
Hierarchical Extraction and Verification of Symmetry Constraints for
Analog Layout Automation*

Sambuddha Bhattacharya, Nuttorn Jangkrajarng, Roy Hartono and C-J. Richard Shi

Department of Electrical Engineering, University of Washington
Seattle, WA 98195, USA

{sbb, njangkra, rhartono, shi}@ee.washington.edu

Abstract - Device matching and layout symmetry are of utmost
importance to high performance analog and RF circuits. In
this paper, we present HiLSD, the first CAD tool for the
automatic detection of layout symmetry between two or more
devices in a hierarchical manner. HiLSD first extracts the
circuit structure from the layout, then applies an efficient
pattern-matching algorithm to find all the subcircuits
automatically, and finally detects layout symmetry on the
portion of the layout that corresponds to extracted subcircuit
instances. On a set of practical analog layouts, HiLSD is
demonstrated to be much more efficient than direct symmetry
detection on a flattened layout. Results from applying HiLSD
to automatic analog layout retargeting for technology migration
and new specifications are also described.

I Introduction

Variations in the process poly-silicon etch rate, dopant
concentration and gradients in temperature, stress and oxide
thickness affect the threshold voltage, mobility and current-factors
in MOS transistors [1]. These effects on the device characteristics
introduce mismatches in transistors that are designed to behave
identically. Such mismatches drastically affect analog circuit
performance leading to DC offsets, finite even-order distortion and
lower common-mode rejection [2]. Symmetric layout of matched
transistors alleviates the effects of mismatch in analog/RF circuits.

Device matching and symmetry along with floorplanning,
placement and parasitic-driven wiring considerations pose
considerable challenge to the automation of analog/RF layouts
[2][3]. Over the years, macro-cell based automated placement and
routing methodologies have been proposed for analog circuits [4][5].
These layout automation schemes, despite their effectiveness and
generality, often fail to incorporate the expertise of the layout
designer and are seldom accepted in the industry.

For technology migration and changes in performance
specification of analog/RF circuits, a layout reuse methodology
promises to be a viable alternative. Such methodologies for analog
layout retargeting through layout-template creation by a
procedural-language or graphical-user-interface have been proposed
in [6][7]. Unfortunately, creation of such templates demands
substantial effort from the user. In contrast, [8] recently proposed
an automatic layout retargeting methodology for analog circuits, in
which an already fined-tuned layout is used to automatically create a
symbolic structural template incorporating floorplan, symmetry and
device/wiring alignment information. The new device sizes under
retargeting are imposed on the template and the output layout is
generated by layout compaction with symmetry constraints [9].

In [8], the axes of symmetry obtained from the existing layout are

used as constraints in the structural template. As will be elaborated

later, the complexity of such layout retargeting methods is strongly
dependent on the number of symmetry axes and corresponding
constraints. Therefore, the efficient detection of layout symmetry
represents an essential step for the analog layout retargeting process.

An algorithm was proposed in [10] for the detection of layout
symmetry. Under this scheme, symmetry detection is accomplished
by scanning the entire layout for all horizontally or vertically aligned
equi-sized transistors. Unfortunately, this leads to the detection of
all unintended axes of symmetry that reside in the layout. Such
redundant axes over-constrain the structural template thereby
rendering the layout retargeting process computationally expensive.

In this paper, we present a CAD tool, HiLSD (Hierarchical
Layout Symmetry Detector), which automatically detects layout
symmetry based on circuit hierarchy. First, the layout is extracted
for the circuit netlist. Then, the circuit hierarchy is established from
this flat netlist based on a library of subcircuits that contain device
matching information. The detection of the axes of symmetry in
the layout is then initiated from the hierarchical netlist. By
triggering symmetry detection from the circuit-specific information,
HiLSD significantly curtails the search-space and ignores all
unintended axes of symmetry that reside in the layout. HiLSD
generates a very concise set of symmetry constraints for the
automatic layout retargeting process.

