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Abstract - Device matching and layout symmetry are of utmost 
importance to high performance analog and RF circuits.  In 
this paper, we present HiLSD, the first CAD tool for the 
automatic detection of layout symmetry between two or more 
devices in a hierarchical manner.  HiLSD first extracts the 
circuit structure from the layout, then applies an efficient 
pattern-matching algorithm to find all the subcircuits 
automatically, and finally detects layout symmetry on the 
portion of the layout that corresponds to extracted subcircuit 
instances.  On a set of practical analog layouts, HiLSD is 
demonstrated to be much more efficient than direct symmetry 
detection on a flattened layout.  Results from applying HiLSD 
to automatic analog layout retargeting for technology migration 
and new specifications are also described. 
 

I Introduction 
 

Variations in the process poly-silicon etch rate, dopant 
concentration and gradients in temperature, stress and oxide 
thickness affect the threshold voltage, mobility and current-factors 
in MOS transistors [1].  These effects on the device characteristics 
introduce mismatches in transistors that are designed to behave 
identically.  Such mismatches drastically affect analog circuit 
performance leading to DC offsets, finite even-order distortion and 
lower common-mode rejection [2].  Symmetric layout of matched 
transistors alleviates the effects of mismatch in analog/RF circuits. 

Device matching and symmetry along with floorplanning, 
placement and parasitic-driven wiring considerations pose 
considerable challenge to the automation of analog/RF layouts 
[2][3].  Over the years, macro-cell based automated placement and 
routing methodologies have been proposed for analog circuits [4][5]. 
These layout automation schemes, despite their effectiveness and 
generality, often fail to incorporate the expertise of the layout 
designer and are seldom accepted in the industry.   

For technology migration and changes in performance 
specification of analog/RF circuits, a layout reuse methodology 
promises to be a viable alternative.  Such methodologies for analog 
layout retargeting through layout-template creation by a 
procedural-language or graphical-user-interface have been proposed 
in [6][7].  Unfortunately, creation of such templates demands 
substantial effort from the user.  In contrast, [8] recently proposed 
an automatic layout retargeting methodology for analog circuits, in 
which an already fined-tuned layout is used to automatically create a 
symbolic structural template incorporating floorplan, symmetry and 
device/wiring alignment information.  The new device sizes under 
retargeting are imposed on the template and the output layout is 
generated by layout compaction with symmetry constraints [9]. 

 
In [8], the axes of symmetry obtained from the existing layout are 

used as constraints in the structural template.  As will be elaborated 

later, the complexity of such layout retargeting methods is strongly 
dependent on the number of symmetry axes and corresponding 
constraints.  Therefore, the efficient detection of layout symmetry 
represents an essential step for the analog layout retargeting process. 

An algorithm was proposed in [10] for the detection of layout 
symmetry. Under this scheme, symmetry detection is accomplished 
by scanning the entire layout for all horizontally or vertically aligned 
equi-sized transistors.  Unfortunately, this leads to the detection of 
all unintended axes of symmetry that reside in the layout.  Such 
redundant axes over-constrain the structural template thereby 
rendering the layout retargeting process computationally expensive. 

In this paper, we present a CAD tool, HiLSD (Hierarchical 
Layout Symmetry Detector), which automatically detects layout 
symmetry based on circuit hierarchy.  First, the layout is extracted 
for the circuit netlist.  Then, the circuit hierarchy is established from 
this flat netlist based on a library of subcircuits that contain device 
matching information.  The detection of the axes of symmetry in 
the layout is then initiated from the hierarchical netlist.  By 
triggering symmetry detection from the circuit-specific information, 
HiLSD significantly curtails the search-space and ignores all 
unintended axes of symmetry that reside in the layout.  HiLSD 
generates a very concise set of symmetry constraints for the 
automatic layout retargeting process.   

Furthermore, in a typical design company, layout and circuit 
designs are seldom accomplished by the same personnel.  For the 
conscientious circuit designer, HiLSD provides an interactive mode 
of layout symmetry verification from its graphical user interface. 

This paper is organized as follows.  Section II discusses the 
background and the motivation for this work.  Section III illustrates 
the methodology employed for symmetry detection in HiLSD.  
Section IV explains the process of netlist and hierarchy extraction.  
Section V describes the actual detection of symmetry from the 
layout.  Section VI presents the experimental results of HiLSD and 
its application in analog layout automation.  Section VII concludes 
the paper. 

