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Abstract 

Mitigating Short-Term Variations of Photovoltaic Generation Using Energy Storage with VOLTTRON 

 

Kevin Morrissey 

University of Washington 

 

Chair of the Supervisory Committee: 

Assistant Professor Miguel A. Ortega-Vazquez 

Electrical Engineering Department 

 

A smart-building communications system performs smoothing on photovoltaic (PV) power 

generation using a battery energy storage system (BESS). The system runs using VOLTTRON™, a multi-

agent python-based software platform dedicated to power systems. The VOLTTRON™ system designed 

for this project runs synergistically with the larger University of Washington VOLTTRON™ environment, 

which is designed to operate UW device communications and databases as well as to perform real-time 

operations for research. One such research algorithm that operates simultaneously with this PV Smoothing 

System is an energy cost optimization system which optimizes net demand and associated cost throughout 

a day using the BESS. The PV Smoothing System features an active low-pass filter with an adaptable time 

constant, as well as adjustable limitations on the output power and accumulated battery energy of the BESS 

contribution. 

The system was analyzed using 26 days of PV generation at 1-second resolution. PV smoothing 

was studied with unconstrained BESS contribution as well as under a broad range of BESS constraints 

analogous to variable-sized storage. It was determined that a large inverter output power was more 

important for PV smoothing than a large battery energy capacity. Two methods of selecting the time 

constant in real time, static and adaptive, are studied for their impact on system performance. It was found 

that both systems provide a high level of PV smoothing performance, within 8% of the ideal case where 

the best time constant is known ahead of time. The system was run in real time using VOLTTRON™ with 

BESS limitations of 5 kW/6.5 kWh and an adaptive update period of 7 days. The system behaved as 

expected given the BESS parameters and time constant selection methods, providing smoothing on the PV 

generation and updating the time constant periodically using the adaptive time constant selection method. 
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I  Introduction 

Growth of renewable energy generation is forecasted to continue to increase in the coming years 

due its improving economic viability, coupled with concern over the polluting nature of burning fossil fuels. 

Many U.S. states have set goals for the portion of generation attributed to clean, renewable sources and 

have enacted plans to grow the base of renewable generation [1]. This has spurred the construction of many 

new renewable plants and an increase in distributed rooftop solar installments, and renewable generation 

capacity has grown rapidly both in the U.S. and at a global scale [2]. However, increased generation base 

is only part of the solution - with higher penetration of renewable sources, there also comes increased 

uncertainty and variation in the power system. High penetrations of stochastic wind and solar generation 

require more considerations in terms of grid flexibility and storage, as is discussed in [3]. 

 Renewable sources bring with them inherent uncertainty as they are reliant on natural forces and 

weather patterns. There is uncertainty on the scale of hours and days, where forecasts may be inaccurate 

and generation may not match what was predicted. Wind generation is not as variable as solar because it 

relies on a spinning rotor which has inertia, and the turbines generally feature pitch control which keeps a 

constant power within a range of wind speeds. With solar generation, there is also uncertainty on the scale 

of seconds, where sunlight is subject to small stochastic noise-like variations throughout the day. Take, for 

example, a cloud of varying density passing in front of the sun – a solar farm may see a decrease in 

generation from the cloud cover on an otherwise blue sky, and then experience vast fluctuations based on 

the density of the cloud as it passes. This short-term variability requires increased flexibility and reserve on 

power system in order to balance the load and generation, and often involves a high-cost peaking gas turbine 

to quickly resolve mismatches in generation and load [4]. 

 Many proposed solutions to the broad issue of renewable generation uncertainty and variation 

include the installation of grid-level storage [5]. One of the applications of such storage is performing 

smoothing on solar generation to decrease variations occurring on the order of seconds. This involves 

absorbing the fluctuations using a filtering mechanism so that generated power ramps up and down more 

slowly. Output is still governed by stochastic and uncertain phenomena, but a more stable and slow-

changing characteristic greatly improves the ability of the grid to accommodate solar generation. 

 PV smoothing does not always directly benefit the owner of the panels. While making the PV 

output of a distributed installation more stable may slightly improve the voltage and power quality on the 

distribution branch, the largest benefits are seen by the utility, balancing authority, and the generating units. 

Short-term power imbalances must be compensated by adjusting output on other generators in the system, 

which, and the units capable of fast adjustment are often some of the more expensive units. Because of this, 



10 

 

monetization of PV smoothing depends heavily on the system in which the PV array is installed, and will 

differ depending on the flexibility and quantity of the units available. PV smoothing would likely be 

installed for a distributed PV array with incentive given by the regional utility benefitting from the 

smoothing functions.  

Larger systems fare better in terms of flexibility, as the aggregation of loads and generation from a 

large region are better able to accommodate variations from a solar plant. In addition, some degree of 

smoothing occurs naturally among PV plants spread out across geographic locations [6]. Regionally 

aggregated natural PV smoothing is not considered for this project. 

Presented is a filtering system designed to smooth variations in solar generation on the second 

scale. The solar generation is a 35-kW array located on the roof of a building at the University of 

Washington (UW). The system makes use of a 100 kW/325 kWh battery energy storage system (BESS) 

located in the basement of another campus building. The system makes use of the VOLTTRON™ building 

platform: an open-sourced, python-based communications system developed at Pacific Northwest National 

Laboratory (PNNL) for the control and monitoring of building energy systems. VOLTTRON™ presents 

an opportunity to create uniquely customizable controls for building and campus energy management 

networks. The VOLTTRON™ solution includes central control and filtering functions as well as driver 

interfaces with the hardware elements. The smoothing system operates synchronously and simultaneously 

with the larger UW VOLTTRON™ environment, which is designed to operate UW device communications 

and databases as well as to perform research algorithms. One such research algorithm that operates 

simultaneously with this PV Smoothing System is an energy cost optimization system which optimizes net 

demand and associated cost throughout a day using the BESS. This requires real-time coordination to jointly 

operate the BESS between the two research systems. 

This project investigates an active low-pass filter approach to smoothing the PV generation. 

Various filters time constants, which correspond to different levels of smoothing, are analyzed. 

Additionally, an adaptive approach where historical data is used to adapt the filter time constant in real time 

is investigated. The contribution of the BESS in terms of inverter power and battery energy is varied to 

determine the parameters of storage necessary to perform smoothing. A 26-day period of PV measurement 

data at 1-second resolution is analyzed among various time constants and BESS parameters, and two 

methods of time constant selection are analyzed and compared. Finally, the system is implemented in real 

time in the VOLTTRON™ environment to demonstrate feasibility. 
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II  VOLTTRON™ Platform 

VOLTTRON™ is an open-sourced python-based platform for enabling inter- and intra-building 

communication. Developed by PNNL, its applications span a wide array of building device monitoring, 

control, and communication. The platform enables functions such as load peak shaving, temperature 

setpoint modification, optimization of energy resource allocation, transactive control and data management, 

and operation of building devices. VOLTTRON™ is being used widely in both academic and industrial 

purposes as a building energy management and control system, and is as flexible and scalable as the 

implementation requires [7]. 

VOLTTRON™ operates on the use of agents, each of which is a python class performing a task. 

In this way, many operations can run simultaneously, managing several parts of a larger system at once. 

This allows VOLTTRON™ to be used in real time building operation functions. 

2.1  Photovoltaic Smoothing System Architecture in VOLTTRON™ 

The VOLTTRON™ implementation for this project is shown in Figure 1. 

 

 

Figure 1: VOLTTRON™ Agent Architecture 
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The VOLTTRON™ system is divided between two VOLTTRON™ platforms: the Energy Cost 

Optimization System and the PV Smoothing System. The Energy Cost Optimization System is located on 

a central workstation, while the PV Smoothing System is located on a peripheral computer. In this 

configuration, the two separate VOLTTRON™ platforms have their own message bus for agent 

communication, while they are able to share important cross-platform messages as well. 

The two systems communicate using the VOLTTRON™ Interconnect Protocol (VIP). Each 

platform features a forwarding agent that contains the network address and security credentials of the other 

platform, enabling them to exchanged published topics containing operations information at each time step. 

The Energy Cost Optimization System and PV Smoothing System both exist within the greater UW 

VOLTTRON™ environment, which manages distributed energy resources and ongoing research functions. 

At the time of this project, these functions include: 

 PV data acquisition using the “Master Driver” agent from 4 PV arrays (140 kW total) on 

campus. 

 Communication and data sharing between VOLTTRON™ instances among partner 

testbeds. 

 MySQL database management using a custom “Selective Historian” agent – which sorts 

device readings into respective MySQL databases depending on their use. 

 Weather data aggregation from Weather Underground using their application program 

interface (API). 

 Energy cost optimization: a research project using building net demand and modeled 

electricity price forecasts to optimize BESS dispatch at a 5-minute resolution. 

In Figure 1, the Energy Cost Optimization System is simplified to show the agents and messages 

that are important for the PV Smoothing System. This includes the PV data acquisition from the 35 kW 

array, the BESS interface, and an agent representing the rest of the interconnecting UW environment. 

The PV Smoothing System platform comprises the algorithms hereafter described. The system 

receives the system clock from the central Energy Cost Optimization System, as well as PV power 

measurement data published every second. The Real Time Filtering Agent accumulates PV measurements 

and the optimized BESS schedule from the Energy Cost Optimization System and determines an 

appropriate BESS adjustment for perform smoothing on the generated power. At a specified interval, the 

Filter Tuning Agent determines a new filter and sends an update to the Real Time Filtering Agent. Data is 

stored in real time by a SQLite Historian. 
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III  Literature Review 

 A large body of work exists on the subject of variability of renewable energy and smoothing 

solutions to this problem. While VOLTTRON™ is a relatively new platform, introduced as a prototype in 

2012, there are some publications out regarding demonstrations and implementations of the smart-building 

software environment. 

3.1  Uncertainty and Variability of Solar Generation 

 There are numerous papers published on the subject of characterizing and predicting the variations 

exhibited by renewable energy resources, especially PV and wind generation. [6] is a detailed study on the 

variability of PV plant output due to cloud cover, discussing the effects of PV plant size and geographic 

diversity on variability. The authors found that aggregating PV generation over a wide area produces a 

smoothing effect, as some variations are averaged out of the net generation. In addition, larger installations 

and indeed larger power systems are more resilient to these variations. 