Furthermore, in a typical design company, layout and circuit
designs are seldom accomplished by the same personnel. For the
conscientious circuit designer, HiLSD provides an interactive mode
of layout symmetry verification from its graphical user interface.

This paper is organized as follows. Section II discusses the
background and the motivation for this work. Section III illustrates
the methodology employed for symmetry detection in HiLSD.
Section IV explains the process of netlist and hierarchy extraction.
Section V describes the actual detection of symmetry from the
layout. Section VI presents the experimental results of HiLSD and
its application in analog layout automation. Section VII concludes
the paper.

II. Background and Motivation

A. Background

A MOS transistor in a layout is defined as an overlap between two
rectangles in the poly-silicon and diffusion mask layers and has three
terminals, viz., the gate terminal in the poly-silicon layer and the
source and drain terminals in the diffusion layer. Good matching
between any pair of transistors is established by laying out the
transistors symmetrically. Two transistors are deemed to be
symmetric if their layouts are geometric mirror images of each other.
As illustrated in Fig. 1, this implies equi-sized channel, drain and
source regions, identical orientation and close proximity of the two
transistors. For large or multi-fingered transistors, simple
geometric mirroring may not establish acceptable matching due to
the thermal and process gradients. Such transistor-pairs are often
laid-out cross-coupled in one dimension, Fig. 2, or in the
two-dimensional cross-coupled form of Fig. 3 also known as the
common-centroid layout.

∗ This research has been supported in part by the U.S. Defense Advanced
Research Projects Agency’s NeoCAD program and in part by the National
Science Foundation’s ITR program.

 (e) (e) 0top top bottom bottomf f− = − =

0 0

 (1)
s 0

e fg h

(2) (2)
(3) (3)

0() ()right lefts g h s− − − = (2)

(g) () 0right left right leftg h h− − − = (3)

Here, s0 represents the symmetry axis and all other variables
represent the edges of the rectangles. Eq. (1) enforces the
alignment at the same ordinate and the equality of the widths of the
transistors. The equidistance of the transistors from the symmetry
axis is imposed by Eq. (2). The equality of the gate-lengths is
enforced by Eq. (3).

Fig. 1: A simplified layout of two symmetric transistors. Only diffusion
and the poly-silicon (dotted) layers are shown. The symmetry axis is
denoted by ‘s0’.

s 6

M 1

M 2

s 7 s 8 s 9 s 1 0 s 1 1s 1 s 2 s 3 s 4 s 5

I. Layout Template Extractor
II. Layout Generator

Original Layout

Original Technology
Design Rules

Target Layout

New Device
Sizes

Core Problem Creation

Addition of 4-variable
Symmetry Constraints

Solving Problem with
Linear Programming

Transforming 4-variable
Constraints to 2-variable

Constraints and Addition to
Constraint-Graph

I

Design Rule and Connectivity
Constraint Generation

Transistor Extraction

Symmetry Axis Detection
Symmetry Constraint Generation

Target Technology
Design Rules

IIDevice Resizing

Transformation of Symmetry
Constraints into Graph

Solving Constraint-Graph with
Shortest-Path Algorithm

Fig. 2: A one-dimensional cross-coupled symmetric transistor pair. The
rectangles with dotted patterns represent the poly-silicon layer.

s 6

s 1

M 1/2

M 1/2M 2/2

M 2/2

s 2

s 3

s 4

s 5

Fig. 4: Internal Flow for template-based layout retargeting.

The problem of the generation of a new layout from the symbolic
template reduces to solving a constrained symbolic compaction
problem [13]. The layout generator tool solves this compaction
problem after imposing new device sizes on the symbolic template.
While linear programming (LP) [14] can be employed to solve this
problem, it is computationally intensive and therefore prohibitive for
large problems. Therefore, the compaction problem is solved by a
combination of linear programming and graph-based shortest-path
algorithm [9].