 
II. Background and Motivation 

 
A. Background  

A MOS transistor in a layout is defined as an overlap between two 
rectangles in the poly-silicon and diffusion mask layers and has three 
terminals, viz., the gate terminal in the poly-silicon layer and the 
source and drain terminals in the diffusion layer.  Good matching 
between any pair of transistors is established by laying out the 
transistors symmetrically. Two transistors are deemed to be 
symmetric if their layouts are geometric mirror images of each other.  
As illustrated in Fig. 1, this implies equi-sized channel, drain and 
source regions, identical orientation and close proximity of the two 
transistors.  For large or multi-fingered transistors, simple 
geometric mirroring may not establish acceptable matching due to 
the thermal and process gradients.  Such transistor-pairs are often 
laid-out cross-coupled in one dimension, Fig. 2, or in the 
two-dimensional cross-coupled form of Fig. 3 also known as the 
common-centroid layout. 
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Here, s0 represents the symmetry axis and all other variables 
represent the edges of the rectangles.  Eq. (1) enforces the 
alignment at the same ordinate and the equality of the widths of the 
transistors.  The equidistance of the transistors from the symmetry 
axis is imposed by Eq. (2).  The equality of the gate-lengths is 
enforced by Eq. (3). 

Fig. 1: A simplified layout of two symmetric transistors. Only diffusion 
and the poly-silicon (dotted) layers are shown. The symmetry axis is 
denoted by ‘s0’.  
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Fig. 2: A one-dimensional cross-coupled symmetric transistor pair.  The 
rectangles with dotted patterns represent the poly-silicon layer. 
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Fig. 4: Internal Flow for template-based layout retargeting. 

The problem of the generation of a new layout from the symbolic 
template reduces to solving a constrained symbolic compaction 
problem [13]. The layout generator tool solves this compaction 
problem after imposing new device sizes on the symbolic template.  
While linear programming (LP) [14] can be employed to solve this 
problem, it is computationally intensive and therefore prohibitive for 
large problems.  Therefore, the compaction problem is solved by a 
combination of linear programming and graph-based shortest-path 
algorithm [9].   

Fig. 3: A common-centroid layout of a symmetric transistor pair.  
Rectangles with dotted pattern represent the poly-silicon layer. 

The layout symmetry detection algorithm presented in [10], 
henceforth called Direct Layout Symmetry Detection (DLSD), relies 
on scanning the entire layout for symmetric transistors.  First, the 
nets and transistors in the layout are identified and all transistors are 
stored in a queue sorted by their bottom-edges.  Devices connected 
by a net and with same ordinate of bottom-edges are then pairwise 
compared for the existence of geometric mirror images.  After 
detection of all symmetric transistor-pairs, all axes of symmetry with 
same abscissa or ordinate are merged into a single axis.  Under this 
scheme, the layout of Fig. 2 has eleven axes of symmetry marked by 
the axes s1 to s11 and sixty-six (selecting 2 from 12) matched 
transistor pairs.  The layout in Fig. 3 has six axes of symmetry as 
indicated by the axes s1 to s6 and thirty matched transistor pairs.    

The constraint equations, therefore, need to be transformed into a 
constraint-graph ( ),GV E .  While the design rule and connectivity 
constraints can be directly mapped to the constraint-graph, the 
transformation of the three or four variable symmetry constraints in 
Eqs. (2) and (3) is rather complex.  The steps in the transformation 
of the symmetry-dictated constraint equations to the graph form 
have been magnified on the right in Fig. 4.  First, the graph ( ),G V E  
obtained from the design rule constraints is reduced to a smaller 
graph called core-graph 

1 1 1( ),G V E  where  and 
1V V⊂

1 { |i iV v v= corresponds to the variables in the equi-distance 
constraint-equations} [9].  The edges of the core-graph are obtained 
by applying the shortest path algorithm on the main constraint graph 

( ),G V E .  A directed edge e( ),i jv v  is added between the pair of 

vertices in G  if there exists a shortest path between the 
corresponding vertices in 

1

( ),G V E . 