 Other papers, such as [3] and [4], discuss the integration costs associated with bringing PV plants 

online, as well as the factors involved with improving the flexibility and transmission capacity of the grid 

in response to introduction of highly variable PV power. 

 [8] discusses PV generation forecasting using a neural network with historical data. The model uses 

predicted cloud cover to estimate the solar irradiance, temperature, and power output of the PV modules. It 

goes on to incorporate these predictions into a building load scheme such that the power taken from the 

grid for temperature regulation can be predicted and optimized. 

 [9] discusses the power spectral density of wind generation and locating frequency patterns where 

they exist. This can be applied to PV generation as well. 

3.2  Photovoltaic Smoothing 

 In [10], a 53-kW concentrating PV array is smoothed using a simulated BESS. The filtering 

mechanism is done using a moving average algorithm. The paper performs smoothing on 1 day of data at 

a 1-minute resolution, and compares these results with a shorter 20-minute dataset sampled at 1 second. 

The authors concluded that installing the BESS reduced the maximum ramp rate of the plant, and that a 1-

minute resolution does not consider shorter timeframe variations that were captured by the 1-second 

resolution. 

 [11] also considers a moving average, though this paper uses a double moving average to perform 

smoothing on measured data. Not only is the purpose of this paper to reduce fluctuations of PV generation 
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for grid integration, but also to maximize maximum power point tracking algorithms in the inverter which 

may not handle fast variations very well. 

 [12] considers a much larger system, with 1.26 MW of PV installation alongside a 3 MW wind 

turbine and a 1 MW/MWh BESS. It discusses the trade-off between battery effort and degree of smoothness, 

a concept that is also explored in this project. It simulates operations of two methods of smoothing the net 

system power over 50 minutes: one using a dynamic low-pass filtering approach, and one featuring a power 

fluctuation direct rate limiting approach. In both cases, the objective was to limit the power fluctuations 

from increasing beyond a specified target. Additional investigations in this study included methods of 

keeping the BESS in the linear region of its state of charge (SOC), and analyzing a large 40 MW PV system 

over the course of an entire day. 

 [13] considers the optimal sizing of BESS, solar, and wind resources, including performing 

smoothing on the net generation using a second order low pass filter approach. The paper optimizes the 

system over four different objectives, including cost of operating the system and generation revenues. It 

features a case study of a system located in China and simulation results, enforcing a maximum ramp rate 

for the net generation. 

In [14], the authors look at generation shifting and ramp rate limiting of an existing wind installation 

using control of an installed sodium sulfur battery. The smoothing is performed using a low-pass filter 

approach at 1-minute resolution over the course of a day. The paper goes on to analyze the minute to minute 

ramp rates, evaluating the smoothness of the result with a histogram showing frequency of different ramp 

levels. The authors also make the assertion that using the low-pass filter, the ramp rate of the total system 

is limited to twice the maximum generator output divided by the filter time constant. 

 [15] considers the use of lead acid battery cells for smoothing, demonstrating system feasibility. 

The paper studies the effect on battery lifetime of the smoothing function over the course of 30 days. 

 [16] is a study on several ways a BESS can improve and enable the integration of distributed PV 

generation. The authors analyze PV smoothing using a BESS unit as part of an installed testbed, enforcing 

a maximum ramp rate on the system. In addition, the authors consider auxiliary services that may be 

provided by a BESS, such as frequency droop response and reactive power support. 

 [17] discusses the scenario where wind power variability is compensated both by a BESS as well 

as co-located natural gas generation. The objective of the research is to minimize the BESS requirements 

while providing the lowest cost energy within smoothness constraints. 
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3.3  VOLTTRON™ Implementations 

 Several VOLTTRON™ implementations and examples have been published. PNNL introduces 

VOLTTRON™ in 2012 in [18], outlining various aspects of its functionality and numerous example 

applications. In 2013, the same team demonstrated a simple implementation of a smart grid demand 

response application, described in [19]. 

[20] describes an implementation aimed at optimizing building loads for temperature control using 

the real time platform. Demonstration of the VOLTTRON™ system for a research application was an 

important aspect of that publication. 

[21] provides instructional discussion on installing and running VOLTTRON™ on small 

BeagleBone devices for the purposes of testing and benchmarking the system’s device scraping capabilities. 

[22] discusses managing distributed energy resources in a broad multi-campus testbed environment 

for the CETC project, including transactive control communications. 

More VOLTTRON™ use cases can be found at DOE’s VOLTTRON™ website [7]. 

IV  System Description 

 Study of the existing work is an important step in the formulation of a PV smoothing project such 

as this. There exist several strategies for smoothing PV generation, though the algorithms can be grouped 

into two families: low-pass filter approaches [10][12][13][14] and ramp rate constraint approaches 

[12][16][17]. While low-pass filter approaches focus on using past measurements to generate a smooth net 

output value for the next time step, ramp rate constraint approaches place a strict limit on the amount the 

output can change in a given time-step and bring the BESS to contribute when this constraint is violated.  

Selection of one approach or the other depends on the objective of the smoothing, as well as the 

available BESS resources. The ramp rate constraint approach is useful as net generation ramping policies 

can be written into contracts with PV installments, enforcing boundaries on the output of the plant. 

However, enforcing a strict constraint involves installing a BESS capable of ramping nearly the entire 

capacity of the installment under worst-case conditions. For the purposes of analyzing the effect of BESS 

parameters on the overall smoothness of the output, the low-pass filter approach is more suitable as the 

BESS can be sized smaller than the PV plant capacity and the results will be continuous. 

These two approaches can be combined. While this study implements a low-pass filter approach, a 

strict constraint is programmed into the VOLTTRON™ system in the case this becomes necessary for 

implementation and study. The block diagram for the filter algorithm is shown in Figure 2. 
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Figure 2: Filter Block Diagram 

PPV – measured PV generation 

Psmooth – Ideal filtered PV generation 

𝑃𝐵𝐸𝑆𝑆𝑖𝑑𝑒𝑎𝑙  – Ideal BESS contribution to attain the signal Psmooth 

𝑃𝐵𝐸𝑆𝑆𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 – The current setpoint of the BESS inverter output 

𝑃𝐵𝐸𝑆𝑆𝑐𝑚𝑑
 – Command sent to BESS to initiate PV smoothing output 

PBESS – Output power of BESS 

Pnet – Net generation of PV Smoothing System 

τ – Filter time constant 

τbest – Best filter time constant based on historical data 

 

This project uses a time scale of 1 second in order to capture the fast-moving fluctuations in PV 

generation, as [10] recommends in its study. 

The system is described by the following equations: 

1st Order Low-Pass Filter: 

𝑷𝒔𝒎𝒐𝒐𝒕𝒉 = 𝑷𝑷𝑽 ∗ 𝜹(𝒕)          1 

δ() – Impulse response of filter transfer function 
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𝑷𝑩𝑬𝑺𝑺𝒊𝒅𝒆𝒂𝒍 = 𝑷𝒔𝒎𝒐𝒐𝒕𝒉 − 𝑷𝑷𝑽         2 

 

BESS Limitations: 

𝑷𝑩𝑬𝑺𝑺𝒎𝒂𝒙
= 𝐦𝐢𝐧(𝑷𝑩𝑬𝑺𝑺+𝒄𝒂𝒑𝒂𝒄𝒊𝒕𝒚 , 𝑷𝑩𝑬𝑺𝑺𝒔𝒆𝒕𝒑𝒐𝒊𝒏𝒕 + 𝑷𝒘𝒊𝒏𝒅𝒐𝒘)     3 

𝑷𝑩𝑬𝑺𝑺𝒎𝒊𝒏
= 𝐦𝐚𝐱(𝑷𝑩𝑬𝑺𝑺−𝒄𝒂𝒑𝒂𝒄𝒊𝒕𝒚 , 𝑷𝑩𝑬𝑺𝑺𝒔𝒆𝒕𝒑𝒐𝒊𝒏𝒕 − 𝑷𝒘𝒊𝒏𝒅𝒐𝒘)     4 

𝒊.𝑰𝒇𝑷𝑩𝑬𝑺𝑺𝒊𝒅𝒆𝒂𝒍 ≥ 𝑷𝑩𝑬𝑺𝑺𝒎𝒂𝒙
         5 

𝑃𝐵𝐸𝑆𝑆𝑙𝑖𝑚 = 𝑃𝐵𝐸𝑆𝑆𝑚𝑎𝑥
 

𝒊𝒊.𝑬𝒍𝒔𝒆𝑰𝒇𝑷𝑩𝑬𝑺𝑺𝒊𝒅𝒆𝒂𝒍 ≤ 𝑷𝑩𝑬𝑺𝑺𝒎𝒊𝒏
        6 

𝑃𝐵𝐸𝑆𝑆𝑙𝑖𝑚 = 𝑃𝐵𝐸𝑆𝑆𝑚𝑖𝑛
 

𝒊𝒊𝒊. 𝑬𝒍𝒔𝒆           7 

𝑃𝐵𝐸𝑆𝑆𝑙𝑖𝑚 = 𝑃𝐵𝐸𝑆𝑆𝑖𝑑𝑒𝑎𝑙  

𝑬𝒎𝒂𝒙 = 𝐦𝐢𝐧(𝑬𝒄𝒂𝒑𝒂𝒄𝒊𝒕𝒚, 𝑺𝑶𝑪 × 𝑬𝒄𝒂𝒑𝒂𝒄𝒊𝒕𝒚 + 𝑬𝒘𝒊𝒏𝒅𝒐𝒘/𝟐)     

 8 

𝑬𝒎𝒊𝒏 = 𝐦𝐚𝐱(𝟎, 𝑺𝑶𝑪 × 𝑬𝒄𝒂𝒑𝒂𝒄𝒊𝒕𝒚 − 𝑬𝒘𝒊𝒏𝒅𝒐𝒘/𝟐)      