Fig. 3: A common-centroid layout of a symmetric transistor pair.
Rectangles with dotted pattern represent the poly-silicon layer.

The layout symmetry detection algorithm presented in [10],
henceforth called Direct Layout Symmetry Detection (DLSD), relies
on scanning the entire layout for symmetric transistors. First, the
nets and transistors in the layout are identified and all transistors are
stored in a queue sorted by their bottom-edges. Devices connected
by a net and with same ordinate of bottom-edges are then pairwise
compared for the existence of geometric mirror images. After
detection of all symmetric transistor-pairs, all axes of symmetry with
same abscissa or ordinate are merged into a single axis. Under this
scheme, the layout of Fig. 2 has eleven axes of symmetry marked by
the axes s1 to s11 and sixty-six (selecting 2 from 12) matched
transistor pairs. The layout in Fig. 3 has six axes of symmetry as
indicated by the axes s1 to s6 and thirty matched transistor pairs.

The constraint equations, therefore, need to be transformed into a
constraint-graph (),GV E . While the design rule and connectivity
constraints can be directly mapped to the constraint-graph, the
transformation of the three or four variable symmetry constraints in
Eqs. (2) and (3) is rather complex. The steps in the transformation
of the symmetry-dictated constraint equations to the graph form
have been magnified on the right in Fig. 4. First, the graph (),G V E
obtained from the design rule constraints is reduced to a smaller
graph called core-graph

1 1 1(),G V E where and
1V V⊂

1 { |i iV v v= corresponds to the variables in the equi-distance
constraint-equations} [9]. The edges of the core-graph are obtained
by applying the shortest path algorithm on the main constraint graph

(),G V E . A directed edge e(),i jv v is added between the pair of

vertices in G if there exists a shortest path between the
corresponding vertices in

1

(),G V E .

B. Motivation: Analog Layout Retargeting

The automatic layout retargeting methodology [8] provides an
efficient way of reusing existing fine-tuned analog layouts over
changes in technology and design specifications. The re-targeting
tool reads in a hand-crafted analog layout, the source and target
technology-dependent design rules and automatically creates a
symbolic structural template. By imposing the new device sizes
pertaining to new specifications on the template, the tool generates a
target layout that maintains all the designer expertise embedded in
the source layout. The internal flow diagram of the retargeting tool
is shown in Fig. 4.

The LP-compatible equations are generated from the core-graph
. The solution of these equations transforms the equidistance

constraints in a form that can be directly incorporated into the main
constraint graph G. For example, Eq. (2) is transformed into a form

1G

 The retargeting tool-suite consists of a template extractor and a
layout generator. The symbolic template, extracted from the source
layout by the template extractor, comprises the design-rules,
connectivity and symmetry constraints. The following equations
represent the symmetry constraints generated for the layout of Fig. 1.

bshgs leftright =−=− 00 (4)

where b is a constant. Once all the three and four-variable
constraint-equations are transformed and added into the main

constraint-graph, the symbolic compaction problem is solved using
the shortest-path algorithm.
 Thus, each symmetry axis introduces numerous variables and
necessitates multiple transformations of the constraint-graph into the
core-graph [9]. A large number of symmetry axes render the
process very computation intensive. Also, as we found during our
retargeting experiments, too many redundant symmetry constraints
may even render the problem unsolvable. Clearly, reducing the
number of symmetry axes and avoiding all redundant constraints is
essential for efficient layout retargeting.

III. Hierarchical Symmetry Detection Flow

As discussed in Section II, reduction of symmetry constraints and
avoidance of unintentional symmetry is a prime requirement for
successful and efficient layout retargeting. The method proposed in
this work is based on layout proximity based clustering of netlist and
extraction of hierarchy information from the circuit. This is
illustrated in Fig. 5.