 
B. Motivation: Analog Layout Retargeting 

The automatic layout retargeting methodology [8] provides an 
efficient way of reusing existing fine-tuned analog layouts over 
changes in technology and design specifications.  The re-targeting 
tool reads in a hand-crafted analog layout, the source and target 
technology-dependent design rules and automatically creates a 
symbolic structural template.  By imposing the new device sizes 
pertaining to new specifications on the template, the tool generates a 
target layout that maintains all the designer expertise embedded in 
the source layout.  The internal flow diagram of the retargeting tool 
is shown in Fig. 4. 

The LP-compatible equations are generated from the core-graph 
. The solution of these equations transforms the equidistance 

constraints in a form that can be directly incorporated into the main 
constraint graph G.  For example, Eq. (2) is transformed into a form  

1G

 The retargeting tool-suite consists of a template extractor and a 
layout generator.  The symbolic template, extracted from the source 
layout by the template extractor, comprises the design-rules, 
connectivity and symmetry constraints.  The following equations 
represent the symmetry constraints generated for the layout of Fig. 1.   

bshgs leftright =−=− 00              (4) 

where b is a constant.  Once all the three and four-variable 
constraint-equations are transformed and added into the main 



constraint-graph, the symbolic compaction problem is solved using 
the shortest-path algorithm. 
 Thus, each symmetry axis introduces numerous variables and 
necessitates multiple transformations of the constraint-graph into the 
core-graph [9].  A large number of symmetry axes render the 
process very computation intensive.  Also, as we found during our 
retargeting experiments, too many redundant symmetry constraints 
may even render the problem unsolvable.  Clearly, reducing the 
number of symmetry axes and avoiding all redundant constraints is 
essential for efficient layout retargeting. 
 

III. Hierarchical Symmetry Detection Flow 
 

As discussed in Section II, reduction of symmetry constraints and 
avoidance of unintentional symmetry is a prime requirement for 
successful and efficient layout retargeting.  The method proposed in 
this work is based on layout proximity based clustering of netlist and 
extraction of hierarchy information from the circuit.  This is 
illustrated in Fig. 5. 
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Fig. 5: Hierarchical Symmetry Detection Methodology.  The oval 
blocks are modules of HiLSD. 

First, the Netlist Extractor generates the circuit netlist from the 
layout information.  The netlist is then clustered into groups based 
on physical proximity in the layout.  A designer-provided library 
consists of the netlists of the building blocks, and matching and 
symmetry information of individual devices.  The subcircuits in the 
library can be any commonly used analog circuit like differential 
pair, current mirror or larger hierarchical blocks like comparators, 
operational amplifiers etc.  For simple building blocks such as 
differential pair and current mirror, the matching information is 
implicitly embedded in the library, whereas for larger complex 
blocks like operational amplifiers, explicit matching information 
may be input by the designer.  The Hierarchy Extractor identifies all 
instances of the subcircuit in the main netlist. During this Subcircuit 
mapping, a complete list of essential and intended matched transistor 
pairs is created.  The detection of symmetric transistors in the 
layout is initiated from the list obtained after Subcircuit mapping.    

         Table 1: Outline of the HiLSD algorithm. 

begin
    
    
    for each     // s  subcircuit, L  Library
         
    end for
    
end

HierarchicalLayoutSymmetryDetection
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mapSubcircuits

detectLayoutSymmetry

∈ = =

 

 
Table 1 shows all the steps in the hierarchical symmetry detection 

algorithm.  The procedures detectNetsTransistors extracts the 
netlist from the layout and clusterTransistors groups transistors that 
are physically contiguous in the layout. The routine mapSubCircuits 
inside the loop identifies all instances of the library subcircuits and 

maps them to the layout data-structure.  This mapping process 
identifies all the matched transistors that are meant to be symmetric 
in the layout.  Finally, the detection of layout symmetry and 
generation of constraints are accomplished in the routine 
detectLayoutSymmetry.  Each of these processes is explained in 
detail in Sections IV and V. 

 

IV. Netlist, Cluster and Hierarchy Extraction  
 

A. Netlist Extraction 
A transistor with a single rectangle each for its gate, source and 

drain terminals is henceforth called a unit transistor.  A net is 
defined as an electrical connection between the terminals of 
transistors or external ports. 

