray). Shown in numbers are examples of design rules: (1)
minimum-width (2) spacing and (3) extension. The letters denote edges
of active (a) rectangles and poly (p) rectangles, where (s) is a symmetry
axis. Here are the constraints generated from this figure in horizontal
direction. (Example design rules are taken from TSMC 0.25um)
 a2-a1≥≥≥≥ 3 a4-a3≥≥≥≥ 3 p6-p5≥≥≥≥ 2 p8-p7≥≥≥≥ 3
 p5-a1≥≥≥≥ 3 a2-p6≥≥≥≥ 3 p7-a3≥≥≥≥ 3 a4-p8≥≥≥≥ 3
 a3-a2≥≥≥≥ 3 s0-p6=p7-s0 p6-p5=p8-p7

2.3 Transistor Resizing

Typically, it is necessary to resize transistors to accomplish the
same or better performance when a design is targeted on a new
process. The target transistor sizes can be found either by manual
simulations or, preferably, by some automatic transistor sizing
tools.

Transistor resizing is accomplished by adding to the constraint
graph the fixed-width constraints for each transistor to reflect
new widths (added to active rectangles) and lengths (added to
poly rectangles). This needs to be done on both horizontal and
vertical direction. For symmetric transistor pairs, all the pairs
have to be resized with exactly the same dimensions.

While performing transistor resizing, there is one difficulty
regarding the number of active to metal-one contacts. Since the
transistors sizes can be either tightened or widened, when
decreasing transistors width, the reduced active area may not be
able to fit all existing contacts. Thus a contact removal scheme
has to be executed. After the addition of size-constraints, all
active to metal-one contacts that reside by the transistors are
removed. We, then, need to add two constraints between the
metal-one rectangle edges and active rectangle edges, as shown
in Figure 4, in order to preserve the connectivity between the two
areas. After the constraint graph problem is solved, rows of
contacts will be placed back in the right location.

2.4 Constrained Layout Generation

The new layout can be achieved by solving the constrained linear
programming problem, which can be mathematically described
as

 min (xr,o – xl,o) subject to layout constraint
 (a) xi – xj ≥ w min-width, spacing, extension
 (b) xi – xj = w fixed-width
 (c) xi – xj = 0 connectivity
 (d) xi – sym = sym – xj symmetry

where variables xr,0, xl,0, and xi or xj are the most-right edge of
the layout, the most-left edge of the layout, and any rectangles
edges respectively.

(1)

(2)
a1 a2 a3 a4

(3)

p5 p6 p7 p8

s0

ac
lft

mt
lft

ac
rgt

mt
rgt

3

(c)

ac
lft

ac
rgt

cc
lft

cc
lft

cc
rgt

cc
rgt

mt
lft

mt
rgt

2 23

3

(b)

(a)

ac = active
cc = active contact
mt = metal one

1

1

1

1

tran_width

(-1) * tran_width

tran_width

(-1) * tran_width

0 0

Figure 4: Contact removal in transistor resizing. (a) Transistor layout.
(b) Original constraint graphs for only lower drain/source side with
active contacts. (c) After removing contacts, two constraints are added
for connectivity (metal->active and active->metal). Note: Constraints
weights are taken from TSMC 0.25um process and in unit of lambda.

If we ignore the symmetry constraints, the above linear
programming problem can be converted to the shortest path
problem of the constraint graph represented by nodes as the
layout rectangle variables and directed-weighted arcs as the
design rule constraints.

From Section 2.2, constraint (a) x1 – x2 ≥ w can be expressed
with a directed arc of weight w from node x1 to x2. Constraint
(b) and (c) can be divided into two constraints of x1 – x2 ≥ w and
x2 – x1 ≥ -w, which also can be specified in the graph. Without
the symmetry constraints, the minimum distance from one side of
the layout to the other can be solved quickly with a graph-based
shortest path algorithm (i.e. Bellman-Ford [6]).

However, in the presence of symmetry constraints, the linear
programming is still necessary. Okuda et al. [4] has established
an algorithm to solve this problem more efficiently by using
advantages from both fast graph-based and linear programming
technique. Instead of employing linear programming on a large
problem, a smaller equivalent problem consisting of only the
layout boundary variables and variables associated with
symmetry axes are generated, and then solved with linear
programming. The solution will give us the exact location of all
variables in the equivalent problem. After that, we can replace
each symmetry constraints with two fixed-width constraints and
solve the compaction problem with the graph-based shortest path
algorithm. Examples are

 x1 – sym = sym – x2 ⇒ x1 – sym = b and sym – x2 = b
 x3 – x4 = x5 – x6 ⇒ x3 – x4 = c and x5 – x6 = c

One weakness of the basic shortest path algorithm is that it tries
to find the minimum distance from every variable to the starting
(most-left) variable, which creates excessive leftward extension
in some rectangles. It consequently results in bad performances
due to surplus parasitic resistance and capacitance. Therefore,
after solving the problem, minimization of individual rectangles
as described in [2] or [5] has to be performed to secure good
performance.

3. Examples
This section presents the results of applying our resizing tool on
a single-ended folded-cascode and a two-stage operational
amplifier. Both circuits are initially designed using the TSMC
0.25um CMOS process, and laid-out manually using Cadence’s
Virtuoso with multi-finger transistor structures. The target
technology is the TSMC 0.18um CMOS process.

The CIF format files and the Cadence format technology file are
imported from Virtuoso to our program. Once resizing is
finished, the target CIF layout is exported back to Virtuoso, and
a design-rule checking is performed. Finally, the netlists from
both layouts are simulated by Hspice to compare their
functionalities and performances.