 9 

𝒊.𝑰𝒇𝑬𝑩𝑬𝑺𝑺 + 𝑷𝑩𝑬𝑺𝑺𝒍𝒊𝒎 × 𝒕 > 𝑬𝒎𝒂𝒙        10 

𝑃𝐵𝐸𝑆𝑆𝑐𝑚𝑑
=
𝐸𝑚𝑎𝑥 − 𝐸𝐵𝐸𝑆𝑆

𝑡
 

𝒊𝒊. 𝑬𝒍𝒔𝒆𝑰𝒇𝑬𝑩𝑬𝑺𝑺 + 𝑷𝑩𝑬𝑺𝑺𝒍𝒊𝒎 × 𝒕 < 𝑬𝒎𝒊𝒏       

 11 

𝑃𝐵𝐸𝑆𝑆𝑐𝑚𝑑
=
𝐸𝑚𝑖𝑛 − 𝐸𝐵𝐸𝑆𝑆

𝑡
 

𝒊𝒊𝒊. 𝑬𝒍𝒔𝒆           12 

𝑃𝐵𝐸𝑆𝑆𝑐𝑚𝑑
= 𝑃𝐵𝐸𝑆𝑆𝑙𝑖𝑚  

𝑃𝐵𝐸𝑆𝑆𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 – Preferred BESS operating point, imported from Energy Cost Optimization System 

Pcapacity – Installed inverter capacity 

Pwindow – Allowable inverter power, set by PV Smoothing System BESS limitations 
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𝑃𝐵𝐸𝑆𝑆𝑙𝑖𝑚 – BESS desired power output after power limitation 

EBESS – Accumulated energy used by PV Smoothing System 

Ecapacity – Installed battery energy capacity 

Ewindow  – Allowable battery energy, set by PV Smoothing System BESS limitations 

SOC – BESS state of charge 

t – System clock period. The PV Smoothing System runs at 1 second 

4.1  First Order Low-Pass Filter 

A first order low-pass filter was chosen, as was done in [12] and [14]. This filter was chosen over 

a moving average because the frequency-domain transfer function features less ripple at the cutoff 

frequency. It was chosen over a second-order filter for simplicity of the real-time system, as all three filter 

options produced similar smoothing results when tested against each other. 

The block diagram shows transfer function for a first order low-pass filter with time constant τ. The 

time constant can be varied to improve the performance the filter in the presence of different weather and 

system conditions. The units of τ are seconds, and it represents the period of the cutoff frequency in radians. 

To calculate the period of the cutoff frequency in Hz, τ is multiplied by 2π. The filter characteristic is shown 

in the frequency domain as well as equivalently in the time domain in Figure 3 for a time constant of τ = 

400. The time domain characteristic is the same as the filter impulse response. 

  

Figure 3: Frequency and Time Series Characteristic for τ = 400 Filter 
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For the purposes of programming the filter in the VOLTTRON™ python-based framework, the 

filter is implemented using convolution of the time domain filter characteristic. Choosing a different time 

constant τ requires a new time domain characteristic to be calculated. 

4.2  BESS Limitations 

4.2.1  Cost of BESS Operation 

 One of the limitations to consider for this algorithm is the cost of dispatching the BESS unit. There 

are various models for determining the cost of battery cycles, several of which are detailed in [23]. The 

BESS in procurement for this application is of the lithium-ion chemistry. 

 The cycles required by the PV Smoothing System are shallow, as the goal is to remove the short 

term second-level oscillations. The BESS will often be charging or discharging for a matter of seconds for 

the purposes of smoothing. This means that should the smoothing system be the only use of the BESS 

without a charging or discharging bias, then the BESS will switch between the charge and discharge state 

quickly. Fast switching between BESS states with shallow depth of discharge has been reputed to cause the 

“memory effect” in nickel-based battery chemistries, which leads to nonlinear BESS dispatch behaviors. 

However, a similar memory effect was also identified in lithium-ion batteries in [24]. 

 Because this memory effect issue has been identified with multiple battery chemistries, this project 

devised a method to prevent frequent switching between charge and discharge states with shallow depth of 

discharge. It is programmed as a configurable setting so that frequent state change can be permitted in the 

case the battery is not susceptible to the memory effect. In the solution devised for this project, BESS is 

held at an output bias so that the PV Smoothing System can introduce oscillations to the point of operation 

without crossing the zero-power threshold. 

If the PV Smoothing System is the only application using the BESS, a constant bias may be held 

on the BESS to replicate a simple peak-shaving algorithm – discharging at a constant level during the day 

during high system demand while charging at night when during low demand. The bias must average to 

zero charge over the course of a day. It must also avoid completely charging or discharging the battery, as 

this results in nonlinear charge/discharge behavior. 

 If the PV Smoothing System is not the only application using the BESS, the BESS instructions can 

be coordinated with the other systems using the BESS such that the resulting bias does not cross the zero-

power threshold more frequently than is necessary. This is discussed further in Section V . 
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4.2.2  Power and Energy Constraints 

 [12] and [13] include considerations for keeping the BESS within a range of SOC – done by 

algorithmic control and appropriate sizing, respectively. This project enforces a range of SOC by 

configurable parameters indicating the power and energy limits of the BESS. This is realized by constraints 

enforcing an adjustable limit on the percent of the BESS rated inverter output power it is allowed to use for 

smoothing, as well as an adjustable limit on the percent of the battery’s stored energy available for 

smoothing. 

One application of these constraints is to govern the portion of the BESS dedicated to PV 

smoothing. In the context of sharing the BESS, these limits prevent the PV Smoothing System from 

overreaching predetermined power and energy limits and negatively impacting other systems using the 

BESS. This is one method by which the BESS can be purposed to serve multiple applications at once. In 

addition, the BESS can be prevented from reaching its limits, and a range of SOC levels can be enforced. 

Another application of these constraints is to investigate sizing considerations on PV Smoothing 

Systems. By adjusting the inverter power and battery energy of the BESS, researchers can determine the 

appropriate size of equipment being installed for PV smoothing. One of the goals of this project is to analyze 

the effect of changing these BESS parameters on PV smoothing results. 

4.3  BESS Model 

The team turned to a mathematical model of a lithium-ion battery as the equipment is being 

procured and installed at the time of writing. The model is based off of the battery model included in the 

Matlab-Simulink SimPowerSystems library and described in [25]. The mathematical model is implemented 

in its own BESS interface agent, which takes as an input the BESS instructions from both the Energy Cost 

Optimization and the PV Smoothing Systems, summing the two signals. 

The output is the state of the battery including SOC, output power, voltage, and current. Excepting 

the case where the BESS is close to full charge or zero charge, the desired power generally results in an 

ideal output power from the BESS. The error experienced between the BESS commanded power and the 

BESS output grows increasingly as the unit approaches full or zero charge. 

 The BESS model is tuned to the same parameters as the unit to be installed. When the installation 

of the BESS equipment occurs, the BESS interface agent will be replaced with another interface that sums 

the battery instructions and communicates with the BESS unit over the VOLTTRON™ master driver. 
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4.4  Time Constant Selection 

Altering the filter time constant τ is the most effective variable for changing effect of the smoothing 

system. In the ideal case, a higher time constant involves heavier use of the BESS for smoother net 

generation, as measured by the smoothness score. The time constant could theoretically be increased 

without bound until the net generation is constant throughout the day. This is not practically feasible, as it 

would require unrealistic demands from the BESS. Nonetheless, a larger BESS will allow more aggressive 

smoothing of the PV system. In this way the size of the BESS could determine the feasible severity of the 

smoothing filter. The inverter power and battery energy limitations on the BESS introduce further 

constraints to consider when selecting the best filter time constant. 

The time constant selection for the PV Smoothing System is considered for two methods: a static 

method and adaptive method. These two approaches are studied for their effect on system performance. 

Static time constant selection features one historical training period over which the best time 

constant is chosen. Once τbest is selected, it is therefore used agnostic of seasonal, weather, or system 

changes. The system must be restarted if recalculating the best time constant is desired as a result of any of 

these situational changes. The chosen time constant is considered best for all solar and cloud cover patterns 

that will be experienced by the PV Smoothing System. 

Adaptive time constant selection features a periodic recalculation, where the historical data 

considered is the duration between updates. After each update period, a new τbest is selected and the First 

Order Low-Pass Filter is updated in real time with this new time constant. The chosen time constant is 

considered the best performer for the next update period, at which point it will be calculated again. 

Therefore, this system takes into account all changes to season, weather, and system. 

 As solar and cloud cover patterns change with long-term seasonal patterns as well as shorter-term 

weather effects, the best filter design may change as well. The necessary degree of smoothing may be 

different between a clear, sunny day and one with fast-changing cloud cover. Depending on the weather 

and climate patterns of the location, as well as how frequently the system and BESS are updated with new 

applications, the need for adaptively selecting the time constant periodically may be different from system 

to system. 

4.4.1  Success Metric 

 In order to select the best time constant τ, there must be an objective way to quantify the smoothness 

of one system output over another. Several existing papers discuss smoothness criteria. [12][13][16][17] 

use ramping bounds on the smoothed output power to verify that the systems adhered to the desired output 
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goals. Similarly, [6] and [10] characterize the success of its filtered power by comparing maximum ramp 

rates. In addition to the ramping bounds, [13] assigns a penalty cost for power fluctuation that is 

proportional to the maximum ramp in a time frame, as the paper aims to optimize a combined system in 

terms of the total cost. [6] and [14] characterize success by determining the percent of ramps that were 

above a certain threshold, for example 0.05% of the rated PV array power. [26] takes a unique approach to 

characterizing smoothness of PV output by applying wavelet transforms to measure the breadth of the 

resulting spectrum. 

 For the purposes of time constant selection, this project requires a success metric that characterizes 

the relative smoothness of one curve versus another. Enforcing ramping bounds may be useful, but gauging 

success in this binary way does not allow fluid comparisons between filters. Using the maximum ramp rate 

would be a measure of how tight the ramping bounds may be set, but this limits the smoothness analysis to 

considering how well the largest ramp is treated, without regard to ramps that may be less severe but still 

negative for the system. Using wavelet transforms would isolate different frequencies of variation as the 

day progresses, but does not directly measure the ramping which is being minimized. 

 If it were determined that the system could support ramps up to a certain severity, or if a specific 

ramping bound were being investigated, then a good metric may be determining the percent of ramps that 

exceed a threshold, as was done in [6] and [14]. However, this metric does not discriminate between ramps 

near the threshold and ramps that severely breach the threshold. Additionally, as no ramping bound could 

be identified for the power system studied in this project, there is no basis for which to set this threshold. 