Hierarchy Extractor

Netlist Extractor
Flat

Clustered
Netlist

Subcircuit
Library

Netl ist and
M atching

Information

Layout Symmetry
Detector

Symmetry Constraints
Graphical Display of Symmetry Axes

Textual Output of Symmetric Pairs

Layout
 Netlist Clustering

Hierarchical
Clustered

Netlist
wi th matching

information

Fig. 5: Hierarchical Symmetry Detection Methodology. The oval
blocks are modules of HiLSD.

First, the Netlist Extractor generates the circuit netlist from the
layout information. The netlist is then clustered into groups based
on physical proximity in the layout. A designer-provided library
consists of the netlists of the building blocks, and matching and
symmetry information of individual devices. The subcircuits in the
library can be any commonly used analog circuit like differential
pair, current mirror or larger hierarchical blocks like comparators,
operational amplifiers etc. For simple building blocks such as
differential pair and current mirror, the matching information is
implicitly embedded in the library, whereas for larger complex
blocks like operational amplifiers, explicit matching information
may be input by the designer. The Hierarchy Extractor identifies all
instances of the subcircuit in the main netlist. During this Subcircuit
mapping, a complete list of essential and intended matched transistor
pairs is created. The detection of symmetric transistors in the
layout is initiated from the list obtained after Subcircuit mapping.

 Table 1: Outline of the HiLSD algorithm.

begin

 for each // s subcircuit, L Library

 end for

end

HierarchicalLayoutSymmetryDetection

detectNetsTransistors
clusterTransistors

s L
mapSubcircuits

detectLayoutSymmetry

∈ = =

Table 1 shows all the steps in the hierarchical symmetry detection

algorithm. The procedures detectNetsTransistors extracts the
netlist from the layout and clusterTransistors groups transistors that
are physically contiguous in the layout. The routine mapSubCircuits
inside the loop identifies all instances of the library subcircuits and

maps them to the layout data-structure. This mapping process
identifies all the matched transistors that are meant to be symmetric
in the layout. Finally, the detection of layout symmetry and
generation of constraints are accomplished in the routine
detectLayoutSymmetry. Each of these processes is explained in
detail in Sections IV and V.

IV. Netlist, Cluster and Hierarchy Extraction

A. Netlist Extraction
A transistor with a single rectangle each for its gate, source and

drain terminals is henceforth called a unit transistor. A net is
defined as an electrical connection between the terminals of
transistors or external ports.

The layout representation and netlist extraction schemes are
adopted from the Magic VLSI layout system [11]. Unit transistors
are detected by an efficient search for overlaps between the
poly-silicon and the diffusion layers. The netlist database stores the
location, size, orientation and terminal information for each unit
transistor. Once the transistors are extracted, a simple recursive
algorithm detects the nets from the layout using the terminals of the
transistors as the starting points.

B. Proximity Based Netlist Clustering

The netlist clustering process is especially important as it reduces
the number of symmetry axes for multi-fingered transistors. In the
layout, each multi-fingered transistor M contains multiple
contiguous elements C, where each contiguous element consists of
physically contiguous unit transistors T. The clustering scheme
partitions the netlist based on the manner in which the transistors are
laid out.

The netlist, which at the end of extraction comprised of the set of
unit transistors TS and the set of nets NS, now consists of the same set
of nets NS and the set of multi-fingered transistors MS defined as

 where
is the set of the gate, source and drain nets of the multi-fingered
transistor M. Each multi-fingered transistor M is a set of physically
contiguous elements C

{ a unique { } }| , , S
M M MM M G S D N∀ ∃ ⊂

C ∈

{ }S

{ }, ,M M MG S D

 S i.e., or in other words, M
M C C= =

{ { } {| , , ,S
T T TC T T T T G S D G= ∈ ∀ =

. And each contiguous elements is defined as
 }, ,MS D ,M and T C∀ ∈M

}are physically contiguous . For the one-dimensional cross-coupled
symmetric pair of Fig. 2, each multi-fingered transistor has three
contiguous sets of two unit transistors each. In Fig. 3, each
multi-fingered transistor has two contiguous sets of three unit
transistors each.

