The Lumpede–Charge Power MOSFET Model, Including Parameter Extraction

Irwan Budiardjo and Peter O. Lauritzen, Senior Member, IEEE

Abstract—A fundamentally new, physically-based power MOSFET model features continuous and accurate curves for all three interelectrode capacitances. The model equations are derived from the charge stored on two internal nodes and the three external terminals. A straightforward parameter extraction technique uses the standard gate-charge plot or process data and is matched with interelectrode capacitance measurements. Simulations are in excellent agreement with measurements. The model is used to design a snubber for a flyback converter.

I. INTRODUCTION

The interelectrode capacitances of power MOSFET's are important to model accurately, especially the variation of gate transfer capacitance C_{gd} which dominates the output switching waveforms through the "Miller" effect. Most power MOSFET models use the basic SPICE MOSFET model as a core element with added active and passive components to form a subcircuit. These models tend to be complex with a narrow range of accuracy. Numerous models have been proposed since 1980 [1]. Simas et al. [2] were the first to model the nonlinearities in the gate-source capacitance as well as the gate-drain capacitance followed by Xu [3] and Cordonnier [4]. Scott and Franz [5] were the first to model the three interelectrode capacitances and their interaction for all device operating states in a special subcircuit model. Most of these models produce discontinuous $C-V$ curves. Continuous derivative of charge (capacitance) curves are important for accurate simulation of current waveforms during switching.

A simple physical model of the power MOSFET is needed, where the interelectrode capacitances are continuous and can be directly determined from measurement or databook information.

This paper describes such a compact, physical power MOSFET model which is designed by discretizing the internal physical structure, enabling simple charge expressions to be functions of the three terminal voltages. This approach represents an extension of the Charge Control [6] and the Lumped Model method introduced by Linvill in the early 1960's [7]. Thus, it is called the lumped-charge approach.

II. THE ART OF THE LUMPED CHARGE APPROACH

The lumped-charge modeling technique has recently been established as a powerful method of building power device models. The art is in choosing the model structure to retain the accuracy of physical modeling.

The lumped-charge MOSFET model [8] is based on localizing the internal charge into the separate but key locations shown in Fig. 1. The surface charge is assumed to be lumped into a node at the p-body surface (node 1) and at the n-drain surface (node 3). The internal connection nodes (nodes 2, 4, 5) represent additional nodes needed for defining internal voltages.

The charges at node 1 are calculated using the standard delta-depletion approximation and at node 3, the moderate depletion approximation. These two lumped-charge nodes experience accumulation, depletion and inversion as determined from external and internal node potentials. The location of these nodes is carefully chosen to produce relatively simple charge expressions for all operating states of the power MOSFET. Capacitive currents in the terminals of the MOSFET are determined by differentiating these charges with respect to time.

The internal charges are identified as

Body node 1: q_{b1}

- q_{ab} = accumulation charge in the body
- q_{db} = depletion charge in the body
- q_{ib} = inversion charge in the body.
Drain node equation:

\[\begin{align*}
q_{ed} &= \text{accumulation charge in the drain} \\
q_{dd} &= \text{depletion charge in the drain} \\
q_{id} &= \text{inversion charge in the drain} \\
q_{eda} &= q_{dd} + q_{ed} = \text{combined depletion and accumulation charge in the drain.}
\end{align*} \]

The charges on the gate are:

\[
q_{GB} = \text{gate-body charge} \]
\[q_{GD} = \text{gate-drain charge.} \]

The charge at the drain-body p-n junction:

\[q_{j} = \text{Drain-body junction depletion charge.} \]

III. EQUIVALENT CIRCUIT

An equivalent circuit for the MOSFET model can be derived from the interaction of the internal charges with the three external terminal voltages. The equivalent circuit for a MOSFET in the nonconducting state is shown in Fig. 2. Overall charge is conserved as the charges on each node appear or disappear as operating states change from one to another.

When all operating states of the device are considered, and the equivalent circuits of all states superimposed, the complete internal equivalent circuit shown in Fig. 3 is obtained. Lumped-charge node 1 contains the charges \(q_{aB}, q_{dB}, \) and \(q_{j} \) which produce the gate capacitance. Also, the charge \(q_{j} \) determines the channel conductance for the current \(I_D. \)

This charge determines the static device I-V characteristics for both the saturation and nonsaturation regions. The drain-body diode is modeled using the Lauritzon-Ma model [9] to include reverse recovery. The complete MOSFET model provides the basic forward and reverse I-V characteristics as well as all inter electrode capacitance variations.

