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Abstract-Detecting targets moving inside a field of interest
is one of the fundamental services of Wireless Sensor Networks.
The network performance with respect to target detection, is
directly related to the placement of the sensors within the field
of interest. In this paper, we address the problem of wireless
sensor deployment, for the purpose of detecting mobile targets.
We map the target detection problem to a line-set intersection
problem and derive analytic expressions for the probability
of detecting mobile targets. Compared to previous works, our
mapping allows us to consider sensors with heterogeneous sensing
capabilities, thus analyzing sensor networks that employ multiple
sensing modalities. We show that the complexity of evaluating
the target detection probability grows exponentially with the
network size and, hence, derive appropriate lower and upper
bounds. We also show that maximizing the lower bound is
analogous to the problem of minimizing the average symbol
error probability in 2-dimensional digital modulation schemes
over Additive White Gaussian Noise, that is, in turn, addressed
using the circle packing problem. Using this analogy, we derive
sensor constellations from well known signal constellations with
low average symbol error probability.

1. INTRODUCTION

One of the prominent applications of Wireless Sensor Net-
works (WSN) is to detect targets crossing a Field of Interest
(Fol). As an example, in a physical intrusion detection sys-
tem, sensors are deployed to detect objects moving within the
FoI. In cases where the FoI is easily accessible, deploying
the sensors in a deterministic manner provides worst case
guarantees on the WSN performance, that are not achievable
by a stochastic deployment.

The quality of target detection achieved by a WSN can be
quantified by evaluating the probability of detecting a target
by at least one sensor [4]. Evaluating the detection probability
by at least one sensor provides a worst case guarantee for the
detection performance of the WSN. In this paper, we analyze
the following target detection problem. Given a planar Fol
and N sensors, determine the WSN constellation that yields
the maximum target detection probability.

The target detection probability is a function of the number
of sensors deployed, the relative positions of the sensors (WSN
constellation), as well as the modalities used to detect targets.
The sensing modality defines the size and shape of the sensing
area of each sensor. Oftentimes, a multimodal approach is
preferred to increase the robustness of target detection, by
deploying sensors of different sensing modalities, such as
acoustic, seismic, optical, or infrared. In such a case, the sensor
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devices have heterogeneous sensing areas of arbitrary shape.
This reality is significantly different from the unit disk model
assumed in previous works [1], [4], [5], [10], or the assumption
of identical sensing areas [1], [4]-[6], [8], [10], [14].

A. Our Contributions

We map the target detection problem to a line-set in-
tersection problem. Using tools from Integral Geometry we
derive analytical formulas that characterize the target detection
probability when sensors are deterministically deployed. Com-
pared to previous works [1], [4]-[6], [8], [10], [11], [14], we
evaluate the target detection capability for WSN with devices
of heterogeneous sensing capabilities. Based on our mapping,
we show the number of terms in the analytical expression of
the probability of target detection grows exponentially with
the network size. We therefore provide appropriate lower and
upper bounds.
We show that as the pairwise distance among the sensors

increases, the lower bound asymptotically approaches the
upper bound and, hence, the probability of target detection
increases. We also show that maximizing the lower bound
in the target detection problem is analogous to minimizing
the average symbol error probability in 2-dimensional digital
modulation schemes over an Additive White Gaussian Noise
(AWGN) channel. In turn, the latter problem can be addressed
by considering the circle packing problem. Inspired by this
analogy, we examine the performance of known signal con-
stellations on the target detection problem.

B. Paper Organization
The rest of the paper is organized as follows. In Section

II, we present related work. In Section III, we state our
model assumptions and map the target detection problem
to a line-set intersection problem. In Section IV, we derive
exact analytical formulas for the target detection probability.
In Section V, we describe the analogy of target detection to
the 2-dimensional digital modulation schemes, over an AWGN
channel. In Section VI, we present our performance evaluation
and in Section VII, we present our conclusions.

II. RELATED WORK

The problem of detecting mobile targets in WSN has
been a topic of extensive study under different metrics and
assumptions [1], [4]-[6], [8], [10], [11], [14], [17]. In [10],
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Fig. 1. A wireless sensor network monitoring an Fol with perimeter length Lo and convex hull perimeter Lh. The target X is crossing the Fol moving
on a straight line. The sensors deployed have heterogeneous sensing areas of different shape.

the authors investigate the tradeoff between the target detection
quality and power conservation. They assume that nodes are
randomly deployed within a planar FoI, and have sensing
areas that follow the unit disk model. Given a target X moving
on a straight line, they derive the mean time until X is first
detected. They also provide sleeping pattern algorithms that
lead to power conservation, while guaranteeing a minimum
response time to detecting a target crossing the Fol.