Table 2: Algorithm for netlist partitioning.

begin
 for each // is the set of nets
 // are gate,source,drain nets of transistor T

 for each { }

clusterTransistors

, ,

| , ,

S S

S

T T T

T T T

N N N
G S D

T T N G S D
M chec

∈

∈ ∈

= ()

 (,) // { }
 () // doubly sorted w.r.t. co-ordinates
 end for
 end for
end

, ,

, ,

S S

T T TkCreateMFT G S D

X checkCreateContiguous C T M C C
insertSorted T X x y

= = =

The clusterTransistors procedure in Table 2 presents the

algorithm for partitioning the netlist. Each multi-fingered transistor
is stored in a hashtable with hash key formed by the drain, gate and

source nodes. For each unit transistor T connected to a net N, a new
multi-fingered transistor M is created if it does not already exist in
the hashtable. This is accomplished by a call to the routine
checkCreateMFT. The routine checkCreateContiguous then
checks if the unit transistor T is aligned with one of the contiguous
elements in M. If T is not physically contiguous with any C M∈ , a
new contiguous element is created. In either case, the routine
insertSorted inserts T into a list of unit transistors of the
corresponding contiguous element. This list of transistors in a
contiguous element is doubly sorted with respect to the x and y
coordinates.

C. Hierarchy Extraction

The designer-intended transistor-matching information is
embedded in the subcircuits in the library. Identifying instances of
these commonly used subcircuits in the main netlist maps the
non-redundant matching information to the devices in the layout.
This is accomplished by an efficient subgraph isomorphism
algorithm [12] in the mapSubcircuits routine of Table 1.

First, both the subcircuit and the main circuit are implicitly
partitioned by an iterative labeling algorithm to reduce the search
space. This identifies a set of nodes in the main circuit and a single
node, called a key node, in the subcircuit. The set of nodes in the
main circuit obtained by this iterative labeling algorithm are
potential start-points for checking a pattern match with the
subcircuit. From each potential node in the main circuit and the key
node in the subcircuit, another labeling algorithm accomplishes
detection of an isomorphism with the subcircuits graph.

V. Layout Symmetry Detection

The hierarchy extraction process generates a subcircuit-based
netlist. From the subcircuit-based netlist, a list of designer-intended
non-redundant matched multi-fingered transistor pairs is created.
The layout symmetry detection scheme identifies if each pair of
these multi-fingered transistors is actually laid out symmetrically.
The process also generates the corresponding constraints for the
ensuing compaction step in layout automation[8].

The algorithm for layout symmetry detection is shown in Table 3.
For each transistor pair intended to be matched, the detectTopology
routine identifies the pair’s layout topology by traversing through
the list of contiguous elements. Based on the topology, the unit
transistors are inserted into two or four sorted lists. Thus, for the
common-centroid topology of Fig. 3, the six unit transistors in the
top and bottom halves of the transistors M1 and M2 respectively are
collected into a list LL. The bottom and top halves of M1 and M2 are
collected into another list LR. The unit transistors in LL and LR are
then pairwise compared in the checkSymmetry routine to detect the
vertical axis of symmetry, s6, and generate the corresponding
constraints. For the horizontal symmetry axis s3, the bottom halves
of both M1 and M2 are collected into a list LB, and the top halves are
collected into a list LT and pairwise compared. For the layout of Fig.
2, six unit transistors are inserted into each list LL and LR and a single
axis of symmetry s6 is detected. Prior co-ordinate based double
sorting of the unit transistors in each multi-fingered transistor
ensures that pairwise comparison can detect axes of symmetry.