 Instead of repurposing a success metric from one of these papers for use in time constant selection, 

a new metric was developed. Drawing from the approach in [14], a histogram of the resultant net system 

power was established to quantify the occurrences of different levels of second-to-second ramping. An 

example of such a histogram is shown in Figure 4. 
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Figure 4: Histogram of Second-to-Second Ramp Rates of Raw PV Measurements 

 The granularity of the histogram is sufficiently small to differentiate among a broad range of system 

ramps. Figure 4 shows that the histogram depicts an effect where at a regular interval, a given bin has a 

high number of occurrences. This results in there being two curves shown in the histogram plot. This effect 

was deemed to be a result of the specific second-to-second ramps being artificially more commonly 

measured than others because of the PV meter’s engineering, and was not deemed to be a significant issue 

in terms of generating the smoothness score. 

Drawing from the cost penalty used in [13], a penalty was assigned to each second-to-second ramp 

in proportion to the severity of the ramp. This was done by taking each column of the histogram and 

multiplying it by a penalty function: 

𝑺𝒄𝒐𝒓𝒆 = ∑ 𝑯𝒊𝑷𝒊
𝒎𝒂𝒙
𝒊=𝟏           13 

H - Set of columns in the ramping histogram 

P - Penalty function 

i – Histogram column index 
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The penalty function P increases in proportion with the severity of the ramp. The scale of this 

function does not matter, as it is only used for comparison. A nonlinear penalty function could be considered 

if higher ramps are deemed more detrimental to the system than is characterized by this equation. A step-

wise penalty function could also be implemented, such that all ramps under a certain threshold have zero 

penalty. Appropriate definition for this function takes into account other generation on the system and any 

other ancillary costs involved with keeping the system flexible enough to incorporate the PV generation. 

For the purposes of this study and for simplicity, the penalty function is taken as the linear case: 

𝑷𝒊 = 𝒊            14 

Further research into the effect of ramping on the power system markets and stability could be 

performed to determine a penalty function that more accurately characterizes the cost of ramping on the 

power system. The product in Equation 𝑺𝒄𝒐𝒓𝒆 = ∑ 𝑯𝒊𝑷𝒊
𝒎𝒂𝒙
𝒊=𝟏       

    13 is summed over a number of entries sufficient to capture more than 

99.9% the ramps for a given duration. 

It should be noted that while the smoothness score has no physical significance, when the penalty 

function is linear, the smoothness score is proportional to a measure of the total ramping that occurs on the 

system. With appropriate scaling, the smoothness score could represent a metric of “total second-to-second 

ramps.” Another way to calculate the smoothness score in the linear penalty function case would be to sum 

up the magnitudes of each individual ramp throughout the course of smoothing. 

With this smoothness score metric, a lower score indicates a smoother result. More severe ramps 

were penalized more than less severe ones, and all second-to-second ramps were taken into account. This 

solution produces a smoothness score that can be objectively compared across days, filters, and sets of 

parameters. 

4.4.2  Choosing the Best Time Constant 

The best time constant may be found for any historical set of data by running through the smoothing 

algorithm using the smoothing score from Equation 𝑺𝒄𝒐𝒓𝒆 = ∑ 𝑯𝒊𝑷𝒊
𝒎𝒂𝒙
𝒊=𝟏     

      13 as the objective function. Running the algorithm over 

a range of filter time constants will result in one filter producing the lowest smoothness score: the best filter. 

In general, the more relaxed the constraints are on the system in terms of BESS use, the longer the duration 

of the best time constant will be. 

 It cannot be known with absolute certainty what the best time constant for a future timeframe will 

be, so time constant selection must either rely purely on historical data or consider forecasts. Calculating 



25 

 

how cloud cover forecasts impact the τbest out of the scope of this project, and would rely on training a 

model to calculate how the most likely τbest value corresponds to the actual value for different forecasts. 

In order to perform time constant selection for this real-time system in the absence of forecasting, 

a historical time period must be chosen as the training period for finding the best filter. This variable ranges 

from the previous hour to many previous days, and is the basis for selecting the best time constant for future 

operation. 

V  Interface with Energy Cost Optimization System 

A key aspect of this project was cooperation with a simultaneously running VOLTTRON™ 

research application running an energy cost optimization algorithm. This system uses solar and load 

forecasts to determine optimal BESS dispatch for minimizing demand charges. Because the two systems 

share use of the BESS, the instructions must be coordinated at every time step to ensure that BESS 

constraints are not breached. Important to note is that the Energy Cost Optimization System runs on a 5-

minute time resolution while to the smoothing system runs at 1 second. 

The Energy Cost Optimization System demands more power during an average day than the 

smoothing system, and requires switching between the charge and discharge regions much less frequently 

as well. An example of the preferred operating point (POP) as scheduled by the Energy Cost Optimization 

System is shown in Figure 5. 
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Figure 5: Preferred Operating Point of Energy Cost Optimization System 

Because the Energy Cost Optimization System uses a 5-minute time step, while the PV Smoothing 

System runs at 1 second, the POP schedule as seen from the PV Smoothing System appears a step function, 

with each POP instruction is held for 300 seconds. The entire system runs on a 1-second clock, publishing 

metered data and sending BESS instructions, but the Energy Cost Optimization System only performs 

operations every 300 clock cycles. In this way, the two systems can operate at different time resolutions on 

the same equipment, communicating at the 1-second level. 

As discussed in the context of BESS limitations in Section 4.2 , it is beneficial to certain battery 

chemistries to avoid switching between the charge and discharge states frequently. The optimized BESS 

POP schedule from the Energy Cost Optimization System changes between charge and discharge only a 

few times a day, as seen in Figure 4, and has an average power greater than the average power required by 

the PV Smoothing System. 

Therefore, in order to avoid the high-frequency oscillations between the charge and discharge 

states, the output power for the PV Smoothing System is limited by the scheduled POP for the Energy Cost 

Optimization System. When the scheduled POP is close to zero-power (or also close to the maximum 

charge/discharge power), the PV Smoothing System cannot charge or discharge such that the net dispatch 

changes the state of the BESS (or exceeds the charge/discharge limit). The effect of this scheduling policy 
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is that the two systems can coexist simultaneously without overusing the BESS to the detriment of its 

lifetime. 

VI  Photovoltaic Generation Measurements 

 Communication with the 35 kW PV array occurs via the PV interface agent. The agent listens for 

each system clock signal on the message bus, at which point it requests the VOLTTRON™ master driver 

agent to query the smart meter using the Modbus protocol for 1-second power generation. The agent 

publishes this measurement to the message bus to be utilized by both the Energy Cost systems. 

 The system clock is based on the VOLTTRON™ heartbeat function. The 1-second period assigned 

to this function has a small amount of noise. This can mean that the system will at times (on the order of 10 

times per day) pull the same 1-second measurement from the smart meter on two different clock cycles, or 

miss one measurement. 

 In addition, there are instances where the Modbus query to the meter times out (on the order of 2 

times per day), which can delay progress of the progress of the real-time system. In the case of a missing 

point, the PV interface will use the most recent successful measurement as the current measurement to 

enable the system to continue to run. Because the frequency of these events is so low in comparison with 

the number of seconds in a day, they are not seen to be an issue for operation. 

 Simulation analysis for this project is based on a continuous segment of 26 days of PV generation 

at 1 second resolution, shown in Figure 6. The data was taken between February 4th, 2017 and March 1st, 

2017. 
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Figure 6: PV Measurements over 26 Days in February 2017 

 The data used for analysis show a wide variety of cloud cover conditions during one of the most 

overcast months of the climate in Seattle, WA. It should be mentioned that at the time of data acquisition 

for simulation purposes, only measurements from phase A of the PV array were available, which is 

equivalent to one third of the 35 kW array. In order to model the behavior of the entire array, the power 

output of phase A was multiplied by 3. 

 PV measurements were taken in real time for real-time operation of the PV Smoothing System. 

The results presented here for real-time operation were taken from the same 35 kW array in May, 2017. At 

the time of real-time operation, all three phases of the PV meter were active operating normally. Comparing 

the phase A-approximated measurements with actual measurements, it was determined that the phase A 

approximation was a good estimate for system generation and could be used for simulation analysis. This 

data is included as a file in the appendix. 

VII  Testing and Results 

The first three parts of the results section involve using the 26-day dataset for system simulation 

and analysis. First, the system is simulated in the unconstrained BESS case, where unlimited resources 

may be used for PV smoothing. Next, the effect of constraining BESS resources is analyzed. Section 7.3 

discusses the process with which the filter time constant may be selected, as well as a comparison of time 

constant selection methods between the static and adaptive approaches. 
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Finally, Section 7.4 outlines real-time operation of the PV Smoothing System, demonstrating 

feasibility of this system in VOLTTRON and identifying the limitations of constrained BESS operation 

that were analyzed on the simulation dataset. Synchronization with the Energy Cost Optimization system 

is also shown. 

7.1  Unconstrained Operation 

 For a given system, the time constant is the best way to modify the effectiveness of the filter. A 

longer time constant will incorporate more data points into the calculation, meaning that any sharp change 

in a data point is less likely to cause a variation in the filtered result. In this study, the time constant τ was 

analyzed in the range from 50 to 4800, which corresponds to a range of 314 to 30,159 seconds. 

Figure 7 demonstrates the effect of various time constants on the resultant power from operation 

on one day, using three values of τ to show various levels of smoothing. Larger values of τ were chosen for 

this figure because they are the most distinguishable when viewing the day as a whole. There are no 

limitations placed on the BESS inverter power or battery energy apart from coordinating charge and 

discharge regions with the Energy Cost Optimization System. 

 

Figure 7: Smoothing on February 4th, 2017 with No Constraints, Large τ Filters 
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 It can be seen in Figure 7 that filters featuring a higher time constant result in a smoother net power. 

The severe τ = 4800 filter almost entirely eliminates fluctuations apart from the rising and setting of the 

sun. However, with a larger filter time constant, there also appears a delay in the system output. While the 

raw PV generation reaches its peak around 11:33 a.m., the net output from τ = 4800 reaches its peak around 

11:46 a.m. As the generation returns to zero at sunset, this delay is even longer. This delay results from 

higher time constant filters incorporating a larger number of historical points into their calculation – in the 

case of τ = 4800, the filter considers around 24,000 data points. 

 As a consequence of this delay, the large time constant filters maintain a large discrepancy in power 

between the PV contribution and the system output, meaning the BESS needs to compensate a large 

sustained power to compensate. This not only means the BESS must have enough inverter capacity to meet 

the discrepancy, but that the BESS needs to be much larger in terms of battery energy in order to charge or 

discharge the required amount of energy. The energy required to maintain the large time constant filters in 

operation equals the integral of the difference between the PV and net generation curves at any point. 