The layout representation and netlist extraction schemes are 
adopted from the Magic VLSI layout system [11].  Unit transistors 
are detected by an efficient search for overlaps between the 
poly-silicon and the diffusion layers.  The netlist database stores the 
location, size, orientation and terminal information for each unit 
transistor.  Once the transistors are extracted, a simple recursive 
algorithm detects the nets from the layout using the terminals of the 
transistors as the starting points.  

 
B. Proximity Based Netlist Clustering  

The netlist clustering process is especially important as it reduces 
the number of symmetry axes for multi-fingered transistors.  In the 
layout, each multi-fingered transistor M contains multiple 
contiguous elements C, where each contiguous element consists of 
physically contiguous unit transistors T.  The clustering scheme 
partitions the netlist based on the manner in which the transistors are 
laid out. 

The netlist, which at the end of extraction comprised of the set of 
unit transistors TS and the set of nets NS, now consists of the same set 
of nets NS and the set of multi-fingered transistors MS defined as 

 where  
is the set of the gate, source and drain nets of the multi-fingered 
transistor M.  Each multi-fingered transistor M is a set of physically 
contiguous elements C

{  a unique {  }   }| , , S
M M MM M G S D N∀ ∃ ⊂

C ∈

{ }S

{  }, ,M M MG S D

 S i.e.,  or in other words, M
M C C= =

{ { } {| , , ,S
T T TC T T T T G S D G= ∈ ∀ =

.  And each contiguous elements is defined as 
  }, ,MS D ,M and T C∀ ∈M

}are physically contiguous .  For the one-dimensional cross-coupled 
symmetric pair of Fig. 2, each multi-fingered transistor has three 
contiguous sets of two unit transistors each.  In Fig. 3, each 
multi-fingered transistor has two contiguous sets of three unit 
transistors each.  

Table 2: Algorithm for netlist partitioning. 

begin
    for each            //   is the set of nets
          //  are gate,source,drain nets of transistor T

          for each     { } 
                  

clusterTransistors

, ,

| , ,

S S

S

T T T

T T T

N N N
G S D

T T N G S D
M chec

∈

∈ ∈

= ( )  

                  ( , )  // { }
                ( ) // doubly sorted w.r.t.    co-ordinates
          end for
    end for 
end

, ,

, ,

S S

T T TkCreateMFT G S D

X checkCreateContiguous C T M C C
insertSorted T X x y

= = =

 
The clusterTransistors procedure in Table 2 presents the 

algorithm for partitioning the netlist.  Each multi-fingered transistor 
is stored in a hashtable with hash key formed by the drain, gate and 



source nodes.  For each unit transistor T connected to a net N, a new 
multi-fingered transistor M is created if it does not already exist in 
the hashtable.  This is accomplished by a call to the routine 
checkCreateMFT.  The routine checkCreateContiguous then 
checks if the unit transistor T is aligned with one of the contiguous 
elements in M.  If T is not physically contiguous with any C M∈ , a 
new contiguous element is created.  In either case, the routine 
insertSorted inserts T into a list of unit transistors of the 
corresponding contiguous element.  This list of transistors in a 
contiguous element is doubly sorted with respect to the x and y 
coordinates. 
 
C. Hierarchy Extraction 

The designer-intended transistor-matching information is 
embedded in the subcircuits in the library.  Identifying instances of 
these commonly used subcircuits in the main netlist maps the 
non-redundant matching information to the devices in the layout.  
This is accomplished by an efficient subgraph isomorphism 
algorithm [12] in the mapSubcircuits routine of Table 1. 

First, both the subcircuit and the main circuit are implicitly 
partitioned by an iterative labeling algorithm to reduce the search 
space.  This identifies a set of nodes in the main circuit and a single 
node, called a key node, in the subcircuit.  The set of nodes in the 
main circuit obtained by this iterative labeling algorithm are 
potential start-points for checking a pattern match with the 
subcircuit.  From each potential node in the main circuit and the key 
node in the subcircuit, another labeling algorithm accomplishes 
detection of an isomorphism with the subcircuits graph. 
 
 

V. Layout Symmetry Detection 
 

The hierarchy extraction process generates a subcircuit-based 
netlist. From the subcircuit-based netlist, a list of designer-intended 
non-redundant matched multi-fingered transistor pairs is created.  
The layout symmetry detection scheme identifies if each pair of 
these multi-fingered transistors is actually laid out symmetrically.  
The process also generates the corresponding constraints for the 
ensuing compaction step in layout automation[8].   