VI. Results

A. Symmetry Detection Experiments

The HiLSD program was employed to detect symmetry in

various analog/RF layouts and generate constraints for the layout
retargeting methodology [8] illustrated in Fig. 4. Table 4 compares
the symmetry detection data for HiLSD with the DLSD method
presented in [10]. Various symmetry topologies were employed on
the different layouts. The differential amplifier, the latched
comparator and the 4:1 comparator used symmetric transistors with
minimal multi-fingered structures. The voltage-controlled
oscillator was laid out with extensive multi-fingered symmetric
transistors. The two-stage and folded-cascode operational
amplifiers utilized multi-fingered interleaved and common-centroid
symmetry topologies. And the 5-bit flash analog-to-digital
converter consisted of 31 instances of a latched-comparator laid out
in an array of 8x4.

For each method, the number of symmetry axes detected, the
number of symmetric transistor pairs, and the number of constraints
due-to-symmetry are reported. The DLSD method extracted a large
number of redundant symmetry axes. As it detected symmetry
between every pair of unit transistors in each multi-fingered
transistor, a large number of axes were observed for the two-stage
operational amplifier and the voltage-controlled oscillator circuits.
For the array structure of the comparator blocks in the 5-bit
analog-to-digital converter, the DLSD method detected symmetry
for every transistor in one comparator cell to every transistor in
another comparator cell in the same row and column. These
redundant constraints not only slowed down the compaction steps in
layout retargeting, but also rendered the problem unsolvable in some
cases.

Table 3: Algorithm for symmetry detection.

begin
// ListSym = { (,) | and are intended matched pair }

for each (,) ListSym

 topology = (,)

 if (topology com

detectLayoutSymmetry

i j i j

i j

i j

M M M M

M M

detectTopology M M

∈

==

L

R

B

mon_centroid) then
 L = (, ,)

 L = (, ,)

 L = (, ,)

i j

i j

i j

insertToList M M left

insertToList M M right

insertToList M M bottom

T

L R

B T

 L = (, ,)

 (L , L)
 (L , L)
 else if (topology horizontal_interleaving)

i jinsertToList M M top

checkSymmetry
checkSymmetry

==

L

R

L R

 then
 L = (, ,)

 L = (, ,)

 (L , L)
 else if (topology vertical

i j

i j

insertToList M M left

insertToList M M right

checkSymmetry
==

B

T

B T

_interleaving) then
 L = (, ,)

 L = (, ,)

 (L , L)
 else

i j

i j

insertToList M M bottom

insertToList M M top

checkSymmetry
 // simple transistor layout

 (,)

 end if
 end for
end

i jcheckSymmetry M M

We compare the scaling of the symmetry detection by the two

methods with arrays of comparators. Fig. 6 shows the number of
symmetric transistor pairs detected by DLSD and HiLSD as the
number of comparators is scaled. The y-axis is in logarithmic scale.
The graph shows that DLSD detects a huge number of redundant
symmetry axes.

Table 4: Comparison between Hierarchical Symmetry Detection (HiLSD) and Direct Symmetry Detection (DLSD)
DLSD HiLSD

Circuits
Multi-
Fingered

Transistors

Unit
Transistors

Design Rule
Constraints Symmetry

Axes
Transistor

Pairs
Symmetry
Constraints

Symmetry
Axes

Transistor
Pairs

Symmetry
Constraints

Differential Amplifier 5 5 1,602 1 2 18 1 2 18
Latched Comparator 15 20 8,639 10 19 132 2 6 42
2-stage Opamp 9 48 5,902 69 262 1,578 2 12 78
Folded Cascode Opamp 14 43 8,352 29 173 1,206 6 20 168
4:1 Comparator 20 32 26,182 26 166 1,026 3 13 78
VCO 16 198 645,986 680 5,525 33,156 4 362 2,178
5-bit Flash ADC 435 590 320,937 261 6,218 4,193 12 186 1,302

B. Automatic Analog Layout Retargeting with HiLSD
We performed experiments on analog layout retargeting [8] to a

new technology and specifications based on the hierarchical and
direct symmetry detection methods. Fig. 7 shows a comparator
layout in TSMC 0.25um CMOS process. This layout was
retargeted under new specifications to the TSMC 0.18um CMOS
technology using both DLSD and HiLSD based symmetry detection.

