Assessment of Plug-in Electric Vehicles Charging on Distribution Networks

Master Thesis Defense - Tsz Kin (Marco) Au

Committee Chair: Dr. M. Ortega-Vazquez
Committee Co-Chair: Dr. M. El-Sharkawi
Committee Member: Dr. D. Kirschen
Presentation Outline

I. Introduction of PEV
II. The developed tool for investigating the impact of PEV
III. Test system characteristic
IV. Test result
V. Conclusion
Presentation Outline

I. Introduction of PEV
II. The developed tool for investigating the impact of PEV
III. Test system characteristic
IV. Test result
V. Conclusion
Technological Impacts of PEVs

Potential benefits:

- Lower operating cost than combustion engine vehicles: 3.7 vs. 16.7 cents
- On road CO2 emission will be lower
- V2G and ancillary services provide business opportunities

Problems:

- 10% penetration = additional 300 GWh per day in the U.S.
- Increase grid losses
- Reduce system spare generation and harder to schedule maintenance
- Poorer voltage profile and transformer overloading in weakly meshed distribution networks
What causes poor voltage profile and transformer overloading?

- Line impedance
- Coincidence between PEV charge time and system peak load
- Lack of interconnection

Poor voltage profile and overload transformer
Presentation Outline

I. Introduction of PEV
II. The developed tool for investigating the impact of PEV
III. Test system characteristic
IV. Test result
V. Conclusion
Monte Carlo Simulation

- Suitable for analysis when uncertainties present
- 4 uncertainties needed to be address:
 - Charging time
 - Battery state of charge (SOC)
 - Charging method
 - Customer load variation
- 7 major functional blocks
- Each trail represent 24 hours
1. Data Processing and Initialization

- 34,000+ drivers’ behavior from CMAP, which consists of their to-work and to-home arrival times.
- Electric vehicle parameters
 - Battery capacity
 - Energy consumption per unit distance
- Distribution network conductor parameters
- Average power consumption and load type at each node
 - Residential area
 - Commercial area
2. PEV Penetration and Charging Points

\[\text{PEV Penetration} = \frac{\text{Total number of passenger PEV}}{\text{Total number of passenger vehicles}} \]

Charge at home or at work?

- Type 1: Charge at home only
- Type 2: Charge at home and work

- 33.33% Charge at home only
- 66.67% Charge at home and work
3. PEV’s Arrival Time

- PEV drivers will charge their vehicles anytime at their convenience
- Their arrival times affect the charge profile
- Drivers’ behaviors varies from day to day, which creates uncertainty
- Must model the uncertainty in order to simulate its effect to the power system
3. PEV’s Arrival Time

Inverse transformation for random number generation

- Map \(\text{rand}(0,1) \) → actual distribution
4. PEV’s Battery State of Charge

- Commute distance have an effect on the battery state of charge
- A driver’s commute distance although is similar everyday, it may vary sometime, which causes uncertainty
- Must model this uncertainty in order to simulate its effect to the power system
- Convert commute distance to battery state of charge (SOC)

\[
SOC = \text{Battery Cap. (kWh)} - \text{Commute Dist. (mile)} \times 0.34 \text{ kWh/mile}
\]
4. PEV’s Battery State of Charge

<table>
<thead>
<tr>
<th>Commute distance (miles)</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 4.0</td>
<td>19.19</td>
</tr>
<tr>
<td>4.1 – 8.0</td>
<td>22.95</td>
</tr>
<tr>
<td>8.1 – 12.0</td>
<td>16.67</td>
</tr>
<tr>
<td>12.1 – 16.0</td>
<td>13.77</td>
</tr>
<tr>
<td>16.1 – 20.6</td>
<td>9.37</td>
</tr>
<tr>
<td>20.1 – 24.0</td>
<td>6.07</td>
</tr>
<tr>
<td>24.1 – 28.0</td>
<td>4.59</td>
</tr>
<tr>
<td>28.1 – 32.0</td>
<td>2.69</td>
</tr>
<tr>
<td>32.1 +</td>
<td>4.70</td>
</tr>
</tbody>
</table>