In [4], the authors provide analytic formulas for the mean
delay until a target is detected, when targets move on a straight
line at a constant speed. The authors consider a system model
where N sensors are randomly distributed within an Fol, with
each sensor having identical sensing areas that follow the unit
disk model. In their derivations, they also take into account
the sleeping pattern of the sensors.

In [14], the authors propose a collaborative detection model,
where sensors collectively arrive at a consensus about the
presence of a target. While the problem addressed in [14]
is the coverage of the Fol, the problem formulation can be
indirectly used to also evaluate the target detection probability.
It is assumed that the detection capability of each sensor
decays as a function of distance and hence, the sensing
area of each sensor follows the unit disk model. In terms
of performance metrics, the authors consider the minimum
exposure path, that is, the path for which the target is least
exposed to detection, and the maximum exposure path, that
is, the path for which the target is most exposed to detection.

In [6], the authors consider the same collaborative detection
model as in [14], with sensors collectively determining the
presence of a target. Sensors are assumed to be randomly
deployed within the Fol and the sensing capability of each
sensor is assumed to decay with distance, with all sensors
having identical sensing areas. They formulate the target
detection problem as an unauthorized traversal problem and
propose deployment strategies for minimizing the cost of the
network that achieves the desired target detection probability.
The authors proposed a deployment strategy where only part
of the available sensors are randomly deployed. If the partial
deployment satisfies the performance metric, no more sensors
are deployed. Otherwise the process is repeated until the
performance threshold is met.

In [11], the authors address the problem of optimum k-
coverage of the boundary of an Fol. Covering the boundary
of an Fol guarantees that any intruder will be detected with
certainty. They assume that all sensors have identical sensing
areas following the unit disk model as well. While target
detection is guaranteed when the boundary of the Fol is
covered, placement at the perimeter of the Fol does not yield
the maximum target detection probability, when the boundary
is not covered.

In [8], the authors address the problem of determining the
delay until a target (intruder) is first detected. They consider
the detection problem under the additional constraint that any
sensor detecting the target must have a connected path to the
sink. They assume that targets move in a straight line, and
all sensors have identical sensing areas conforming to the unit
disk model.
A relevant problem to target detection is the problem of

target tracking. Once the target X has been detected, the WSN
is used to track the motion of X within the Fol. Several
methods for tracking moving targets with WSNs have been
proposed in the literature [1], [10], [13], [17]. We do not
address the problem of target tracking in this article.

III. NETWORK MODEL ASSUMPTIONS AND PROBLEM
MAPPING

A. Network Model Assumptions
Sensor Deployment and Fol: We assume that N sensors are
deterministically placed within a planar Fol, AO. The Fol is
assumed to be a connected and bounded set of perimeter Lo
of arbitrary shape. In case the Fol does not have a convex
shape, the perimeter of the convex hull Lh is assumed to be
known.

Target Model: We assume that mobile targets move
on straight line trajectories, and all possible trajectories
crossing the FoI appear with equal probability. Straight line
trajectories minimize the length of the path for which a target
remains exposed for detection. Hence, given an entry and
exit point, the probability of detecting a target moving on
a straight line yields the worst case probability compared
to the detection of any other possible trajectory. The worst



TABLE I

THE MAPPING OF THE MOBILE TARGET DETECTION PROBLEM TO THE LINE-SET INTERSECTION PROBLEM

Mobile Target Detection Line-Set Intersection
Number of sensors N Number of sets N
Field of Interest A0 Set So

Sensing area Ai of perimeter Li Set Si of perimeter Li
WSN constellation Set constellation

Trajectory of target X Random line f crossing So
Probability of detecting the Probability of £((, 0) intersecting

target by at least one sensor: PD at least one set

case analysis allows us to provide probabilistic guarantees for
the detection performance of the WSN. Straight line motion
models have also been assumed in previous works addressing
the target detection problem [4], [8], [10].