3.1 Folded Cascode Operational Amplifier

Figure 5 shows the schematic of a folded cascode operational
amplifier with 14 transistors (43 transistors if each finger is
counted as a separate transistor). The original layout in the
TSMC 0.25um process is shown in Figure 6, where the three
symmetry axes A, B and C represented are {M1}:{M2},
{M3}:{M13} and {M4,M6,M8,M10}:{M5,M7,M9,M11}.

M13 M3

M12

M2
M7M6

M9

M11

M8

M10

M4

M1

M5

M14
in1 in2

Vbias cur3
out

gnd

Vdd

Figure 5: Schematic of a single-output folded-cascode opamp.

Figure 6: Original layout of the folded cascode operational amplifier in
TSMC 0.25um. A, B and C are transistors symmetry blocks.

Figure 7: Resized layout of folded cascode opamp in TSMC 0.18um.

Figure 7 shows the resized layout in the TSMC 0.18um process.
The transistor sizes are selected such that general operational
amplifier specifications are met. The statistics on the
performances and silicon area of the resized layout are
summarized in Table 1, where “resize” and “no-resize”
represent, respectively, the results with resized (the modified
width and length from design engineers) transistors and no-
resized (the same width and length as in the original layout)
transistors.

Table 1: Performances comparison of folded-cascode opamp.

 0.25um 0.18um no-resize 0.18um resize

Vdd 2.5 V 1.8 V 1.8 V

Load Cap. 1.0 pF 0.7 pF 0.7 pF

Gain 60.9 dB 61.9 dB 60.6 dB

Bandwidth 51.7 MHz 71.7 MHz 63.5 MHz

Phase Margin 63 deg 42 deg 71 deg

Gain Margin 12.5 dB 12.4 dB 10.5 dB

Power 1.48 mW 1.07 mW 0.88mW

Area 4,813 um2 3,000 um2 2,083 um2

3.2 Two-Stage Operational Amplifier

The schematic of a two-stage operational amplifier, shown in
Figure 8, comprises of 1 MOS capacitor and 8 transistors (48 as
each finger counted). There is one symmetry axis between two
pairs of transistors {M1,M4}:{M2:M5}. The original layout (on
TSMC 0.25um) is illustrated in Figure 9. The resizing is
performed on width and length of all transistors, including the
MOS capacitor. The target layout (in TSMC 0.18um) is depicted
in Figure 10. The statistics on the performances and silicon area
of the resized layout are summarized in Table 2.

M4 M5

M1 M2

M3 M6

M7

M8

cur1

gnd

Vdd

in1 in2
Cc

out

Figure 8: Schematic of a two-stage opamp.

Figure 9: Original layout of the two-stage opamp in TSMC 0.25um.

Figure 10: Resized layout of the two-stage opamp in TSMC 0.18um.

Table 2: Performances comparison of two-stage opamp.

 0.25um 0.18um no-resize 0.18um resize

Vdd 2.5 V 1.8 V 1.8 V

Load Cap. 1.0pF 0.7pF 0.7pF

Gain 57.7 dB 39.6 dB 64.4 dB

Bandwidth 135 MHz 181 MHz 104 MHz

Phase Margin 50 deg 56 deg 56 deg

Gain Margin 9.6 dB 12.5 dB 9.2 dB

Power 4.82 mW 3.56 mW 3.46 mW

Area 3,648 um2 2,664 um2 2,745 um2

The runtime for the folded cascade opamp is 39.2 seconds and
the two stage opamp is 37.6 seconds on a 440MHz SUN
ultrasparc10 workstation.

4. Conclusion
An automatic tool for re-targeting existing analog layouts to new
technology processes and new device sizes is presented. Layout
recycling with symmetry detection and layout conservation
scheme is applied in order to preserve the properties of analog
circuit layout. Additionally, the tool has the ability to consider
new transistor sizes to achieve better performances as part of the
re-targeting process.

5. References

[1] J. K. Ousterhout, “Corner stitching: A Data-Structuring Technique for VLSI
Layout Tools”, IEEE Transactions on Computer Aided-Design of Integrated
Circuits and Systems, pp.87-100, January 1984.

[2] S. L. Lin and J. Allen, “Minplex – A Compactor that Minimizes the Bounding
Rectangle and Individual Rectangles in a Layout”, Proceedings of Design
Automation Conference, pp.123-130, 1986.

[3] Y. Bourai and C. J. R. Shi, “Symmetry Detection for Automatic Analog Layout
Recycling”, Proceedings of Asian and South Pacific Design Automation
Conference, pp.5-8, 1999.

[4] R. Okuda, T. Sato, H. Onedera and K. Tamaru, “An Efficient Algorithm for
Layout Compaction Problem with Symmetry Constraints”, Proceedings of
International Conf. on Computer Aided Design, pp.148-151, Nov. 1989.

[5] G. Lakhani and R. Varadarajan, “A Wire-Length Minimization Algorithm for
Circuit Layout Compaction”, Proceedings of International Symposium on
Circuits and Systems, pp.276-279, 1987.

[6] T. H. Cormen, C. E. Leiserson and R. L, Rivest, Introduction to Algorithms,
MIT Press, 1990.

Acknowledgement: The authors would like to thank Kiyong Choi and
Jinho Park, SOC lab, Dept. of Electrical Engineering, University of
Washington, for valuable discussions on circuit examples.