The symmetry constraints generated by the two methods were
passed onto the resizing tool. Table 5 shows the number of
symmetry axes, transistor pairs, symmetry constraints, and user
runtime for the resizing schemes under the two methods. The
retargeted layout obtained by using HiLSD for symmetry detection
is shown in Fig. 8. The retargeted layout under this preserved all
the required matching considerations, while incorporating a lesser
number of symmetry constraints. The circuit performance of the
latched-comparator in the two technologies achieved by these
methods is reported in Table 6.

 Fig. 7: Comparator Layout in TSMC 0.25um technology.

Fig. 8: Retargeted Layout of comparator in TSMC 0.18um

Fig. 6: Comparison of HiLSD and DLSD symmetry detection for array
of comparators. X-axis represents number of comparators in the array.
Y-axis denotes number of symmetric transistor pairs (Log scale).

The analog comparator section of the 5-bit flash analog-to-digital
converter was constructed by placing 31 units of the
latched-comparator into an 8x4 array. Each unit comparator was
aligned and matched with other units in the same row and
column. For any unit comparator in the section, another comparator

Fig. 9: Comparator block of a 5-bit flash ADC in TSMC 0.25um.

The flash analog-to-digital converter was retargeted to the TSMC
0.18um CMOS process; first with the symmetry information
obtained from DLSD method and then with the HiLSD algorithm.
DLSD detected 6,218 symmetric transistor pairs in the layout, while
the HiLSD method identified only 186 symmetric pairs. This huge

corresponding to its preceding or following bit was positioned next
to each other to minimize the mismatch. The layout of the
comparator section of the ADC in TSMC 0.25um CMOS technology
is shown in Fig. 9. difference in detected symmetric pairs is due to the redundant

symmetric pairs from the transistors on different unit comparators

Table 5: Comparison between layout retargeting with DLSD and HiLSD symmetry detection schemes.
Design Latched Comparator 5-bit Flash Analog-to-Digital Converter
Symmetry Detection Method DLSD HiLSD DLSD HiLSD
Multi-fingered Transistors 15 15 435 435
Unit Transistors 20 20 590 590
Design Rule Constraints 8,639 8,639 320,937 320,937
Symmetry Axes 10 2 261 12
Transistor Pairs 19 6 6,218 186
Additional Symmetry Constraints 132 42 41,943 1,302
Runtime on Solving Symmetry Constraints 0.65 s 0.26 s 2 hr 36 min 48 min
Total Runtime for Retargeting Tool 10.06 s 9.31 s 4 hr 20 min 2 hr 14 min

layout-retargeting tool, the runtime for regenerating the new ADC
layout is reduced from 4 hours to 2 hours.

listed in same row or column. During resizing, these unnecessary
symmetric-pairs resulted in the increase of symmetry constraints
from 1,302 to 41,943, which subsequently increased the runtime of
solving the symmetry constraints from 48 minutes to 156 minutes.
The overall runtime escalated from about 2 hours to 4 hours.
Nevertheless, both target layouts showed similar symmetries and
matching. The original layout had an area of 12,780 um2. The
target layout from direct symmetry detection had an area of 7,955
um2. And the target layout for hierarchical symmetry detection had
an area of 6,984 um2. The reduction in area is attributed to the
avoidance of unwanted axes of symmetry that constrain the layout.
The retargeted layout obtained through HiLSD method is shown in
Fig. 10.

With the symmetry constraints described in a hierarchical circuit
netlist by circuit designers, Hi-LSD also provides the first automatic
tool for verifying if a layout meets all the symmetry constraints
required by circuit designers.

Acknowledgements
The authors wish to thank Mr. Sankaran Aniruddhan,
System-On-Chip Lab, University of Washington, for help with the
design examples.