Sensing Model: We assume that each sensor si, 1= I ... N
has a sensing area Ai that is a closed and connected set of
perimeter Li < Lo. In the case where the sensing area is non-
convex, we assume that the perimeter, denoted as Lh of the
convex hull of Ai is known. Based on our assumptions, sensors
need not have an identical sensing area Ai. For detecting a
mobile target X we assume the Boolean detection model,
where a target X is detected by a sensor si if the trajectory
of X crosses the sensing area of si. The Boolean detection
model has also been assumed in [4], [11].
B. Mapping the target detection problem to the line-set inter-
section problem

In this section we present the mapping of the target
detection problem to the line-set intersection problem.
This problem formulation provides the necessary tools to
derive analytic formulas for the probability of target detection.

Target Detection Problem: Given an Fol AO ofperimeter
Lo, andN sensors with sensor si having a sensing area Ai of
perimeter Li, find the WSN constellation that maximizes the
probability PD of detecting a target X randomly crossing AO.

Let the Fol be mapped to a bounded set So, defined as a
collection of points in the plane. Let also the sensing area of
sensor si be mapped to a bounded set Si and the trajectory
of the target X be mapped to a straight line £((, 0) in the
plane, with parameters ( and 0 be the shortest distance of f
to the origin, and 0 be the angle of the normal to the line,
with reference to the coordinate system, respectively. Then,
the target detection problem is equivalent to the following
line-set intersection problem, arising in Integral Geometry
[15], [16].

Line-set Intersection Problem: Given a bounded set So
of perimeter Lo, and N sets Si of perimeter Li, find the
positions of Si inside So that maximize the probability PD
that a random line f intersecting So, also intersects any of
the N sets S,i i=I ... N.

Table I summarizes the mapping from the mobile tar-
get detection problem to the line-set intersection problem.

Throughout the rest of the paper Ai and Si will be used
interchangeably.

IV. SENSOR PLACEMENT FOR MAXIMIZING THE TARGET
DETECTION PROBABILITY

In this section, we compute the target detection probability
PD as a function of the network parameters. First, we derive
analytical formulas when only one sensor is deployed within
the Fol. Then, we extend to the case where two sensors are
deployed within the FoI, and show the placement of those
sensors that maximizes PD. We then generalize for the case
of N sensors, and derive relevant lower and upper bounds on
PD, using the cases of one and two sensors as building blocks.

A. Probability of Detection by a Single Sensor
Assume that a single sensor A has been deployed within

the FoI, AO. The probability PD of detecting a target X
crossing the FoI can be derived using a frequency count
argument. The PD can be computed as the quotient of the
"number" of lines in the plane intersecting AO, over the
"number" of lines intersecting both AO, A. Since the set
of lines in the plane intersecting a set A is uncountable,
we use a measure defined in Integral Geometry [12], [15], [16].

Definition 1: Measure of set of lines m(f): The measure
m(fl) of a set of lines £(t, 0) is defined as the integral over
the line density dt = d< A dO, m(f) = df A dO, where A
denotes the exterior product used in exterior calculus.

In the case where A is convex, the measure of the set of lines
that intersect A is equal to:

m( :fnA:40) i=nA 0
J27

<AdO= (dO = L, (1)

where L is the perimeter of A. Interested reader is referred
to [15], for the proof of (1). In the case where A is non-
convex, any line intersecting the convex hull of A, also
intersects A. Hence, m(f) is equal to the perimeter of the
convex hull of A. Once we have defined a measure for the
set of lines intersecting a set A, the probability of target
detection by a single sensor, is given by the following theorem.

Theorem 1: The probability that a target X is detected by a
sensor s with sensing area A of perimeter L, deployed within
a Fol A0 of perimeter Lo is given by

TL ,L
PD = (2)



Fig. 2. The measure m2(di,j) of the set of lines intersecting any of the two sensors is equal to (a) L,tt(di,j) when Ai n Aj :A 0, (b) Li + Lj
(Li.(di,j) -L0t(di,j)) when Ai n Aj = 0.

Proof: The proof follows by noting that the probability
of detecting a target is equal to the quotient of the measure of
the set of lines intersecting both sets Ao, A, over the measure
of the set of lines intersecting Ao.

PD T(f :IOnAnAo#:~0)p _ mTn(f : fnAo>:+0PD - m(T fnAO 0)
(i) m(li:liOA#>W0) (ii) L (3)
-m(v:LnAo 0) Lo(

Step (i) is due to the fact that any line intersecting A, also
intersects Ao (A C AO). Hence, the measure of the set of
lines intersecting A n AO is equal to the measure of the set
of lines intersecting A. Step (ii) follows from (1). v

Note that PD is independent of the shape of A, A0, but only
depends on the perimeter of the sensing area and the Fol.
Thus, sensors that have sensing areas of different shape but
same perimeter, yield the same target detection probability.
Also PD has the same value, regardless of the position of A
within A0, due to the fact that all possible trajectories (lines)
of target X are considered equiprobable.