 In order to view the shorter-term variations and how they are smoothed by all ranges of time 

constant filters, Figure 8 zooms in on a section between 9:00 and 10:00 a.m. on the same day.  
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Figure 8: Smoothing on February 4th, 2017 with No Constraints, Short-Term Variations 

 In this figure, it can be seen that the raw PV generation features high variability on the order of 

seconds, and that even the lightest filter at τ = 50 eliminate the shortest-term variations. It can be seen that 

increasing the time constant decreases the sensitivity to fast changes in PV output, such that the net 

generation becomes smoother and smoother. However, the delay associated with filtering the PV generation 

with longer filters is also seen, with larger time constant filters rising more slowly in power to respond with 

the rising sun. 

 To quantify the extent to which each filter smooths the PV generation, the smoothing score 

approach is applied to the net system generation. For each filter time constant and the base case of raw PV 

generation, the smoothness score is calculated per Equation 𝑺𝒄𝒐𝒓𝒆 = ∑ 𝑯𝒊𝑷𝒊
𝒎𝒂𝒙
𝒊=𝟏    

       13 in Table 1.  

Table 1: Smoothness Score for Range of Time Constants on Unconstrained System, February 4th, 

2017 

Filter Smoothness Score 

(Lower Score = Smoother Result) 

Raw PV 527.19 

τ = 50 70.23 

τ = 100 59.95 

τ = 200 48.11 

τ = 400 36.09 

τ = 800 26.04 

τ = 1600 19.54 

τ = 2400 17.21 

τ = 4800 14.44 

 It can be seen from this table that the smallest filter provides a significant improvement over the 

raw generation. This is because the PV generation data featured very fast fluctuations due to the irregular 

cloud cover on this day. It can also be seen that each increase in time constant improves the smoothness. 

The improvements in smoothness score diminish as the time constant reaches the highest values. 

7.2  Constrained Operation 

To compare with the results of the previous section, the same day of solar data was analyzed in the 

same manner as before, only constraints on the BESS inverter power and battery energy were enforced. To 

illustrate a tightly constrained system where the PV Smoothing System receives only a small fraction of 
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BESS resources, the inverter power is constrained to 2.5 kW and the battery energy to 3.25 kWh. Figure 9 

illustrates the effect these system constraints have on the PV Smoothing System on data from February 4th, 

2017. 

 

Figure 9: Smoothing on February 4th, 2017 with 2.5 kW/3.25 kWh BESS, Large τ Filters 

 When comparing this figure with Figure 7, it is clear that PV smoothing does not occur to the same 

desirable degree as when there were no constraints on the system. For example, the τ = 4800 trace no longer 

filters the PV output to the same degree. Smoothing occurs until just past 10:00 a.m., at which point the 

filter stops effectively smoothing the PV generation, as the BESS has charged to the battery energy 

limitation. Smoothing begins again in the afternoon, only to stop once more after 2:00 p.m. when the BESS 

has discharged the capacity allowed by the battery energy limitation. 

 Figure 10 depicts a window of time between 10:00 and 11:00 a.m. where the effect of BESS 

constraints can be more clearly seen. 
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Figure 10: Smoothing on February 4th, 2017 with 2.5 kW/3.25 kWh BESS, Visible Constraints 

 With the limited BESS resources in this scenario, the most aggressive τ = 4800 filter is the first to 

reach the constraint. When the BESS can no longer charge in order to absorb variations in PV generation, 

the system is at the mercy of the short-term variations from the raw PV output. After the τ = 4800 filter 

reaches its capacity, so too do the τ = 2400 and τ = 1600 filters. These filters use their allotted battery energy 

at a pace corresponding to the aggressiveness of the filter, each in turn reverting to the unsmoothed signal 

as the capacity is exhausted. 

 Also notable is that around 10:20 a.m., the limitation on inverter power is expressed with filters 

ranging from τ = 800 to τ = 2400. The PV generation signal rises quickly, and soon leaves the operable 

region of allowed inverter power for smoothing. Because the limitation for the PV Smoothing System’s 

share of the inverter is set to 2.5 kW, the desired smoothing setpoint cannot be further than 2.5 kW above 

or below the raw PV generation. This is comparable to using a 2.5 kW inverter for PV smoothing. This also 

sets a minimum on where the PV smoothing setpoint can be located, and this is expressed as an image of 

the raw PV curve translated -2.5 kW. When the net system output intersects this image, it must follow the 

trace until the desired output is within the inverter range. 
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 The power and energy limitations of the BESS are more clearly depicted in Figure 11, which shows 

the state of these resources throughout the operation of the PV Smoothing System on this day. The resources 

depicted represent the portion of the BESS devoted to PV smoothing, and not the definitive state of the 

BESS across all applications. 

 

Figure 11: BESS Power and Energy during PV Smoothing on Constrained System, February 4th, 

2017 

 As can be seen in Figure 11, the inverter output power is limited to ±2.5 kW. When more than this 

amount is requested of the BESS, as occurs around 10:21 a.m., the contribution is limited to the maximum 

output. 

 The BESS energy starts the day at 50 percent capacity charged. As PV generation begins to rise, 

the system begins to charge and the battery energy increases. Once the entire battery capacity permitted by 

the constraints has been charged, as occurs at around 10:25 a.m., the BESS rests at the capacity of 3.25 

kWh. At this point, the BESS can no longer charge, and the power output reverts to zero. This means that 

the BESS can no longer assist in PV smoothing until a discharge instruction is called. 

Table 2 shows the smoothness scores corresponding to the filters which were run on this day’s PV 

generation data with the constraints added. 
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Table 2: Smoothness Score for Range of Time Constants on Constrained System, February 4th, 

2017 

Filter Smoothness Score 

(Lower Score = Smoother Result) 

Raw PV 527.19 

τ = 50 75.83 

τ = 100 75.61 

τ = 200 72.64 

τ = 400 67.28 

τ = 800 67.21 

τ = 1600 115.76 

τ = 2400 198.57 

τ = 4800 298.89 

 

With BESS restrictions enabled at this level, the limitations on BESS usage become apparent at 

higher time constants. While the lower time constants retain the same smoothness score as they had in the 

unrestricted case, the higher time constants exhibit a greater smoothness score, representing less desirable 

outcomes. 

This is evidence that higher time constant filters are more demanding of the battery BESS. These 

stronger filters are less susceptible to large, fast changes in solar and therefore require more power from the 

inverter to counteract these patterns. If the desired BESS contribution is greater than the pre-allocated share 

of inverter power, it will not be able to perform smoothing and be susceptible to short-term variations. 

Because of the time-shifting effect of higher filters as described regarding Figure 7, the sustained 

differences between desired net generation and PV generation require large sums of energy from the battery. 

When the limit is reached, the BESS may no longer perform smoothing functions in whatever state it has 

saturated (charge or discharge). This results in a severely penalized smoothness score, both for the initial 

jump between the desired curve and the raw PV curve, and for mirroring the raw PV output for a duration. 

Table 2 therefore shows the importance of selecting the correct time constant, as choosing a time 

constant ill-suited to the system could result in sub-optimal smoothing performance. The best time constant 

can perform an order of magnitude better than the worst time constant, as judged by the smoothness score.  
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7.3  Time Constant Selection Analysis 

 The best choice for filter time constant depends on many factors: the sun and weather patterns of 

the region and time of year, the size of the battery, and the limitations placed on the use of the battery by 

the PV Smoothing System. In general, more available output power and battery energy from the BESS for 

PV smoothing results in a larger τbest.  

 For the data discussed in the previous section from February 4th, 2017, the best time constant 

depends on the constraints placed on BESS usage. In the unconstrained case, the τbest = 4800, and would 

theoretically increase to infinity if such long filters were considered in this study. However, once the BESS 

contribution is constrained to 2.5 kW/3.25 kWh, τbest = 800. This shows that the best choice of filter depends 

on the contribution of the BESS to PV smoothing. 

 τbest was determined for each day in the dataset under unconstrained conditions as well as 

constrained ones. The result is shown in Table 3. 

Table 3: Best Time Constant for Each Day in PV Dataset 

Day Unconstrained 

τbest 

5 kW/6.5 kWh 

τbest 

2.5 kW/3.25 kWh 

τbest 

1 4800 1600 800 

2 4800 2400 1600 

3 4800 4800 2400 

4 4800 4800 4800 

5 4800 800 400 

6 4800 2400 800 

7 4800 100 50 

8 4800 400 200 

9 4800 400 200 

10 4800 400 200 

11 800 400 200 

12 4800 400 50 

13 4800 4800 2400 

14 4800 800 50 

15 4800 400 200 

16 4800 2400 800 

17 4800 400 100 

18 4800 2400 800 

19 4800 1600 800 

20 4800 400 100 

21 4800 200 100 

22 4800 400 50 

23 4800 400 200 

24 4800 1600 400 

25 4800 1600 800 

26 4800 800 50 
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 It can be seen from Table 3 that with one exception (Day = 11, February 14th, 2017), the 

unconstrained system operates best when using the longest time constant studied in this project, τ = 4800. 

This exception on Day 11 is a result of a data acquisition issue where the PV meter read 0 watts for a 

duration of around a minute and a half, distorting the results. 

In the constrained 2.5 kW/3.25 kWh case, the best time constant changes almost every day. This is 

due to the high variability in PV generation from day to day, as shown in Figure 6. Not only does the 

magnitude of sun change from day to day, but the variability of cloud cover does as will. Additionally, the 

highly constrained case of 2.5 kW/3.25 kWh provides a very tight band of operation, which makes τbest 

sensitive to these changes. It can be seen in Table 3 that in the less constrained 5 kW/6.5 kWh case, the best 

time constant is still highly variable but is slightly less volatile than when the constraints are tighter. 

 It can therefore be shown that the best time constant for each day depends highly on the solar 

patterns of the day as well as BESS constraints. To further illustrate the impact of BESS constraints on filter 

performance, the system was analyzed for a range of BESS constraints over the entire 26-day dataset. Table 

4 and Figure 12 depict the filter performance in terms of its smoothness score over the full dataset, with the 

assumption that the best filter is predicted and chosen for each individual day. This represents the ideal best 

case scenario for selecting the time constant. 