The algorithm for layout symmetry detection is shown in Table 3.  
For each transistor pair intended to be matched, the detectTopology 
routine identifies the pair’s layout topology by traversing through 
the list of contiguous elements.  Based on the topology, the unit 
transistors are inserted into two or four sorted lists.  Thus, for the 
common-centroid topology of Fig. 3, the six unit transistors in the 
top and bottom halves of the transistors M1 and M2 respectively are 
collected into a list LL.  The bottom and top halves of M1 and M2 are 
collected into another list LR.  The unit transistors in LL and LR are 
then pairwise compared in the checkSymmetry routine to detect the 
vertical axis of symmetry, s6, and generate the corresponding 
constraints.  For the horizontal symmetry axis s3, the bottom halves 
of both M1 and M2 are collected into a list LB, and the top halves are 
collected into a list LT and pairwise compared.  For the layout of Fig. 
2, six unit transistors are inserted into each list LL and LR and a single 
axis of symmetry s6 is detected.  Prior co-ordinate based double 
sorting of the unit transistors in each multi-fingered transistor 
ensures that pairwise comparison can detect axes of symmetry. 

 
 

 
VI. Results 

 
A.  Symmetry Detection Experiments 

The HiLSD program was employed to detect symmetry in 

various analog/RF layouts and generate constraints for the layout 
retargeting methodology [8] illustrated in Fig. 4.  Table 4 compares 
the symmetry detection data for HiLSD with the DLSD method 
presented in [10].  Various symmetry topologies were employed on 
the different layouts.   The differential amplifier, the latched 
comparator and the 4:1 comparator used symmetric transistors with 
minimal multi-fingered structures.  The voltage-controlled 
oscillator was laid out with extensive multi-fingered symmetric 
transistors.  The two-stage and folded-cascode operational 
amplifiers utilized multi-fingered interleaved and common-centroid 
symmetry topologies.  And the 5-bit flash analog-to-digital 
converter consisted of 31 instances of a latched-comparator laid out 
in an array of 8x4. 

For each method, the number of symmetry axes detected, the 
number of symmetric transistor pairs, and the number of constraints 
due-to-symmetry are reported. The DLSD method extracted a large 
number of redundant symmetry axes.  As it detected symmetry 
between every pair of unit transistors in each multi-fingered 
transistor, a large number of axes were observed for the two-stage 
operational amplifier and the voltage-controlled oscillator circuits.  
For the array structure of the comparator blocks in the 5-bit 
analog-to-digital converter, the DLSD method detected symmetry 
for every transistor in one comparator cell to every transistor in 
another comparator cell in the same row and column. These 
redundant constraints not only slowed down the compaction steps in 
layout retargeting, but also rendered the problem unsolvable in some 
cases.   

Table 3: Algorithm for symmetry detection. 

begin
//  ListSym = { (  , ) |  and  are intended matched pair }

for each (  ,  )  ListSym

           topology =  (  ,  )

           if  ( topology  com
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                    (  ,  )

           end if
      end for
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We compare the scaling of the symmetry detection by the two 

methods with arrays of comparators.  Fig. 6 shows the number of 
symmetric transistor pairs detected by DLSD and HiLSD as the 
number of comparators is scaled. The y-axis is in logarithmic scale. 
The graph shows that DLSD detects a huge number of redundant 
symmetry axes. 
 
 



Table 4: Comparison between Hierarchical Symmetry Detection (HiLSD)  and Direct Symmetry Detection (DLSD) 
DLSD HiLSD 

Circuits 
# Multi- 
Fingered 

Transistors 

#  Unit 
Transistors 

Design Rule 
Constraints Symmetry 

Axes 
Transistor 

Pairs 
Symmetry 
Constraints 

Symmetry 
Axes 

Transistor 
Pairs 

Symmetry 
Constraints 

Differential Amplifier 5 5 1,602 1 2 18 1 2 18 
Latched Comparator 15 20 8,639 10 19 132 2 6 42 
2-stage Opamp 9 48 5,902 69 262 1,578 2 12 78 
Folded Cascode Opamp 14 43 8,352 29 173 1,206 6 20 168 
4:1 Comparator 20 32 26,182 26 166 1,026 3 13 78 
VCO 16 198 645,986 680 5,525 33,156 4 362 2,178 
5-bit Flash ADC 435 590 320,937 261 6,218 4,193 12 186 1,302 

          
 

 

B.  Automatic Analog Layout Retargeting with HiLSD 
We performed experiments on analog layout retargeting [8] to a 

new technology and specifications based on the hierarchical and 
direct symmetry detection methods.  Fig. 7 shows a comparator 
layout in TSMC 0.25um CMOS process.  This layout was 
retargeted under new specifications to the TSMC 0.18um CMOS 
technology using both DLSD and HiLSD based symmetry detection. 