IV. DERIVATION OF THE CHARGE MODEL

The p-body interface charges are modeled by the standard delta-depletion, strong inversion approximation. Then, channel current \(I_D \) can be simply determined [12] from \(q_{j} \) which produces equations similar to those in the standard SPICE (level 1) MOSFET model. As the gate bias \(v_{GS} \) sweeps from a highly positive to a lower voltage, the p-body surface goes through inversion to depletion and finally accumulation. At high \(v_{GS} \) the body surface potential \(\psi_{SB} \) remains at the constant potential \(\phi_{SB} \) while the surface is in inversion. The surface potential \(\psi_{SB} \) is defined as the potential change from the bulk to the surface in MOS devices [12] and \(\phi_{SB} \) is the maximum surface potential between body and source regions. The lumped charges (node 1) at the gate-body interface can be determined from the following equations:

\[\begin{align*}
\psi_{SB} &= \frac{v_{GS}}{2} \\
q_{GB} &= C_{GS} \times (v_{GS} - V_{FB} - \psi_{SB}) \\
q_{dB} &= -C_{GS} \times \sqrt{\psi_{SB}} \\
q_{j} &= 0 \\
q_{j} &= -(q_{GB} + q_{dB})
\end{align*} \]

where

\[\sqrt{\gamma_B^2} = [(V_{TB}V_{FB} - \phi_{SB})/\phi_{SB}] = G_B, \text{ the "body effect" term and} \]

\[C_{GS} = \text{gate-source oxide-capacitance,} \]

\[V_{FB} = \text{body flatband voltage,} \]

\[V_{TB} = \text{body threshold voltage,} \]

\[\phi_{SB} = \text{built in voltage between body and source regions} \]

The constants represent model parameters which are listed in Table 1.

Once \(v_{GS}(t) \) drops below the threshold voltage \(V_{TB}, \) the p-body surface changes from inversion to depletion, and the surface potential \(\psi_{SB} \) becomes a function of \(v_{GS}: \)

\[\begin{align*}
\psi_{SB} &= v_{GS} - V_{FB} + \frac{G_B}{2} \left[1 - \left(\frac{4v_{GS} - 4V_{FB}}{G_B} + 1 \right)^{1/2} \right] \\
q_{dB} &= -C_{GS} \sqrt{G_B \times \psi_{SB}} - q_{GB} \\
q_{j} &= 0 \\
q_{aB} &= 0
\end{align*} \]
TABLE I

COMPARISON OF PARAMETERS WITH SPICE LEVEL 1 POWER MOSFET MODEL

<table>
<thead>
<tr>
<th>SPICE MOSFET level 1</th>
<th>L-C power MOSFET parameters</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Discrete device Simulation</td>
<td>Equations for Power IC Design (see Appendix B)</td>
</tr>
<tr>
<td>dc Characteristics</td>
<td></td>
<td>body threshold voltage</td>
</tr>
<tr>
<td>vgs (Vgs)</td>
<td>VGSB</td>
<td>(B7)</td>
</tr>
<tr>
<td>kp (Kp)</td>
<td>Kp</td>
<td>(B8)</td>
</tr>
<tr>
<td>phi (φ)</td>
<td>(φφa, φφb)</td>
<td>NsameNbodyNdrain</td>
</tr>
<tr>
<td>lambda (λ)</td>
<td>G0, G1</td>
<td>(B9, B10)</td>
</tr>
<tr>
<td>gamma (γ)</td>
<td>G0, G1</td>
<td>(B9, B10)</td>
</tr>
<tr>
<td>delta (δ)</td>
<td>G0, G1</td>
<td>(B9, B10)</td>
</tr>
</tbody>
</table>

Capacitances

CGBO	CGOV	tox, W, toverlap	gate-source overlap capacitance, tox = oxide thickness
		W = channel width, toverlap = gate overlap length	
CGDO	CGDOn	tox, Ldual	gate-source ON-state capacitance, Aon = drain area
CGDO	CGDm	tso, Abody	gate-source ON-state capacitance, Abody = body area
CJ	CJ0	Wn, Ajunction	body-drain diode zero bias capacitance
m			junction grading factor
VBD, VTD		(B13)	drain flatband and threshold voltages

Body-Drain Diode

Is	Is0	reverse saturation current
	n0	emission coefficient
tau	τn0	carrier lifetime
Td	(B14)	diffusion transit time