B. Probability of Detection by Two Sensors

Assume now that two sensors si, sj can be placed anywhere
within the Fol. The placement of the sensors that maximizes
PD is provided by the following theorem.

Theorem 2: The target detection probability PD by two
sensors si, Sj is maximized when si, Sj are placed at the
opposite ends of the diameter' of the Fol, and is given by:

PD Li+Lj-m2(di,j)

with

m2 (di,j ) = Li Lj
Lin(dj,

-Lout(di,j), Ai nAi #0
- Lout(di,j), Ai nAi = 0:

the length of the outer string wrapped around Ai, Aj as shown
in figures 2(a), 2(b).

Proof: For the case of two sensors si, sj, a mobile target
X is detected if its trajectory crosses the sensing area of either
si or sj. Using the equivalence to the line-set intersection
problem, the target detection probability PD is the probability
that a random line intersects any of the two sets Ai, Aj placed
within the Fol. Expressed in probability terms,

PD = P(en Ai) + P(An Aj) - P(An Ain Aj)
(i) Li+ Lj-m2(di,j) (6)

In Step (i), P(f n Ai),P(f n Aj) are computed using
Theorem 1, and are independent of the positions of the two
sets Ai Aj. However, the measure m2(di,j) of the set of
lines intersecting both Ai Aj, is a function of the relative
distance dij between Ai Aj, and is computed based on the
following two cases.

Case I - Ai n0 Aj 0 When the sensing areas Ai, Aj
overlap, as shown in figure 2(a), Ai, Aj form a connected
and bounded set A, = Ai U Aj, and the target X is detected
if it crosses A,. According to (1), the measure of the set of
lines intersecting the bounded and connected set A, is equal
to the perimeter of A4, when A, is convex, or the perimeter
of the convex hull of A, when A, is not convex (when A, is
convex, A, is the convex hull of itself by definition).

For two sets intersecting, the convex hull can be found by
wrapping a string around the two sets, as shown in figure 2(a).
Any line intersecting with the convex hull of A,, is guaranteed
to intersect with at least one of Ai, Aj. Using Theorem 1, the
target detection probability by two sensors with intersecting
sensing areas is equal to:

PD(5)

where dij denotes the distance between si Sj, m2(di,j) de-
notes the measure of the set of lines intersecting both Ai, Aj,
Li (dij) denotes the length of the inner string wrapped
around Ai, Aj as shown in figure 2(b), and Lo0t (di,j) denotes

IThe diameter of the Fol is defined as the longest pairwise distance
between two points within the Fol.

Li + Lj-m2(di,j)

Loutd(d,ji) , nAi # 0
(7)

where Lout (di,j) denotes the length of the perimeter of the
convex hull of A, (outer string in figure 2(a)). From (7),
the measure of the set of lines intersecting both Ai, Aj is,
m2(di,j) = Li + Lj-Loult (dij )

(a) (b)
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Fig. 3. The target detection probability PD achieved by two sensors, as a function of the pairwise distance di,j between the sensors, when each sensors has
a circular sensing area of radius 10m. PD is a monotonically increasing function of di,j that asymptotically approaches L1+L2. (b) The probability that a
target is detected by both sensors is a monotonically decreasing function of the pairwise distance di,j, asymptotically approaching zero.

Case II - Ai n Aj = 0: When the sensing areas Ai, Aj
do not overlap, as shown in figure 2(b), Ai, Aj no longer
form a connected and bounded set. Sylvester showed that the
measure of all lines that intersect both Ai, Aj is equal to
m2(di,j) = -Lout(di,j) [16]. Hence in the case of
non-overlapping Ai, Aj, PD is equal to:

PD
Li + Lj-m2(di,j)

Li + Lj- (Lin(di,j) -Lout(di,j)) (8)

Note that as dij -> oc, (Lin(dij) -Lot (di,j)) -> O,
regardless of the shape and size of Ai, Aj, since the inner and
outer string placed around the sensing areas become asymp-

totically equal in length. That is, m2(di,j) is a monotonically
decreasing function of the pairwise distance dij,

lim PD lim Li + L -m2(dd,j)
d-*oo) d-o LO

= Li + Lj I
lim (Lin (dij )-tLout (di,j ))

LO LO d-*~oo
Li + Lj(9

(9)

In figure 3(a), we show the asymptotic behavior of PD, as a

function of dij, for the case of two sensors. We observe that
as dij increases, PD tends to the asymptotic value of Li+Lj
In figure 3(b), we show the monotonically decreasing behavior
of the probability that a target crosses both sensing areas. As
di,j M2

x, (di,j) -> 0.
Based on (9), the target detection probability PD increases

when the distance dij among Ai, Aj increases. Given the
boundary of the Fol, PD is maximized when dij is maxi-
mized, which occurs when Ai, Aj are placed at the opposite
ends of the diameter of the Fol. In figure 4, we show the
optimal placement of two sensors in the diameter of an Fol.