Table 4: Smoothness Score versus BESS limitations over 26 Days for Ideal Case 

Ideal Smoothness 

Score 

Battery Energy (kWh) 

0.65 1.625 3.25 6.5 13 19.5 26 325 

Inverter 

Power 

(kW) 

0.5 10,858 10,784 10,784 10,784 10,784 10,784 10,784 10,784 

2.5 7,391 7,008 6,914 6,873 6,866 6,866 6,866 6,866 

5 5,633 4,956 4,638 4,481 4,426 4,416 4,416 4,416 

7.5 4,865 3,993 3,454 3,159 3,047 3,008 3,002 3,002 

10 4,676 3,635 2,919 2,454 2,259 2,191 2,162 2,162 

100 4,608 3,461 2,571 1,900 1,421 1,172 1,069 911 
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Figure 12: Smoothness Score versus BESS limitations over 26 Days for Ideal Case 

inf – unconstrained parameter  

 For comparison, the smoothness score for 26 days of raw PV measurements is 26,101. 

The first conclusion to draw from these results is that both inverter power and battery energy 

parameters individually have an effect on the best performance of the PV Smoothing System. It can be seen 

that smoothness score decreases as either parameter increases. 

The exception to this rule is that increasing battery energy after a certain point will no longer benefit 

the performance of the system. The maximum amount of battery energy that provides smoothing benefits 

depends on the amount of power available to the system. This is intuitive, as increasing the power available 

increases the potential aggressiveness of the filter, but aggressive filter also builds a large energy imbalance 

that must be supported by a large battery energy. Figure 13 further illustrates this by translating the surface 

plot to a line graph where the inverter power is held constant. It focuses on battery energy levels under 26 

kWh to depict the shape of the traces. 
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Figure 13: Smoothness Score versus Battery Energy, with Inverter Power Held Constant, Ideal 

Case 

 From this figure, it is clear that after a certain battery capacity, increased energy does not help PV 

smoothing unless the inverter is also augmented. 

Increasing the inverter power improves the smoothness score regardless of the battery energy 

parameter. The improvements in score do diminish with increasing inverter size, and likely would continue 

past 100 kW if such inverter sizes were studied. Theoretically, the smoothness score could reduce to zero 

with a large enough BESS and a filter with a time constant greater than an entire day’s worth of data –this 

would equate to constant power generation throughout the day. 

 In the absence of forecasting, this project relies on historical data to serve as a predictor for 

appropriate PV filters in the future. Two different sets of methods for selecting the filter time constant are 

analyzed in this study: a static method and an adaptive method. 

7.3.1  Static Time Constant Selection 

 In static time constant selection, one characteristic time constant is calculated to minimize the 

smoothness score across all days. The best time constant is not always appropriate for each individual day, 
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but rather would maximize smoothing for as many days as possible while suffering the variations where 

the time constant does not suit the solar and cloud cover patterns of the day. 

To explore time constant selection using static methods τbest for the entire dataset was calculated 

based on a historical period for a variable number of days. The historical period must consist of at least one 

day because training performed on less than a day of data may not take into account phenomena that occur 

throughout the day. Analysis was done in order to determine how many days of historical data were required 

to make an accurate prediction of the best time constant for the 26-day period.  

The results of this analysis on the 2.5 kW/3.25 kWh constrained case are shown in Table 5. Based 

on each historical period length, the value of τbest which represents the lowest smoothness score over the 

entire dataset duration is calculated. The column entitled “26-day Smoothness Score” totals the smoothness 

scores for the entire dataset corresponding to these time constants. Finally, these scores are compared to the 

“Ideal Case” where the best time constant is chosen for each individual day (from Table 4), and the 

smoothness score of the raw PV data generation measurements. 

 Table 5: Static Time Constant Historical Period Length Analysis for 2.5 kW/3.25 kWh 

Historical Period Length τbest 26-day Smoothness Score 

1 day 50 7,482 

2 days 800 8,640 

3 days 800 8,640 

4 days 800 8,640 

5 days 400 7,628 

6 days 400 7,628 

7 days 200 7,230 

8 days 200 7,230 

9 days 200 7,230 

10 days 200 7,230 

Entire Dataset 200 7,230 

Ideal Case - 6,914 

Raw PV - 26,101 

 

For context, the smoothness scores resulting from all static time constants are shown in Figure 14. 
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Figure 14: Smoothing Performance over 26 Days, 2.5 kW/3.25 kWh, Static Time Constant 

 It can be seen that with this 26-day dataset and constraints set to 2.5 kW/3.25 kWh, it takes at least 

7 days of training with historical data to be able to correctly predict the best time constant of the entire 

dataset, τbest = 200. The achieved smoothness score of 7,230 for the 26-day duration approaches the ideal 

case of 6,914 from Table 4. 

To expand this analysis, the system was analyzed to determine the amount of historical data 

required to make an accurate calculation of the best time constant for the entire dataset for each different 

configuration of BESS constraint parameters. The result is shown in Table 6. 

Table 6: Length of Historical Period Required to Characterize Static τbest 

Length of Dataset 

(Days) 

Battery Energy (kWh) 

0.65 1.625 3.25 6.5 13 19.5 26 325 

Inverter 

Power 

(kW) 

0.5 7 7 7 7 7 7 7 7 

2.5 22 11 7 7 7 7 7 7 

5 7 5 7 10 10 10 10 10 

7.5 7 5 11 7 15 15 15 15 
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10 7 5 2 7 8 13 13 13 

100 8 5 2 11 11 10 7 2 

 

 It can be seen that there is no obvious pattern to relate BESS parameters to the required length of 

the historical dataset. While the most common required length of the historical dataset is 7 days, there are 

many configurations in which a dataset of 7 days is not sufficient to make a judgement on the best static 

time constant of the system. A historical period of 15 days allows enough data to calculate the best time 

constant of all but one BESS parameter configuration. 

 Assuming τbest is chosen prior to the beginning of PV smoothing on the 26-day dataset, the 

performance of the system can be quantified. Table 7 shows the performance of the PV Smoothing System 

using the best static time constant over the entire 26-day dataset and under each BESS parameter 

configuration. Figure 15 shows the smoothness scores plotted on a surface for comparison 

Table 7: Smoothness Score and τbest versus BESS limitations over 26 Days for Static Time Constant 

Selection Method 

 Battery Energy (kWh) 

0.65 1.625 3.25 6.5 13 19.5 26 325 

Inverter 

Power 

(kW) 

0.5 τbest 50 50 50 50 50 50 50 50 

Smoothness 

Score 

10,934 10,871 10,871 10,871 10,871 10,871 10,871 10,871 

2.5 τbest 50 100 200 200 200 200 200 200 

Smoothness 

Score 

7,648 7,237 7,230 7,230 7,230 7,230 7,230 7,230 

5 τbest 100 200 200 400 400 400 400 400 

Smoothness 

Score 

5,788 5,235 4,845 4,738 4,738 4,738 4,738 4,738 

7.5 τbest 100 200 200 400 800 800 800 800 

Smoothness 

Score 

5,013 4,246 3,737 3,344 3,284 3,284 3,284 3,284 

10 τbest 100 200 400 400 800 1600 1600 1600 

Smoothness 

Score 

4,827 3,862 3,187 2,664 2,408 2,345 2,345 2,345 

100 τbest 100 200 400 400 800 1600 2400 4800 
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Smoothness 

Score 

4,770 3,693 2,777 2,198 1,651 1,286 1,122 918 

 

 

Figure 15: Smoothness Score versus BESS limitations over 26 Days for Static Time Constant 

Selection Method 

 It can be seen from the table and figure that the effect of BESS parameters on the smoothness score 

is similar to the ideal case shown in Figure 12. However, using a static time constant never reaches the 

same level of performance as the ideal case, because many days’ worth of PV data are smoothed with 

suboptimal filters. 

 Studying the performance of this time constant selection method versus the ideal case is important 

for evaluating the success of this method. To visualize this, the percent error between the smoothness score 

for the best static time constant and the ideal case is shown for each BESS parameter configuration in Table 

8. The percent error represents how much higher the smoothness score for the static method is. 
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Table 8: Static Time Constant Selection Method Percent Error 

Percent Error (%) Battery Energy (kWh) 

0.65 1.625 3.25 6.5 13 19.5 26 325 

Inverter 

Power 

(kW) 

0.5 0.70 0.81 0.81 0.81 0.81 0.81 0.81 0.81 

2.5 3.48 3.27 4.57 5.19 5.29 5.29 5.29 5.29 

5 2.74 5.62 4.47 5.75 7.05 7.29 7.29 7.29 

7.5 3.03 6.32 8.21 5.84 7.78 9.17 9.41 9.41 

10 3.22 6.25 9.16 8.56 6.56 7.00 8.44 8.44 

100 3.53 6.71 8.05 15.70 16.21 9.74 5.01 0.84 

 

 The percent error for adaptive time constant selection with this distribution of parameters ranges 

from 1.35% to 18.86%. Table 9 shows the mean and variance of this percent error using the best static time 

constant, as well as using the different time constants period across all parameters. 

Table 9: Mean and Variance of Percent Error across BESS Constraint Parameters, Static Time 

Constant Selection Method 

Static Time Constant Mean Percent Error Variance 

50 75.62% 11891% 

100 46.08% 5652% 

200 27.91% 2199% 

400 21.67% 669.4% 

800 30.08% 467% 

1600 53.95% 1655% 

2400 81.83% 3813% 

4800 163.13% 13250% 

τbest 5.71% 12.53% 

Raw PV 408.29% - 

 

7.3.2  Adaptive Time Constant Selection 

 In the adaptive approach to time constant selection, the time constant is recalculated on a rolling 

basis. Whereas in the static method the time constant is calculated once using a set of historical data for 

calibration, in the adaptive method the time constant is calculated periodically, where the period is the 

duration of the historical calibration data. The purpose for using an adaptive algorithm is to maintain 
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optimal operation through changes in solar and cloud patterns, as well as through changes in the system 

that may alter the BESS constraints assigned to PV smoothing. 

 This method introduces another variable to the system, the update period, which corresponds to the 

duration between time constant updates, as well as the length of historical data used for each update. For 

this study, this update period is analyzed on a range from 1 hour to 1 week. 