Commute Distance Distribution

Quantile Function of Commute Distance

\[y = 353.04x^5 - 725.13x^4 + 526.87x^3 - 140.15x^2 + 22.691x - 0.0038 \]

\[R^2 = 0.9997 \]
5. PEV Charge Profile

- Computed individually based on arrival time, battery state of charge, and charging method

\[
\text{Total Charge Profile}_{hr} = \sum_{i}^{\# \text{ of PEV}} P_{i,hr}
\]
6. Customer Load Profile

• Varies from day to day
• The variation is assumed to be Gaussian distributed:

\[
f(P_{bus,ti}) = \frac{1}{\sigma_{bus,ti} \sqrt{2\pi}} e^{\frac{1}{2} \left(\frac{(P_{bus,ti} - AvgP_{bus,ti})}{\sigma_{bus,ti}} \right)^2}
\]

\[
AvgP_{bus,ti} = P_{type,ti}^{norm} \times AvgP_{bus}
\]
7. Running Power Flow Analysis for the Distribution System

• Cannot use Newton-Raphson based methods

• Distribution networks characteristic:
 – High R/X ratio → Decoupled and fast decoupled methods won’t work
 – Weakly meshed, sparse network → Newton-Raphson method won’t work

• Forward-backward sweep method is used
7. Running Power Flow Analysis for the Distribution System

Forward-backward sweep method example:

\[z = 0.3 + j0.6 \ \Omega/mile \]

\[z_{12} = 0.1705 + j0.3409 \ \Omega \]
\[z_{23} = 0.2273 + j0.4545 \ \Omega \]

\[s_2 = 1500 + j750 \ \text{kW} + j\text{kVar} \]
\[s_3 = 900 + j500 \ \text{kW} + j\text{kVar} \]
7. Running Power Flow Analysis for the Distribution System

Forward-backward sweep method example:

Forward sweep:

1) Assume voltage at node 3 is 7200V

2) Compute I_3

$$I_3 = \left(\frac{s_3}{V_3} \right)^* = 143.0 \angle -29.0 \ A$$

3) Compute I_{23}

$$I_{23} = I_3 = 143.0 \angle -29.0 \ A$$

4) Compute V_2

$$V_2 = V_3 + Z_{23} \cdot I_{23} = 7260.1 \angle 0.23 \ V$$

5) Compute I_2

$$I_2 = \left(\frac{s_2}{V_2} \right)^* = 231.0 \angle -26.3 \ A$$

6) Compute I_{12}

$$I_{12} = I_{23} + I_2 = 373.9 \angle -27.3 \ A$$

7) Compute V_1

$$V_1 = V_2 + Z_{12} \cdot I_{12} = 7376.2 \angle 0.97 \ V$$

8) Compute mismatch between V_1 and V_s

$$Mismatch = ||V_s| - |V_1|| = 176.2 \ V$$

Not satisfy!
7. Running Power Flow Analysis for the Distribution System

Forward-backward sweep method example:

Backward sweep:

1) Assume voltage at node 1 is 7200V, and use the line currents computed from forward sweep

2) Compute \(V_2 \)
 \[V_2 = V_1 - Z_{12} \cdot I_{12} = 7085.4\angle -0.68 \text{ V} \]

3) Compute \(V_3 \)
 \[V_3 = V_2 - Z_{23} \cdot I_{23} = 7026.0\angle -1.02 \text{ V} \]
7. Running Power Flow Analysis for the Distribution System

Forward-backward sweep method example:

Perform forward sweep again:

1) Use the voltage at node 3 from the backward sweep

2) Compute I_3

$$I_3 = \left(\frac{s_3}{V_3} \right)^* = 146.5 \angle -30.1 \ A$$

3) Compute I_{23}

$$I_{23} = I_3 = 146.5 \angle -30.1 \ A$$

4) Compute V_2

$$V_2 = V_3 + Z_{23} \cdot I_{23} = 7087.6 \angle -1.02 \ V$$

5) Compute I_2

$$I_2 = \left(\frac{s_2}{V_2} \right)^* = 236.6 \angle -27.2 \ A$$

6) Compute I_{12}

$$I_{12} = I_{23} + I_2 = 383.0 \angle -28.3 \ A$$

7) Compute V_1

$$V_1 = V_2 + Z_{12} \cdot I_{12} = 7206.5 \angle 0.0 \ V$$

8) Compute mismatch between V_1 and V_s

$$\text{Mismatch} = ||V_s|| - |V_1| = 6.535 \ V$$

Satisfy!
Presentation Outline

I. Introduction of PEV
II. The developed tool for investigating the impact of PEV
III. Test system characteristic
IV. Test result
V. Conclusion
Test System Characteristic