Parasitic Resistances

Rg		gate parasitic resistance
		source parasitic resistance
Rs	Rs	drain parasitic resistance,
	N, N, Aon	drain interface charge for both accumulation and depletion conditions
	VDS	N, N, Aon, Aon

As the gate bias vGS(t) drops below the body flat-band voltage VfB, the surface enters accumulation:

\[\psi_B = 0 \]
\[q_{aB} = C_{Gon} \times (V_{GS} - V_{fB}) = -q_{GB} \]
\[q_{iB} = 0 \]
\[q_{dB} = 0. \]

If drain interface charges are modeled using the standard delta-depletion approximation, discontinuities and bumps occur in the C(\(v\)) plots [11]. Using the moderate-depletion approximation [8], the charge expressions and the C(\(v\)) plots become continuous for all values of terminal voltage. The charge distributions for the n-drain interface using the moderate approximation are shown in Fig. 4.

As the gate bias vGD sweeps from a highly positive to a very low voltage, the n-drain interface starts in accumulation with the drain surface potential on the n-drain interface \(\psi_{SD} \geq 0 \). Once vGD drops below the drain flat-band voltage VfD, the n-drain surface changes to depletion with \(\psi_{SD} < 0 \). No discontinuity occurs in this transition since the charges decrease or increase exponentially. Finally, when the gate to drain bias vGD goes below the drain threshold voltage VTD, the inversion layer starts to build up. The following simple equation describes the n-drain interface charge for both accumulation and depletion conditions.

\[q_{odd} = \pm C_{Gon} \cdot \gamma D \sqrt{(\psi_{SD} \times 1s) \times -\psi_{SD} \times -\psi_{SD}}. \]

The inversion charge qID which depends upon VDS, is ex-
Fig. 6. MOSFET gate charge plot. Four parameters can be obtained from this gate charge plot \((C_{GD}, C_{GS}, V_{DS}, V_{TD}) \). Plots in data books also can be used even though they contain only positive values of \(V_{GS} \).

Fig. 7. The three critical points in the turn-ON process within the Miller effect.

\[
q_{ID} = Q_{CD} - q_{ad} \quad (15)
\]

where

\[
C_{GD} = \sqrt{2q_s N_D A_{drain}}
\]

\(\gamma_D \) = gate to drain body effect,

\(\phi_D \) = thermal voltage,

\(C_{GD} \) = the gate-drain oxide-capacitance.

Equations (14) and (15) are explained in Appendix A. The surface potential \(\psi_{SD} \) is expressed by

\[
\psi_{SD} = V_{GD} - V_{fD} + \frac{(q_{ID} + q_{ad})}{C_{GD}}. \quad (16)
\]

By inspection of the equivalent circuit in Fig. 3, the drain current \(i_D \) can be expressed as

\[
i_D = -\left(\frac{K_p}{C_{GS}} \right) i_{BS} + \frac{d(q_{ad} + q_{d})}{dt} - i_{DD} \quad (17)
\]

for operation in both the nonsaturation and saturation regions. Here:

\(K_p \) = the empirical "transconductance parameter" used in the SPICE MOSFET model

\(v_{2s} \) = the voltage between node 2 and the source.

\(i_{DD} \) = the body diode current.

Also, the gate current

\[
i_G = \frac{d(q_{GB})}{dt} + \frac{d(q_{GD})}{dt}. \quad (18)
\]

Dependence of mobility on vertical electric field, channel length modulation, velocity saturation and temperature effects are not included in this basic power MOSFET model. However, they can be easily added [15]

Fig. 8.
(a) Gate transfer capacitances \(C_{GD}(V_{DS}, V_{GS}) \). Simulations are solid lines, measurements are dotted.
(b) Gate-to-source capacitances \(C_{GS}(V_{GS}, V_{DS}) \). Simulations are solid lines, measurements are dotted.
(c) Drain-to-source capacitances \(C_{DS}(V_{DS}, V_{GS}) \). Simulations are solid lines, measurements are dotted.

V. IMPLEMENTATION

The equations are implemented in the Saber circuit simulator using its MAST modeling language. Simulation of the various internal charges is shown in Fig. 5 as the MOSFET makes the transition from OFF to ON state. A unique feature of the lumped-charge model is the insight given to device operation by simulating the dynamic charge variations at the drain and body regions during this turn-ON process.
addition of the power MOSFET interelectrode capacitances. Table I compares the electrical parameters for the SPICE level 1 model to those in the new lumped charge power MOSFET model. For discrete device simulation, electrically measurable parameters are desired. For power IC device simulation, process based parameters are desired. This model provides both electrical and process based parameters to cover both applications.