.
In the general case where Ai, Aj, have an arbitrary shape,

an analytic formula for Lin, Lout may not be obtainable.
Instead, Lin(di)j) Lout(dij,) may be measured, given that

Fig. 4. Optimal placement of two sensors that maximizes the target detection
probability PD. Sensors si, sj are placed at the opposite ends of the diameter
of the Fol.

Ai, Aj are known. On the other hand, for specific shapes of
Ai, Aj, the lengths Lin, Lout can be expressed as a function
of the distance dij among the shapes. As an example, for two
circles with radius r,

Loutl = 2(7rr + di,j),

Lin 27rr + 2di,j I 2) + 4sin 1 (2r)

when dij > 2r. In the next section we utilize the PD formula
for the case of two sensors, in order to derive a lower bound
on PD for the case of N sensors.

C. Generalization to the Probability of Detection by N Sen-
sors

When N sensors can be placed within the FoI, the proba-
bility of detecting a moving target is expressed based on the
inclusion-exclusion principle for unions of sets [9], [16].

Theorem 3: Let a target X cross an Fol of perimeter
Lo. Let N sensors be placed within the FoI at any desired
position. The probability of detection PD is given by:

PD
N

EiP(in A&0)
i=l

E P( n AAin Aj: 0)
i,j, i<j

FoI: Ao

i ~~~~~Aj
S jd= diameter ofA0

+... + (_I)N+l P(f n Al n... n AN 7. 0) - O0)
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Fig. 5. Convergence of the lower bound of PD to the upper bound of PD with the increase of the pairwise distance di,j for a WSN of (a) 10 nodes, (b)
100 nodes. The x-axis denotes the pairwise distance normalized in units of the sensing range of the sensors r.

Proof: Given that N sensors are placed within the
FoI, the probability that target X is detected is equivalent
to the probability that X crosses the sensing area of at least
one sensor. Expressing this statement in terms of probability
events, we have

PD = P(An AlUA2 U ...UAN)-

Both the lower and upper bound in (13), can be evaluated
using the results of Theorems 1, 2:

LB < PD < UB,

LB JL E Li
(1 1)

By applying the inclusion-exclusion principle [9], PD is
expressed using the sum of conjunctive probabilities of a line
intersecting specific arrangements of sets.

PD = P( An 1, 0) + P(I ni 2oA 0)
+ P(eOnAN#0) -P(eOnAlnOA2#0)

-P( An Al nAN 0)...
+(_l)N±+lP(en Al n A2 ... n ANA #0)
N

= P(e n Ai 0) P(S n Ai n Pj 0)
i=1 i,J, i<j

+.+(( )N+l±P( n Al n A2 ... n AN# 0)-

While Theorem 3 expresses the exact analytic formula for
PD, the number of terms in (10) is (2N -1). Furthermore,
for arbitrary set arrangements, analytic expressions of the
probability of a line intersecting exactly k sets are not known,
except for small values of k [16]. Hence, we consider the
following lower and upper bounds for finite unions.

Corollary 1: The probability of target detection PD is
bounded by:

LB < PD < UB,
N

LB = EP(fn Ai7&0)
i=l

E P(mnAin Aj& 0),
i,Jd<J

N

EP( n A4 #0).
i=l

Proof: This is a special case of the Bonferroni inequal-
ities [9].