 To demonstrate the effect of altering the update period within the course of a day, Figure 16 

demonstrates a range of update periods applied to the data from February 4th, 2017. The constraints placed 

on the BESS were 2.5 kW/3.25 kWh. The filter is initialized with a time constant of τ = 800 for all cases, 

as this was calculated as the best time constant for the day as a whole. 

  

Figure 16: Adaptive Time Constant Selection with Varied Update Period, February 4th, 2017 

 Figure 16 shows that the systems begin the day with the same time constant though in the afternoon 

the different update periods have caused them to diverge. This afternoon period is shown in more detail in 

Figure 17. 
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Figure 17: Time Constant Update Sequence, February 4th, 2017 

 Several changes in time constant can be seen from this figure. Each transition between time 

constants is spread out over half an hour such that the second-to-second ramps are limited. If there was no 

transition time, the change in time constant would spark an instantaneous ramp from one curve to another 

and a correspondingly undesirable impact on the smoothness score. However, even with a transition period 

the transitions between time constant curves can increase the resulting smoothness score. 

It can be seen that there are three time constants being used by the different systems in the late 

afternoon. These correspond to τ = 400, τ = 2400, and τ = 4800, with the lower time constants returning to 

zero generation earlier in the evening. At 4:00 p.m., it can be seen that the system with a 2-hour update 

period transitions from τ = 2400 to τ = 4800, and the system with a 4-hour update transitions from τ = 400 

to τ = 2400. These transitions are outlined in Table 10. 

Table 10: Time Constant Update Sequence, February 4th, 2017 

 Time Constant Update 

Time of Day 1-Hour Update 2-Hour Update 3-Hour Update 4-Hour Update 6-Hour Update 

5:00 a.m. 800 800 800 800 800 
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6:00 a.m. 4800 4800 4800 - 4800 

7:00 a.m. 4800 - - - - 

8:00 a.m. 4800 4800 - 4800 - 

9:00 a.m. 4800 - 4800 - - 

10:00 a.m. 4800 4800 - - - 

11:00 a.m. 400 - - - - 

12:00 p.m. 50 50 50 400 400 

1:00 p.m. 800 - - - - 

2:00 p.m. 4800 1600 - - - 

3:00 p.m. 4800 - 2400 - - 

4:00 p.m. 4800 4800 - 2400 - 

5:00 p.m. 4800 - - - - 

6:00 p.m. 4800 4800 4800 - 2400 

7:00 p.m. 4800 - - - - 

8:00 p.m. 4800 4800 - 4800 - 

 

 The different values of time constant update period result in smoothness scores as shown in Table 

11. 

Table 11: Smoothness Scores for Adaptive Filtering with Varied Update Period, February 4th, 2017 

Update Period 

(Hours) 

Smoothness Score 

(Lower Score = Smoother Result) 

1 164.94 

2 141.61 

3 142.31 

4 139.22 

6 139.48 

Ideal Static (τ = 800) 67.21 

Raw PV 527.19 

  

Table 11 shows that the best period for updating the time constant is 4 hours, though the smoothness 

scores for all update periods greater than 1 hour are within 3 points of each other. Most notably, these 

methods fall far short of the score achieved by using τbest = 800.  
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This is because, while τ = 800 was assigned at the start of the day, the early hours of the day featured 

low PV generation which was best smoothed with the aggressive τ = 4800 filter without hitting the BESS 

constraints. As the day progresses, the magnitude of PV increases, as does the potential for variability. This 

means that the system is more likely to reach its BESS constraints. 

Looking at the 1-hour update column of the table, it can be seen that the calculated τbest values in 

the middle of the day when the sun is strongest are the lowest. Within the space of 2 hours, the 1-hour τbest 

drops from 4800 to 50. Further, because it is known that the best time constant for the entire day as a whole 

is τ = 800 (from Table 3), it can be inferred that the magnitude of variations experienced during this three-

hour period is large enough to bring the average τbest for the entire day from 4800 to 800, even though the 

most common 1-hour τbest is 4800. This is confirmed when looking at Figure 16, as the time period between 

10:00 a.m. and 1:00 p.m. indeed depicts the highest magnitude PV generation and variation of the day. 

This is evidence that the PV generation in the morning and evening do not always feature the same 

variation patterns as mid-day generation. Filter time constants calculated based on morning data may not 

be appropriate for mid-day operation, as the range of variability increases with the magnitude of generation. 

Therefore, the update period was considered to have a minimum of one day so that PV patterns over the 

entire day can be considered at once. 

To analyze filter update periods on the order of days, the system was run for the entire 26-day 

dataset. Update periods were studied in the range from 1 to 7 days. The time constant was once again 

initialized with τ = 800. This filter was maintained throughout the duration of the first update period, at 

which point the accumulated data was used to recalculate the time constant for the next period. Table 12 

shows the results for the 26-day dataset using update periods from 1 to 7 days for the constrained case of 

2.5 kW/3.25 kWh. These results are compared against the ideal case where the best time constant is chosen 

for each day. 

Table 12: PV Smoothing Performance over 26 Days, 2.5 kW/3.25 kWh, Variable Update Period 

Update Period (Days) Smoothness Score 

1 8,321 

2 7,486 

3 7,275 

4 7,430 

5 7,281 

6 7,362 

7 7,245 
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Ideal Case 6,914 

Raw PV 26,101 

 

 These results show that smoothness score tends to improve as more days are considered in each 

recalculation, with a 7-day update period yielding the best results. This trend would likely continue as the 

update period increases beyond 7 days, though the benefit of incorporating more days into the calculation 

diminishes as the update period increases. 

 To expand this study to all ranges of BESS parameters analyzed in this project, Table 13 lists the 

best update periods and their corresponding smoothness scores for each combination of constraints. These 

results are also shown in Figure 18. 

Table 13: Smoothness Score and Best Update Period versus BESS limitations over 26 Days for 

Adaptive Time Constant Selection Method  

 Battery Energy (kWh) 

0.65 1.625 3.25 6.5 13 19.5 26 325 

Inverter 

Power 

(kW) 

0.5 Best 

Update Period 

3 3 3 3 3 3 3 3 

Smoothness 

Score 

11,004 10,934 10,934 10,934 10,934 10,934 10,934 10,934 

2.5 Best 

Update Period 

2 3 7 7 7 7 7 7 

Smoothness 

Score 

7,751 7,204 7,245 7,245 7,245 7,245 7,245 7,245 

5 Best 

Update Period 

4 3 5 7 7 7 7 7 

Smoothness 

Score 

5,874 5,261 4,860 4,775 4,842 4,842 4,842 4,842 

7.5 Best 

Update Period 

4 6 7 7 7 7 7 7 

Smoothness 

Score 

5,094 4,247 3,716 3,344 3,280 3,280 3,280 3,280 

10 Best 

Update Period 

4 5 4 7 7 7 7 7 
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Smoothness 

Score 

4,896 3,868 3,192 2,664 2,499 2,449 2,449 2,449 

100 Best 

Update Period 

4 5 4 7 5 5 4 2 

Smoothness 

Score 

4,818 3,699 2,777 2,214 1,688 1,382 1,270 957 

 

 

Figure 18: Smoothness Score versus BESS limitations over 26 Days for Adaptive Time Constant 

Selection Method  

 It can be observed that 7 days is most frequently the best update period. This is in part because 

systems where the best update period may be greater than 7 days are grouped in this category as this update 

period was the best of those analyzed. It is also notable that configurations with limited BESS resources 

tend to perform better with shorter update periods. This is because these systems are more dependent on 

the sun and cloud cover patterns, and therefore the best time constant may change more frequently than 

systems with more available inverter power and battery energy. 
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 The trends exhibited when using adaptive time constant selection are similar to the ideal and static 

time constant cases. Smoothness score decreases with increased inverter power and battery energy, though 

there is a limit to how much battery energy would benefit the system. This limit depends on the inverter 

power, as with the previously discussed cases. 

 To compare the results of the adaptive approach with the ideal case and the static approach, the 

percent error between the ideal case and adaptive approach was calculated. This represents how much 

higher the smoothness score for the adaptive method is. The percent error for the best update period at each 

BESS configuration is calculated in Table 14. 

Table 14: Adaptive Time Constant Selection Method Percent Error 

Percent Error (%) Battery Energy (kWh) 

0.65 1.625 3.25 6.5 13 19.5 26 325 

Inverter 

Power 

(kW) 

0.5 1.35 1.39 1.39 1.39 1.39 1.39 1.39 1.39 

2.5 4.87 2.80 4.79 5.41 5.51 5.51 5.51 5.51 

5 4.28 6.14 4.78 6.57 9.39 9.39 9.39 9.39 

7.5 4.71 6.34 7.60 5.84 7.64 9.03 9.26 9.26 

10 4.71 6.40 9.34 8.56 10.61 11.77 13.28 13.28 

100 4.57 6.87 8.05 16.57 18.78 17.90 18.86 5.04 

 

 The percent error for adaptive time constant selection with this distribution of parameters ranges 

from 1.35% to 18.86%. Table 15 shows the mean and variance of this percent error using the best update 

period, as well as using a constant update period across all parameters. 

Table 15: Mean and Variance of Percent Error across BESS Constraint Parameters, Adaptive 

Time Constant Selection Method 

Update Period (Days) Mean Percent Error Variance 

1 40.44% 1624 

2 13.84% 99.81 

3 11.30% 103.7 

4 13.23% 191.4 

5 10.89% 77.01 

6 13.60% 130.1 

7 8.87% 39.09 
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Raw PV 408.29% - 

Best 7.19% 20.84 

 

 Table 15 shows that the mean percent error trends downward as the update period increases, with 

the 7-day update period yielding the lowest mean percent error and variance among constant update periods. 

While adapting the update period based upon system parameters further reduces this percent error, this is 

indication that assigning an update period of 7 days (or greater) on average will provide better smoothing 

results than shorter periods. 

7.3.3  Comparison of Time Constant Selection Methods 

Both the static and adaptive methods of time constant selection produce results much smoother 

than the raw PV measurements, though neither match the performance of the ideal case where τbest for each 

day is known ahead of time. This is summarized in Table 16, which compares system performance using 

the mean percent error across all BESS parameter combinations analyzed. 

Table 16: Comparison of Time Constant Selection Method Percent Error 

Time Constant Selection Method Mean Percent Error 

Raw PV 408.29% 

Ideal Case 0.00% 

Static Method 5.71% 

Adaptive Method 7.19% 

 

 According to these results, while both time constant selection methods greatly improve 

performance compared to the raw unfiltered PV generation measurements, the static selection method 

outperforms the adaptive selection method by 1.48% on average. 