References

[1] M. J. M. Pelgrom, A. C. J. Duinmaijer and A. P. G. Welbers,
“Matching properties of MOS transistors”, IEEE J. Solid-State Circuits, vol.
24, pp. 1433-1440, Oct. 1989.

[2] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw Hill,
2001.
[3] A. Hastings, The Art of Analog Layout, Prentice Hall, 2001.
[4] J. M. Cohn, D.J. Garrod, R. A. Rutenbar and L. R. Carley,
“KOAN/ANAGRAM II: New tools for device-level analog placement and
routing”, IEEE J. Solid State Circuits, vol. 26, pp. 330-342, Mar. 1991.
[5] K. Lampaert, G. Gielen and W. M. Sansen, “A performance-driven
placement tool for analog integrated circuits”, IEEE J. Solid State Circuits,
vol. 30, pp. 773-780, Jul. 1995.
[6] J. D. Conway and G. G. Schrooten, “An automatic layout generator
for analog circuits”, Proc. European Design Automation Conference, pp.
513-519, Mar. 1992.
[7] R. Castro-Lopez, F. V. Fernandez, F. Medeiro and A.
Rodriguez-Vazquez, “Generation of technology-independent retargetable
analog blocks”, Int. J. Analog Integrated Circuits and Signal Processing,
vol. 33, pp. 157-170, Dec. 2002.

Fig. 10: Retargeted Layout of comparator block of ADC in TSMC
0.18um (HiLSD based symmetry detection).

[8] N. Jangkrajarng, S. Bhattacharya, R. Hartono, and C-J. R. Shi,
“Automatic analog layout retargeting for new processes and device sizes”,
Proc. IEEE Int. Symposium Circuits and Systems, vol. 4, pp. 704-707, May
2003.
[9] R. Okuda, T. Sato, H. Onodera and K. Tamaru, “An efficient
algorithm for layout compaction problem with symmetry constraints”, Proc.
Int. Conference Computer-Aided-Design, pp. 148-151, Nov. 1989.
[10] Y. Bourai and C. J. R. Shi, “Symmetry detection for automatic
analog layout recycling”, Proc. Asian and South Pacific Design Automation
Conference, pp. 5-8, Jan. 1999.
[11] W. S. Scott and J. K. Ousterhout, “Magic’s circuit extractor”, Proc.
IEEE/ACM Design Automation Conference, pp. 286-292, Jun. 1985.

Table 6: Comparison of a latched-comparator performance
Design Specs. Layout in 0.25um Retargeted Layout in 0.18um
 - DLSD Based HiLSD Based

 Power Supply 2.5 V 1.8 V 1.8 V
Ref. Voltage 1.28 V 1.28 V 1.28 V
Frequency 500 MHz 750 MHz 750 MHz
Resolution 20 mV 20 mV 20 mV
Area 369 um2 225 um2 214 um2

Power 0.84 mW 0.45 mW 0.45 mW

VII. Conclusions [12] M. Ohlrich, C. Ebeling, E. Ginting and L. Sather, “Subgemini:
Identifying subcircuits using a fast subgraph isomorphism algorithm”, Proc.
IEEE/ACM Design Automation Conference, pp. 31-37, Jun. 1993.

A new symmetry detection tool, Hi-LSD, based on hierarchical

extraction and subcircuit specific symmetric transistor pairs is
presented. The tool significantly reduces search-space and ignores
all unintended symmetry axes exhibited on the layout. Employing

[13] S. L. Lin and J. Allen, “Minplex – a compactor that minimizes the
bounding rectangle and individual rectangles in a layout”, Proc. IEEE/ACM
Design Automation Conference, pp. 123-130, Jun. 1986.

Hi-LSD on a 5-bit flash analog-to-digital converter ignores all
unintended axes of symmetry and reduces the number of symmetric
pairs from 6,218 to 186. When applied with the automatic analog

[14] D. Luenberger, Linear and Nonlinear Programming 2nd Edition,
Addison-Wesley, 1984.

	Table 6: Comparison of a latched-comparator performance