Assumption:

• 4000 residents
• Average 2.35 people and 1.78 passenger vehicles per household
• power factor = 0.9
• power factor = 0.8
• Avg. 959.5 W/household
• Average power consumption:

 = 81.6 + 40.8j (kW+kVar)

 = 100 + 75j (kW+kVar)

= residential area = 85 households

= commercial area = 1 small shopping plaza
Test System Characteristic

Charging method and scenario:

- Level 1: 1.3 kW
- Level 2: 3.3 kW
- Level 3: 50 kW

Type 1

- Level 1: 75%
- Level 2: 25%

Type 2a (charge at residential area)

- Level 1: 85%
- Level 2: 15%

Type 2b (charge at commercial area)

- Level 1: 60%
- Level 2: 30%
- Level 3: 10%
Presentation Outline

I. Introduction of PEV
II. The developed tool for investigating the impact of PEV
III. Test system characteristic
IV. Test result
V. Conclusion
Test Result: Voltage Violation

Voltage Profile

- Voltage should operate ±0.05 p.u.
- Voltages at the End Buses have higher chance to suffer low voltage violation
Test Result: Voltage Violation

Voltage profile confidence interval at bus 16

- 0% Penetration
- 30% Penetration
- 50% Penetration
- 100% Penetration
Test Result: Voltage Violation

Voltage distribution for 0% Penetration Scenario

- Bus: 5
 - Mean voltage: 0.98 p.u.
 - Violation: 0%
 - 5% limit

- Bus: 11
 - Mean voltage: 0.97 p.u.
 - Violation: 0%
 - 5% limit

- Bus: 16
 - Mean voltage: 0.97 p.u.
 - Violation: 0%
 - 5% limit

- Bus: 23
 - Mean voltage: 0.98 p.u.
 - Violation: 0%
 - 5% limit
Test Result: Voltage Violation

Voltage distribution for 50% Penetration Scenario

Bus: 5
- Mean voltage: 0.98 p.u.
- Violation: 0%
- -5% limit

Bus: 11
- Mean voltage: 0.97 p.u.
- Violation: 0.33%
- -5% limit

Bus: 16
- Mean voltage: 0.96 p.u.
- Violation: 9.7%
- -5% limit

Bus: 23
- Mean voltage: 0.98 p.u.
- Violation: 0%
- -5% limit
Test Result: Voltage Violation

Voltage distribution for 100% Penetration Scenario

Bus: 5
Mean voltage: 0.97 p.u. Violation: 0%
-5% limit

Bus: 11
Mean voltage: 0.96 p.u. Violation: 19%
-5% limit

Bus: 16
Mean voltage: 0.96 p.u. Violation: 29%
-5% limit

Bus: 23
Mean voltage: 0.98 p.u. Violation: 0%
-5% limit
Test Result: Transformer Load

- Although transforms usually can be overloaded for short period of time with limited amount, overloading it by too much or too long will decrease its life time
- Transformer overloaded: loaded above its capacity
- Transformer violation: loaded 20% above its capacity
Test Result: Transformer Load

Transformer load profile

Transformer load distribution

- Transformer load profile
 - 100% of rated power
 - 30% of rated power
 - 20% above rated power
 - 0% of rated power

- Transformer load distribution
 - Probability distribution for different load levels (50%, 70%, 50%, 30%, 10%)
 - Average and Penetration levels indicated for each load level
Presentation Outline

I. Introduction of PEV
II. The developed tool for investigating the impact of PEV
III. Test system characteristic
IV. Test result
V. Conclusion
Conclusion

• Electricity for transportation? Yes or No?
• PEVs impacts vary from system to system
 – Voltage violation: long radial networks
 – Substation transformer violation: Heavy load, high PEV penetration
• A tool to evaluate PEVs impacts is developed
Thank you!