The gate capacitance parameters can be extracted from the gate charge plot in Fig. 6. This plot at two values of \(V_{DS} \) contains sufficient information to obtain all the gate capacitance parameters.

In regions 1 and 4:

\[
C_{Gson} + C_{Gdon} = \frac{I_G}{\frac{dv_{GS}}{dt}}.
\]

(19)

In region 2:

\[
C_{Gson} = \frac{I_G}{\frac{dv_{GS}}{dt}}.
\]

(20)

In region 3, the gate-source voltage \(V_{GS} \) is constant during the Miller effect. The length of this period depends upon the magnitude of the applied drain-source voltage \(V_{DS} \). The values of \(Q_{01} \) and \(Q_{12} \) defined in Fig. 7 can be calculated by

\[
Q_{12} = C_{Gdon}(V_{GS}(2) - V_{fBD}).
\]

(21)

At point “0” we have

\[
-\psi_{dD}(0) = -V_{GD}(0) - \frac{q_{daD}(0)}{G_{Gdon}} + V_{fBD}
\]

(22)

where

\[
q_{daD}(0) = C_{Gdon} \left\{ G_D \left[-\psi_{dD}(0) \right] \right\}^{1/2}.
\]

(23)

Note that \(Q_{01} = q_{daD}(0) \) is the depletion charge in the drain region and \(G_D \) represents the body effect. Substituting \(-\psi_{dD}(0)\) from (22) into (23) we obtain

\[
q_{daD}(0) = C_{Gdon} \left[G_D \left(-V_{GD}(0) - \frac{q_{daD}(0)}{G_{Gdon}} + V_{fBD} \right) \right]^{1/2}.
\]

(24)

Solving for \(q_{daD}(0) \):

\[
q_{daD}(0) = \frac{C_{Gdon} G_D}{2} \left[-1 + \left(1 - \frac{4(V_{GD}(0) - V_{fBD})}{G_D} \right)^{1/2} \right].
\]

(25)

Applying (25) to two values of \(V_{DS} \) (the high value is \(V_{DSH} \) and the low value is \(V_{DSL} \)), the following equations are obtained, where \(Q_{GHL} \) and \(Q_{GL} \) are defined in Fig. 6:

\[
Q_{GHL} = q_{daD}(V_{DSH}) - q_{daD}(V_{DSL}).
\]

(26)
For normal voltages (26) can be approximated as
\[Q_{GHL} = \left(C_{GD\text{on}} G_D^{1/2} \right) \left[\left(-V_{GDH} \right)^{1/2} - \left(-V_{GDL} \right)^{1/2} \right]. \]
Equation (27) can be solved directly for \(G_D \). Then
\[Q_{GL} = \frac{C_{GD\text{on}} G_D^{1/2}}{2} \left[-1 + \left(1 - \frac{4(V_{GDL} - V_{JBD})}{G_D} \right)^{1/2} \right]^{1/2} + C_{GD\text{on}}(V_{GSM} - V_{JBD}) \]
and \[G_D = \frac{\left(V_{TD} + V_{JBD} - \phi_{DB} \right)^2}{\phi_{DB}} = \gamma_D^2 \]
where \(\phi_{DB} = \) built in voltage between body and drain regions (approximately = 2\phi_{FN})

Equation (28) can be solved for \(V_{JBD} \) and, (29) for \(V_{TD} \).

As an example the parameters for MOTOROLA P8NO8 Power MOSFET are determined from its databook using \(V_{DSH} = 48 \) and \(V_{DSS} = 20 \), to give
\[Q_{GHL} = 1.5 \times 10^{-9} \text{ Coulomb} \]
\[Q_{GL} = 5.5 \times 10^{-9} \text{ Coulomb}. \]

From (19) to (20) and (28) to (29) we obtain
\[C_{GS\text{on}} = 370 \text{ pf} \]
\[C_{GD\text{on}} = 600 \text{ pf} \]
\[V_{JBD} = 0.775 \text{ Volt} \]
\[V_{TD} = -0.433 \text{ Volt}. \]

Parameters for dc characteristics like \(V_{TB}, K_p \) and the drain-source capacitance parameters \(C_{j0}, m, \phi_{DB} \) are found conventionally [10].