The symmetry constraints generated by the two methods were 
passed onto the resizing tool.  Table 5 shows the number of 
symmetry axes, transistor pairs, symmetry constraints, and user 
runtime for the resizing schemes under the two methods.  The 
retargeted layout obtained by using HiLSD for symmetry detection 
is shown in Fig. 8.  The retargeted layout under this preserved all 
the required matching considerations, while incorporating a lesser 
number of symmetry constraints.  The circuit performance of the 
latched-comparator in the two technologies achieved by these 
methods is reported in Table 6.  

      Fig. 7: Comparator Layout in TSMC 0.25um technology. 

 

 

 

Fig. 8: Retargeted Layout of comparator in TSMC 0.18um 

 

Fig. 6: Comparison of HiLSD and DLSD symmetry detection for array 
of comparators. X-axis represents number of comparators in the array. 
Y-axis denotes number of symmetric transistor pairs (Log scale). 

The analog comparator section of the 5-bit flash analog-to-digital 
converter was constructed by placing 31 units of the 
latched-comparator into an 8x4 array.  Each unit  comparator was 
aligned  and  matched with other units  in the same row and 
column. For any unit comparator in the section, another comparator  

Fig. 9: Comparator block of a 5-bit flash ADC in TSMC 0.25um. 

The flash analog-to-digital converter was retargeted to the TSMC 
0.18um CMOS process; first with the symmetry information 
obtained from DLSD method and then with the HiLSD algorithm.  
DLSD detected 6,218 symmetric transistor pairs in the layout, while 
the HiLSD method identified only 186 symmetric pairs.  This huge  

corresponding to its preceding or following bit was positioned next 
to each other to minimize the mismatch.  The layout of the 
comparator section of the ADC in TSMC 0.25um CMOS technology 
is shown in Fig. 9. difference in detected symmetric pairs is due to the redundant 

symmetric pairs from the transistors on different unit  comparators   



 

Table 5: Comparison between layout retargeting with DLSD and HiLSD symmetry detection schemes. 
Design Latched Comparator 5-bit Flash Analog-to-Digital Converter 
Symmetry Detection Method DLSD HiLSD DLSD HiLSD 
Multi-fingered Transistors 15 15 435 435 
Unit Transistors 20 20 590 590 
Design Rule Constraints 8,639 8,639 320,937 320,937 
Symmetry Axes 10 2 261 12 
Transistor Pairs 19 6 6,218 186 
Additional Symmetry Constraints 132 42 41,943 1,302 
Runtime on Solving Symmetry Constraints 0.65 s 0.26 s 2 hr 36 min 48 min 
Total Runtime for Retargeting Tool 10.06 s 9.31 s 4 hr 20 min 2 hr 14 min 

 
layout-retargeting tool, the runtime for regenerating the new ADC 
layout is reduced from 4 hours to 2 hours. 

listed in same row or column.  During resizing, these unnecessary 
symmetric-pairs resulted in the increase of symmetry constraints 
from 1,302 to 41,943, which subsequently increased the runtime of 
solving the symmetry constraints from 48 minutes to 156 minutes.  
The overall runtime escalated from about 2 hours to 4 hours. 
Nevertheless, both target layouts showed similar symmetries and 
matching.  The original layout had an area of 12,780 um2.  The 
target layout from direct symmetry detection had an area of 7,955 
um2.  And the target layout for hierarchical symmetry detection had 
an area of 6,984 um2.  The reduction in area is attributed to the 
avoidance of unwanted axes of symmetry that constrain the layout.  
The retargeted layout obtained through HiLSD method is shown in 
Fig. 10. 

With the symmetry constraints described in a hierarchical circuit 
netlist by circuit designers, Hi-LSD also provides the first automatic  
tool for verifying if a layout meets all the symmetry constraints 
required by circuit designers. 
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