 It should be noted that there are considerations regarding the dataset to take into account when 

comparing the two methods. This study used 26 sequential days of PV generation data. For the static 

method, part of this data was used for historical data over which to calculate the time constant, and therefore 

the set of data which yielded the best result could have benefited the total smoothness score of the system. 

However, this data was included so that the final scores would consider all 26 days and therefore be 

comparable to the adaptive method. 

By contrast, the adaptive method assigned a default initial time constant during the first period 

before time constant calculation, which may or may not have been the best time constant for that duration. 
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For comparison, if the best time constant for the first update period is assigned (making the assumption that 

this value is somehow known ahead of time), the mean percent error of the smoothness score drops from 

7.19% to 6.27%. Therefore, making this unrealistic assumption in an attempt to counteract the benefit the 

static method receives in its calculation still does not allow the adaptive method to surpass the static. 

The static method performs better than the adaptive because of the weakness of the following 

assumption: the best time constant for a given period of time will also perform well for the next period of 

time due to slowly changing weather patterns. In reality, solar and cloud cover patterns are highly variable, 

and are subject to change. A large period of time is required in order to make an assessment regarding the 

best time constant, and for the adaptive method, this means that there will be a longer period of time before 

the next update where new patterns can be considered. 

To learn if the delay between time constant updates is the cause for poor performance of the 

adaptive method, one variation was analyzed with a rolling historical window to compare with the 7-day 

update method. In this method, time constant selection occurs every day, but considers the past 7 days of 

data. Using this method, the mean percent error was 8.80%. This is an improvement over using a constant 

7-day update, which yielded 8.87%, but it does not improve over choosing the best update period (7.19%). 

This indicates that the delay between time constant updates is not the primary reason for poor adaptive 

performance. This is a topic that may be explored further nonetheless 

However, even given the superior performance of the static method, there are other considerations 

as well. The static time constant was calculated for the 26-day period, but longer-term changes in weather 

patterns could have the potential to drift away from this value. If a location has strong seasonal patterns, 

the best filter may change several time throughout the year. In contrast, a location with weaker seasonal 

changes may do well with a static time constant. 

7.4  Real-Time Operation 

The PV Smoothing System is constructed using the agent architecture shown in Figure 1 across 

two computers running VOLTTRON™. The host computer runs device communications functions as well 

as the Energy Cost Optimization System, and a peripheral computer runs the PV Smoothing System. The 

two systems communicate using the VIP protocol to extend the message bus. The Energy Cost Optimization 

System operates at a clock cycle of 5 minutes, while the PV Smoothing System operates at 1 second. 

The BESS contribution towards the PV Smoothing System was limited to 5 kW/6.5 kWh, or 5 

percent of the total inverter power and 2 percent of the total battery energy capacity. These levels were 

chosen to demonstrate the impacts of limited BESS resources. 
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The adaptive approach to time constant selection was chosen in order to demonstrate the adaptive 

filter tuning agent. Referencing Table 13, a 7-day update period was chosen. The initial time constant 

chosen was τ = 400, which was updated after 7 days of operation. 

Real-time PV smoothing using VOLTTRON™ is shown for a day in Figure 19. The data in this 

figure was taken before the 7-day window was complete, so the time constant remains at τ = 400. 

 

Figure 19: Real-Time Smoothing Using VOLTTRON™, May 12th, 2017. Initial Time Constant τ = 

400 

 It can be seen that with this time constant, PV smoothing does occur, as fast variations in the PV 

generation are flattened. However, variations in the middle of the day reach magnitudes of 20 kW, and 

cannot be adequately smoothed with the constraints placed on the BESS. The resulting smoothness scores 

of the raw data and smoothed result are shown in Table 17. 

Table 17: Real-Time Smoothing Results Using VOLTTRON, May 12th, 2017 

System Characteristic Smoothness Score 

Raw PV Generation 1,994.8 

Net Smoothed Generation 1,083.3 



55 

 

 It can be seen that system variations were nearly cut in half with the implementation of PV 

smoothing, even with the limitations on the BESS. 

 Shows some of the most extreme variations of this day in closer detail to demonstrate these 

limitations. 

 

Figure 20: Real-Time Smoothing Using VOLTTRON™, May 12th, 2017, Focus on Large Variations 

 It can be seen from this figure that the BESS limitations on inverter power are restricting the 

smoothing operation. Where smoothing for the lower-magnitude variations is effective, the large increase 

in output power around 9:35 a.m. creates a power difference between the PV generation and desired 

smoothing curve that cannot be rectified by the BESS output. The difference between the two curves at 

any given point is limited to 5 kW because this is the limitation placed on the inverter output, which can 

be seen in Figure 20. 

The BESS is shared between two real-time systems. Figure 21 and Figure 22 depict the state of the 

BESS at all points throughout May 12th, 2017. 
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Figure 21: Desired versus Actual BESS Output Power, May 12th, 2017 

 

Figure 22: State of Charge of BESS, May 12th, 2017 
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Figure 21 shows that the desired BESS output matches the actual output at every time step. It 

depicts the BESS supporting both systems simultaneously: the Energy Cost Optimization System and the 

PV Smoothing System. It can be seen that the BESS output is segmented as a step function: this is because 

the Energy Cost Optimization System runs at a 5-minute resolution, so the output is held constant for 300 

clock cycles of the PV Smoothing System. However, as the variations in PV generation increase in 

magnitude during the peak solar hours, the PV smoothing signal is noticeable as high frequency variations 

in BESS output power. 

As can be seen in Figure 22, the SOC never reaches its maximum or minimum capacity. This is the 

reason for the zero discrepancy between desired and actual power, as the BESS should only deviate from 

the requested power output when it approaches its own capacity limitations. Should the SOC approach 

100%, there may develop an increased mismatch between the desired and actual BESS output. 

After the update period elapses, the message visible in the logged output of the VOLTTRON™ 

terminal is shown in Figure 23. 

 

Figure 23: VOLTTRON™ Log Output during Adaptive Time Constant Update 

 The information provided by this output is summarized in Table 18. 

Table 18: VOLTTRON™ Log Output Summary 

Time Constant 7-Day Smoothness Score 

100 5146 

200 5090 

400 5109 

800 5426 

1600 6789 

2400 8078 

τbest 200 

 

 From Table 18, it can be seen that the best time constant is τbest = 200. This is because filters with 

a longer time constant than this attempt to smooth too aggressively for the constraints placed on the 
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BESS. As can be seen in Figure 20, a filter with τ = 400 frequently reaches its inverter limit. Therefore, 

for the duration of the next update period the filter will use τ = 200. Operation after this point is shown in 

Figure 24. 

 

Figure 24: Real-Time Smoothing using VOLTTRON™, after Time Constant Update to τ = 200 

Variations on this day are less severe than in Figure 20, and with the updated time constant the 

system is better able to accommodate variations in PV output. The system will run indefinitely from this 

point, updating the time constant every 7 days in order to stay current with seasonal and weather patterns. 

Thus, the real-time implementation of the PV Smoothing System in VOLTTRON™ has been demonstrated. 

The figures presented here also depict VOLTTRON™, simultaneously performing two functions: PV 

smoothing and the larger Energy Cost Optimization System. 

VIII  Conclusion 

 This project has demonstrated the capabilities of VOLTTRON™ when used as a control system 

for distributed energy resources operating two simultaneous functions. Specifically, the system manages an 

Energy Cost Optimization System using scheduled BESS dispatch, as well as the PV Smoothing System 

described in this study. 
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 The system was thoroughly analyzed using 26 days of PV generation at 1-second resolution. The 

effect of changing the time constant of the filter during constrained and unconstrained operation was 

analyzed. Next, the impact of BESS constraints on smoothness and best time constant were studied in an 

ideal setting where the best time constant is known prior to a day’s operation. It was determined that having 

a large inverter output power was more important for PV smoothing than a large battery energy capacity. 

 Two methods of selecting the time constant in real time, static and adaptive, are studied for their 

impact on system performance. The static method uses one set of historical data to assign a permanent time 

constant to the system, while the adaptive method recalculates this time constant after a certain window of 

time. It was found that both systems provide a high level of PV smoothing performance. However, the static 

method can decrease variations within 5.7% of the ideal case, while the adaptive method decreases 

variations down to within 7.2%. The location and seasonal weather patterns should also be considered when 

choosing between the two methods of time constant selection. 

 The system was then run in real time using VOLTTRON™. At BESS limitations of 5 kW/6.5 kWh, 

the best adaptive update period was determined to be 7 days. The system behaved as expected given the 

BESS parameters and time constant selection methods, providing smoothing on the PV generation and 

updating the time constant periodically using the adaptive time constant selection method.  

 This project paves the way for future work in the area of real-time PV smoothing, including: 

o Studying the output characteristic of BESS hardware in place of a mathematical physics-

based model, including response time analysis 

o Investigating realistic costs of power ramping on the grid to determine an appropriate 

smoothness penalty function 

o Expanding the data set to investigate monthly and seasonal changes in system behavior 

o An adaptive time constant selection method featuring daily time constant updates while 

using a longer period of time as the historical data for such updates 

o Investigating tools for predicting variations in PV generation variance 

o Investigating larger PV generation, including arrays over a larger geographic area 

o Investigating shorter time frames for PV variability behavior and PV smoothing 
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XI  Appendix 

The appendix for this thesis is available as in the form of the file: 

“Kevin_Morrissey_PV_Smoothing_Appendix.zip” 

The contents of the appendix are as follows: 

 raw_PV_generation_measurements.csv  

o 26 days of 1-second increment PV generation measurements from a 35-kW PV array on 

UW campus. This dataset was used for simulation analysis of the PV Smoothing System. 

 PVsmoothing 

o Folder containing the VOLTTRION™ code associated with the PV Smoothing System 

o Contains two VOLTTRON™ agents: 

 real_time_filter 

 VOLTTRON™ agent that performs real-time filtering on PV generation 

measurements and dispatches a BESS instruction each to execute this. 

 config: A configurable file featuring all parameter inputs into the PV 

Smoothing System. 

 adaptive_filter_tuning 

 VOLTTRON™ agent that recalculates the best time constant based on a 

historical period of data and submits the updated time constant value to 

the real_time_filter agent in real time. 