UB

E m2(di,j))
i,j, i<j

N

L E L.
i=1

(13)

(14)

(15)

The lower bound in (15) is exact for sensor constellations
where no lines intersect more than two sensors. However,
we note that PD can never achieve the upper bound for
N > 1 since there will always be a non-zero number of lines
crossing two sensing areas. The lower bound approaches the
upper bound as the pairwise distances di,j among each pair
of sensors increase. This is a consequence of the asymptotic
behavior of PD for N = 2, as we showed in section IV-B.
Hence, by increasing the pairwise distance dij among each
pair of sensors, the lower bound of PD tends to the upper
bound and, hence, PD attains its maximum value,

lim LB
di-joc

I:iL
Lo i=l

N

i=i
N

i=1

E Tn2(di,j))
i,j, i<j

I E: lim Tm2(d,j)LO li.i<j di, j --~o(

(16)

In figure 5(a), we show the values for the lower and upper
bound of PD as a function of the pairwise distance among
sensors. The sensing areas of the sensors are assumed disks
with radius r = lOm while the FoI is assumed to be a disk of
radius R = lOOOm. The x axis is normalized to the radius of
the sensing areas of the sensors. We observe that for small
values of the pairwise distance, the lower bound does not
reflect the actual value of PD. In fact, the lower bound has
negative value since the higher order terms that are ignored
(probabilities that lines cross three or more sensing areas)
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TABLE II

ANALOGY OF THE TARGET DETECTION PROBABILITY TO THE SYMBOL ERROR PROBABILITY

Mobile Target Detection Symbol Error over AWGN
Number of sensors N Number of symbols N
Field of Interest A0 Maximum symbol energy
Sensor constellation Symbol constellation

Pairwise distance di,j among sensors +-* Pairwise distance di,j among symbols
Monotonically decreasing function m2(di,) - Monotonically decreasing function P(bi -* bj)
Maximize the probability of target detection +-* Minimize the symbol error probability

are significant. However, when the pairwise distances become
sufficiently large, (dij > 20r), the lower bound approaches
the upper bound and PD tends asymptotically to the upper
bound. Similarly, in figure 5(b), we show the convergence of
the lower and upper bound for N = 100 sensors. For larger
N the lower and upper bound converge slower compared to
the case of N = 10.

V. ANALOGY OF TARGET DETECTION TO DIGITAL
MODULATION SCHEMES

Maximizing the lower bound in (15), provides a worst case
probabilistic guarantee on target detection. The first sum of the
lower bound in (15) is independent of the sensors' positions.
On the other hand, the sum Ei, i<j m2(di,j) is a function of
the pairwise distance dij. In Section IV-B, we showed that
m2(di,j) is a positive monotonically decreasing function of
di,j. Hence, increasing di,j also increases the lower bound in
(15). In fact, for sensor constellations where no lines intersect
more than two sets, the lower bound is exact and hence,
increasing the lower bound also increases PD.

The problem of finding the sensor constellation that max-
imizes the lower bound in (15) is analogous to the problem
of finding a 2-dimensional signal constellation that minimizes
the average probability of symbol error PSE, over an AWGN
channel. Assuming that all symbols are equiprobable, PSE
is expressed as a function of the pairwise error probability
P(bi -> bj) between two symbols bi,bj. P(bi -> bj) is a
monotonically decreasing function of dij between the two
symbols [2]. For a constellation with N equiprobable symbols,
PSE is upper bounded by,

PSE < P(bi -bj)
i,i<j

= N S erfc (dj) (17)

where erfc denotes the error function, and NO denotes the2
power spectral density of the channel noise component. Both
the problem of maximizing the lower bound in (15) and
the analogous problem of minimizing PSE, require the mini-
mization of a multivariate function which is a summation of
identical functions, monotonically decreasing with respect to
each variable. This problem analogy is presented in Table II.

In digital communications, the minimum pairwise distance
among symbols is the dominant factor of symbol error, due to
the exponential decrease of P(bi -> bj) with dij [2]. Hence,

good symbol constellations maximize the minimum pairwise
distance among symbols. Due to the analogy presented in
Table II, we consider solutions that maximize the minimum
pairwise distance for the target detection problem. The prob-
lem of maximizing the minimum pairwise distance among
points in the plane, can be addressed using as an intermediate
step the following circle packing problem [7]. Given N circles
Ci, i 1= ... N, compute the maximum radius of the circles
that wouldfit inside a given planar set AO.

The circle packing problem (sphere packing in 3-
dimensions), has known optimal solutions for small values
of N, and certain shapes of FoI, such as circle, square,
hexagonal or triangle, but no optimal solutions exist for
large N [2], [3]. However, good signal constellations can be
carved from lattices with high circle packing density [7]. In
figure 6(a), we show the optimum placement of circles that
maximize the minimum pairwise distance among the circles,
for a circular Fol, for N = 2 ... 9. In figure 6(b), we show
the optimum placement for the case of a square FoI.