VII. SIMULATION AND MEASUREMENT RESULTS

Using parameters extracted from the gate-charge plot, simulated interelectrode capacitances are compared with measured values in Fig. 8. The interelectrode capacitances are measured at 1 MHz using a three terminal measurement technique. Simulated and measured gate charge plots are shown in Fig. 9.

In the gate charge plot, both gate and drain are driven by a constant current sources. Simulated and measured dc drain characteristics are in Fig. 10.

To demonstrate an application, the MOSFET model is used to design a snubber for a flyback converter operating in the discontinuous conduction mode. Fig. 11(a) shows waveforms without the snubber installed and Fig. 11(c) shows the simulated waveform. Note that the peak switch voltage is approximately 120 V in both plots. Fig. 11(b) and Fig. 11(d) show measurement and simulation of the flyback converter with the snubber designed using the simulator. Note the excellent match between simulation and measurements.

VIII. CONCLUSION

This power MOSFET represents a fundamentally new model which is equivalent in complexity to the SPICE MOSFET model used for low voltage devices. The model is compact with all static and dynamic effects combined into a single set of equations. The capacitances \(C_{GD}(v) \) and \(C_{GS}(v) \) are continuous functions with continuous derivatives, yet capacitance parameters can be directly extracted from the simple gate charge plot found in data books or from simple measurements. This power MOSFET model demonstrates that the lumped-charge approach, which was first demonstrated on the P-I-N diode [9] is also valid for MOS devices. The availability of new, accurate power device models will change the design methodology in power electronics and eliminate much of the need for prototyping new circuits.
Fig. 11. (a) Measurement of $v_{DS}(t)$ and $i_D(t)$ in flyback converter. (Without Snubber.) Scale for $i_D(t)$: 0.5 Ampere/division. (b) Measurement of $v_{DS}(t)$ and $i_D(t)$ in flyback converter. (With Snubber.) Scale for $i_D(t)$: 0.5 Ampere/division. (c) Simulation of $v_{DS}(t)$ and $i_D(t)$ in flyback converter. (Without Snubber.) (d) Simulation of $v_{DS}(t)$ and $i_D(t)$ in flyback converter. (With Snubber.)

APPENDIX A

DERIVATION OF THE INTERFACE CHARACTERS AT THE N-DRAIN SURFACE

The interface charge Q_{CD} described in Appendix F of [12] for an N-type substrate can be expressed by

$$Q_{CD} = \pm \sqrt{2q\varepsilon_s N_D} A_{\text{drain}}$$

for an N-type substrate can be expressed by
In the moderate depletion approximation, the inversion layer charge increases exponentially when the surface potential \(\psi_{SD} \) is approximately \(2\phi_{FN} \).

The accumulation and depletion charges must be separated from the inversion charge because their dynamic behavior is different.

Equation (A1) can be simplified for \(e^{(2\phi_{FN}/\phi_{t})} \ll 1 \) to separately describe the interface accumulation and depletion charge \(q_{adD} = q_{aD} + q_{dD} \) from the inversion charge \(q_{ID} \).

\[
q_{adD} = \mp C_{GDon} \gamma_D \left(\psi_t \times \epsilon(\psi_t/\phi_t) - \psi_s - \phi_t \right). \tag{A2}
\]

The inversion charge \(q_{ID} \) which also depends upon \(V_{DS} \), is expressed by

\[
q_{ID} = Q_{CD} - q_{adD} \tag{A3}
\]

and \(\gamma_D = \text{gate to drain body effect}, \phi_t = \text{thermal voltage}, C_{GDon} = \text{gate-drain oxide capacitance} \), where the N-drain static surface potential \(\Phi(y) \) can be obtained from

\[
\psi_{SD} = \psi_t - \psi_s - \frac{V_{DS} + q_{ID} + q_{adD}}{C_{GDon}}. \tag{A4}
\]

APPENDIX B

The Linearized Body Effect Parameter \(\delta \)

The width of the depletion layer in the channel varies due to the applied voltage \(V_{DS} \). The body depletion charge is expressed by

\[
Q_{dB} = -\gamma_{CBS} \sqrt{\phi_{SB} + V_{CB}}. \tag{B1}
\]

Fig. 13 shows a plot of \(-(Q_{dB}/C_{GDon}) \) from (B1). To simplify (B1) the first two terms of the Taylor series expansion are chosen around the point \(V_{CB} = V_{SB} \) giving

\[
-\frac{Q_{dB}}{C_{GDon}} = \gamma \sqrt{\phi_{SB} + V_{SB}} = \delta_1 (V_{CB} - V_{SB}) \tag{B2}
\]

where \(\delta_1 \) is the slope of \(-(Q_{dB}/C_{GDon}) \) versus \(V_{CB} \) evaluated at point \(V_{CB} = V_{SB} \).