Note that the circles Ci defined from the circle packing
problem do not correspond to the sensing areas Ai of the
sensors. Instead they provide the area Ci where each sensor
si should be placed. Assuming that Ai < Ci which holds true
when Ai <«A and N is not sufficient to cover the Fol, the
position of the sensors within Ci, is chosen so that the sensing
areas have maximum pairwise distance. As an example, in
figure 6(a) for the case of N = 2, the sensors are placed
within C1, C2 so that the sensing areas have maximum dij.
For networks with heterogeneous sensing areas, sensors are
placed within each Ci with the si with larger Li be placed
further apart.

VI. PERFORMANCE EVALUATION

In this section we evaluate the performance of our heuristics
with respect to other sensor placement solutions such as
random deployment. We also illustrate the impact of network
parameters such as length of perimeters of sensing areas.

A. Methodology
We first deployed N sensor nodes within the FoI according

to a predefined algorithm such as one of our heuristics or
randomly. For each network instance, we generated 10,000
random target trajectories and measured the fraction of tra-
jectories that intersect with the sensing area of one or more
sensors. For deterministic deployments one trial was sufficient
to statistically estimate the target detection probability, since
the placement of the sensors does not change over trials and
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Fig. 6. The sensor constellations that maximize the minimum pairwise distance among sensors for, (a) a circular Fol, (b) a square Fol. The shaded circles
denote the sensing area of each sensor.

sufficient number of trajectories are considered to guarantee
statistical validity. For random deployments, we repeated the
experiment for 100 network deployments in order to compute
the average target detection probability.
We initially considered homogeneous WSN where all nodes

had identical sensing areas. The experiments for the homo-
geneous case provide an easy interpretation of the behavior
of PD with respect to network parameters. We then per-
formed our experiments in heterogeneous WSN. To simulate
heterogeneous WSN, we generated a pool of sensing areas of
different shapes (circle, square, triangle, pentagon, hexagon)
and varying lengths, and randomly selected N to be placed
within the FoI.

B. Target Detection Probability for Homogeneous WSN

In our first experiment, we placed N = 2 ... 9 sensors in a
circular FoI of radius R = 100m, according to the WSN con-
stellations shown in figure 6(a). Sensors had identical sensing
ranges that varied from r = 5m to r = 20m. We measured
the target detection probability PD and also computed the
analytical lower bound given by (15). In figure 7(a), we show
the target detection probability PD vs. the number of sensors
deployed for varying r and the corresponding lower bound.
We observe that for small values of r (r = 5m, 10m) the

lower bound provides a very good estimate of the actual value
of PD. This is due to the fact that no lines intersect more than
two sensing areas. Hence, the lower bound in (15) that takes
into account only lines that intersect one or two sensing areas
is exact. Furthermore, we observe that for small values of r
the PD increases almost linearly with the number of sensors
deployed. This is due to the fact that the measure m2(di,j)
of lines that intersect two sensing areas is very small when
the pairwise distance among the sensors is sufficiently large
compared to their sensing range. This is illustrated in figure
2(b) where we show that when dij = 20r the probability that
a line intersects two sensing areas is almost negligible. Hence,
for these values of r, the lower bound approaches the upper
bound and PD is maximized.

For larger values of sensing range r and WSN values of
N > 6 we observe that the lower bound starts to deviate
from the probability of detection PD. In fact, the lower bound

starts to decrease with the increase of N. This is due to the
fact that for large values of r and N, the probability that a line
would intersect three or more sensing areas is non-negligible
and hence, omitting this additive factor from the lower bounds
yields its deviation from the true value of PD.

In figure 7(b), we show the target detection probability PD
for the WSN constellations shown in figure 6(b). The FoI
is now a square with each side being a = 100lm. Again we
observe that for small values of r the lower bound is very
tight to the value of PD obtained via the simulation, while the
lower bound deviates from PD for large values of r, N.

In our second experiment, we compared the target detection
probability achieved by our heuristic with the target detection
probability achieved by random sensor deployment. Although
this comparison is unfair since random deployments yield
lower performance due to overlapping sensing areas, it is
an indicator of the performance gains that can be achieved
by adopting a deterministic solution. For each value of N
we randomly deployed the N sensors within the Fol and
measured PD. We repeated the same experiment 100 times and
averaged the result. In figure 8(a), we show the target detection
probability for N = 2 ... 40 and for a sensing range r = 5m.
We observe the our placement algorithm yields a performance
gain up to 14% compared to random deployment (average
case), while random deployment can yield WSN constellations
that are up to 90O worse.

In figure 8(b), we show PD for N = 2... 14 and for a
sensing range r = 20m. For r = 20m we considered WSN
of smaller sizes since larger WSN would be able to entirely
cover the boundary of the FoI thus yielding a PD = 1. We
observe that for sensing areas of larger perimeter, the gains are
even greater, due to the higher sensing area overlap in random
deployments. Our heuristic yields a PD up to 18% higher
compared to the performance of the random deployment.

The benefits from adopting our placement strategy are even
more significant, when the savings in number of sensors is
considered. From figure 8(a), we observe that we requires26
sensors to achieve a target detection probability of PD = 0.8.
On the other hand, 40 sensors are required to achieve the same
target detection probability using random deployment, that is,
5400 more sensors are required in the random deployment case.

N=4 N=5N=2 N=3 N=4 N=5



P0 as a function of the number of nodes deployed, PD as a function of the number of nodes deployed

0.9

0.8

0.7

0.6

nf 0.5

0.4

0.2. ¢

0. 1( 5

3 4 5 6 7 8
Number of sensors deployed (N)

0.9

0.8

0.7

0.6

'0.5

0.4

0.3

0.2

0.1

'2 3 4 5 6 7
Number of sensors deployed (N)

(a) (b)
Fig. 7. The target detection probability PD as a function of the number of sensors deployed and the sensing range radius r for the sensor constellations of,
(a) figure 6(a), (b) figure 6(b).
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Fig. 8. Comparison of the performance of our heuristic vs. random deployment for homogeneous WSN with sensing range (a) r = 5m, (b) r = 20m.

Similarly, from figure 8(b), we observe that we need to place
only five sensors to achieve a target detection probability of
PD = 0.78. On the other hand, 11 sensors are required to
achieve the same target detection probability using random
deployment, that is, 120% more sensors are required in the
random deployment case.

C. Target Detection Probability for Heterogeneous WSN

For the case of heterogeneous WSN, we repeated the ex-

periments we conducted for the homogeneous case by placing
nodes with heterogeneous sensing areas. The shape and size
of the sensing areas were randomly selected from a pool of
five shapes (circular, square, triangle, pentagon, hexagon). In
figure 9, we show the target detection probability for WSN of
different sizes and as a function of the sensing range r. For the
heterogeneous WSN case, the sensing range denotes a circle
where the sensing area of each sensor can be inscribed. As an

example when the sensing area of the selected node is square,

the side of the sensing area is equal to a = (2)r, and its
perimeter equal to Li = 4V(2)r.
We observe that in the heterogeneous case, the lower bound

still accurately predicts the target probability of detection
when the sensing range is small. For higher values of r the
lower bound deviates from PD indicating that a significant
number of lines intersect with more than two sensing areas.

Also, compared to the homogeneous case, the target detection
probability does not exhibit a linear behavior. This is due to
the fact that the perimeters of the sensing areas are no longer
constant, but vary with the shape of the sensing areas.

We also repeated the comparison of our placement algorithm
with a random sensor deployment strategy, for heterogeneous
WSN. In figure 10, we show the target detection probability
as a function of the WSN size. As expected, our placement al-
gorithm performs better than the random deployment strategy,
with the difference in performance increasing as the number
of sensors deployed also increases. Regardless of the shapes
of the sensing areas and the lengths of the perimeters, random
deployment can result in overlapping sensing areas and sensors

with constellations with small pairwise distances, thus having
inferior performance to deterministic deployment.

VII. CONCLUSION

We addressed the problem of deterministic deployment of
WSN for maximizing the target detection probability PD.
We derived analytic formulas expressing PD, by mapping the
target detection problem to the line-set intersection problem.
Our formulation allowed the consideration of WSN with het-
erogeneous sensing capabilities. We showed that the analytic
expressions of PD are not practical for large N and derived
lower and upper bounds. We finally showed that maximizing
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Fig. 9. The target detection probability PD as a function of the number of sensors deployed and the sensing range radius r for the sensor constellations of,
(a) figure 6(a), (b) figure 6(b). The sensors deployed have heterogeneous sensing capabilities.
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Fig. 10. Comparison of the performance of our heuristic vs. random deployment for heterogeneous WSN with sensing range (a) r = 5m, (b) r = 20m.

the lower bound, is analogous to minimizing the average sym-
bol error probability in 2-dimensional modulation schemes,
over an AWGN channel and derived WSN constellations from
well known signal constellations.
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