The right hand side of (B2) gives the uppermost broken line in Fig. 13. The correct value and slope at \(V_{CB} = V_{SB} \) is obtained but \(-(Q_{dB}/C_{GDon}) \) is overestimated everywhere else.

A better approximation can be obtained by lowering the value of the slope to a value \(\delta < \delta_1 \) as shown by the middle broken line:

The lumped-charge node is located at a fixed point located in the middle of the channel. At this point the expression becomes

\[
-\frac{Q_{dB}}{C_{GDon}} = \gamma \sqrt{\phi_{SB} + V_{SB}} + \delta \frac{V_{DS}}{2}. \tag{B3}
\]

The lumped inversion charge (node 1) is

\[
q_{IB} = -C_{GDon} \left[V_{GS} - V_{TB} - (1 + \delta) \frac{V_{DS}}{2} \right]. \tag{B4}
\]

and the static current \(I_D \) can be calculated by

\[
I_D = -\frac{K_p}{C_{GDon}} q_{IB} v_{DS} \tag{B5}
\]

where

\[
K_p = \frac{W \mu_{Gson}}{L} A_{body}. \tag{B6}
\]

A. Optional Process Structural Parameters for Lumped-Charge Power MOSFET Model

The linearized body effect has been added to the basic model and can be calculated from dc---measurements or from the following equations:

\[
V_{TB} = V_{FB} + \phi_{SB} \sqrt{G \phi_{SB}} \tag{B7}
\]

\[
K_p = \frac{W \mu_{Gson}}{L} A_{body} \tag{B8}
\]

\[
\sqrt{G_B} = \frac{1}{\gamma} = \frac{2q \epsilon_{s} A_{can}}{C_{GDon}} \tag{B9}
\]

\[
\sqrt{G_D} = \gamma_D = \frac{2q \epsilon_{s} A_{drain}}{C_{GDon}} \tag{B10}
\]

\[
C_{GDon} = \frac{\epsilon_{ox} A_{drain}}{t_{ox}}, \tag{B11}
\]

\[
C_{Gson} = \frac{\epsilon_{ox} A_{body}}{t_{ox}} \tag{B12}
\]

\[
V_{TD} = V_{TD} \sqrt{G \phi_{DB} \sqrt{G_D \phi_{DB}}} \tag{B13}
\]

\[
T_M = \frac{W_n^2}{2D_p}. \tag{B14}
\]
REFERENCES

Irwan K. Budihardjo was born in Malang, Indonesia, on September 14, 1949. He received the Insutyr degree from the Bandung Institute of Technology, Bandung, Indonesia, in 1974. Since 1984, he has been the technical manager at PT. Hardi Agung Perkasa, Jakarta, Indonesia. He also received the MSIE degree, specializing in fiber optics, from the University of North Carolina, Charlotte, in 1990. He is currently a Ph.D student in the Power Device Modeling Group at the University of Washington, Seattle.

His research interests include optical communication, power electronic system design, and semiconductor device modeling.

Peter O. Lauritzen (S’58–M’62–SM’88) was born in Valparaiso, IN, on February 14, 1935. He received the B.S. degree from the California Institute of Technology, Pasadena, M.S. and Ph.D. degrees from Stanford University, Stanford, CA, all in electrical engineering, in 1956, 1958, and 1961, respectively.

From 1961 to 1965, he worked on semiconductor device research and development at Fairchild Semiconductor Division, Palo Alto, CA. From 1965 to 1978, he was on the Faculty of Electrical Engineering at the University of Washington, Seattle, where his research activities included semiconductor device noise, radiation effects, operation at cryogenic temperatures, and instrumentation. During 1979 and 1980, he was Engineering Manager of Avitech Corporation, Seattle, WA. He returned to the University of Washington in 1981 as Professor of Electrical Engineering, where he teaches courses on power electronic circuits and devices and conducts research in power electronic device modeling and protection.

Dr. Lauritzen was conference chair for PESC ’93. He is currently on the Technical Committee on Computers in Power Electronics.