
A Metric for Quantifying Vulnerability in Wireless
Sensor Networks

Andrew Clark, Radha Poovendran
Network Security Lab (NSL)

Electrical Engineering Department, University of Washington
Seattle, Washington

Email: {awclark, rp3}@u.washington.edu

Abstract—Wireless sensor networks are often used in applica-
tions where message confidentiality, integrity, and authentication
are required. Cryptography is a common mechanism for meeting
these security requirements. The use of cryptography requires
that nodes share secret keys, which are typically assigned to
each node according to key distribution schemes. Given a key
distribution, there is currently no design metric for evaluating
vulnerability to key exposure. In this work, we introduce a metric
for analyzing and comparing the resilience of key distributions by
introducing the concept of a Link Key Security Metric (LKSM).
We define the properties needed in an LKSM and provide a
metric that satisfies them.

I. INTRODUCTION

Wireless sensor networks (WSN) are used for remote sens-
ing and aggregation of data, and are characterized by tight re-
source constraints (energy, computation, and communication),
long lifetime, and unattended deployment with little supporting
infrastructure. In applications where sensitive information is
collected, such as troop movements, this makes WSN likely
targets for adversarial attack. These properties have motivated
the creation of new security protocols designed specifically for
sensor networks [1].

Certain aspects of WSN security, such as information confi-
dentiality and integrity, are typically addressed through cryp-
tography. In order to use cryptographic primitives, however,
sensor nodes must first be given cryptographic keys. This is
often done by loading keys onto each node before deployment.
Mechanisms for carrying this out are called key distribution
schemes.

As an example of a key distribution scheme, suppose that
each sensor node is given the same secret key, which is used
to encrypt all communications. This scheme allows for data
encryption with minimal storage overhead and key manage-
ment. It quickly breaks down, however, as the adversary must
only acquire one key (e.g., through cryptanalysis or physical
capture of a node) to expose all network traffic. One possible
solution to this problem is to give every pair of sensor nodes
a unique key. Under this scheme, the effect of compromising
one link or node is greatly reduced, but at the cost of high
storage overhead (O(n) for each node, and O(n2) for the
entire network). Several efficient key distribution schemes,

This work was supported in part by the following grants: ARL CTA,
DAAD19-01-2-0011; ARO MURI, W911NF-07-1-0287; and ARO PECASE
W911NF-05-1-0491.

which lie between these two extremes and trade off security,
connectivity, and storage, have been proposed [2]–[4].

For a network with given resource constraints, there may
be more than one possible key distribution scheme. In this
case, resilience to key exposure adds another dimension to
the network design; when choosing schemes that meet per-
formance and connectivity requirements, it is desirable to
select the key distribution scheme(s) with the highest security
level. The design decision is currently not feasible due to the
lack of a metric that quantifies vulnerability to key exposure.
In addition, after deployment, some nodes or links may
be compromised by the adversary, exposing their keys and
making it necessary to reevaluate the security of the rest of
the network. A metric that assigns a security level to each
link based on the distribution of the remaining (non-exposed)
keys is important for this evaluation process. However, no such
quantitative measure currently exists.

In this work, we propose a metric for quantifying resilience
to key exposure, both during the design stage and during
post-deployment analysis.

Our Contributions: In this work, we introduce the concept of
a Link Key Security Metric (LKSM), which assigns a security
level to each communication link in the network based on
the key distribution. We define properties that characterize an
LKSM, and then present a metric satisfying these properties.
We provide an exact algorithm for computing our metric,
as well as a fast approximation algorithm suitable for larger
networks, and show through analysis and simulation that the
approximation can be performed efficiently and with low
approximation error.

Our proposed metric makes no assumption about the adver-
sary’s strategy, and is instead based on the frequency of key
reuse in the key distribution itself.

A. Related Work

The seminal work in key distribution in WSN is due to
Eschenauer and Gligor [2]. The authors proposed a prob-
abilistic key distribution scheme, in which a pool of keys
is generated and each node is given a randomly chosen
subset of the key pool. The authors were also the first to
recognize the potential problem of key compromise in pooled
key distribution schemes.

Following this work, several heuristic studies, based on ran-
dom and intelligent node capture attacks, were performed [3]–
[5] with the aim of mitigating the key compromise problem.
Of particular interest is the q-composite key scheme of [3],
in which each pair of sensor nodes determines all of their
shared keys and then uses a hash of q of these keys as the
encryption key. On average, this is expected to increase the
cost of eavesdropping by increasing the number of keys the
adversary must compromise.

The rest of the paper is organized as follows. In Section
II, we describe our network model and problem statement,
including a rigorous definition of what a link security metric
means. In Section III, we present our metric, prove that it
satisfies the definition in the previous section, and demonstrate
how to compute it. In Section IV, we provide an approximate
algorithm better suited for large networks. In Section V, we
show via simulation that it is feasible to compute this metric
for every link in the network. In Section VI, we present our
conclusions and suggest directions for future work in this area.

TABLE I
NOTATION USED IN THIS PAPER

Notation Definition
N Set of nodes

K Set of keys

Ki Set of keys held by node i

Nk Set of nodes holding key k

Kij Set of keys securing the link (i, j); equal to Ki ∩ Kj

n Number of nodes

m Number of keys assigned to each node

P Number of keys in key pool

E Set of communication links

P(S) The set of all subsets of S, where S is a set

φ Link security metric (defined below)

II. PROBLEM STATEMENT

A. Network Model
We assume a network of n nodes. Each node has a unique

ID chosen from the set {1, . . . , n}. The nodes are deployed
over a certain region, with each node only capable of com-
municating with other nodes within its radio transmit range.
We assume no additional infrastructure, such as base stations.
Sensor nodes have limited computational resources and battery
power; in particular, the nodes are incapable of public-key
encryption. The network topology may or may not be known in
advance by the system designer, and individual nodes have no
knowledge of the network beyond their immediate neighbors.

We assume that each node i receives a set of keys Ki. Two
nodes can exchange messages if and only if they are within
radio range of each other and their key sets overlap (Ki∩Kj 6=
∅). We define Kij , Ki ∩Kj . When two nodes communicate,
their encryption key is a hash of all the keys in Kij . The
metrics and definitions described in this paper can be extended
to other key agreement schemes, however. We leave this as a
topic for future work.

B. Adversary Model

We assume that the network is deployed in the presence of
an adversary. The adversary may have several different goals:
he may wish to eavesdrop on sensitive information, inject
false packets, or carry out flooding or other denial of service
attacks. Each of these goals is made possible by capturing
cryptographic keys. In addition to eavesdropping capability,
we assume that the adversary has full knowledge of the key
IDs held by each node (although not the keys themselves), and
that the adversary knows the network and routing topology.
The adversary is also capable of capturing nodes, thereby
gaining access to all the node’s cryptographic keys. Since all
keys are drawn from a common key pool, these keys may
be used to secure other links in the network. Furthermore,
although the adversary can capture nodes, he only has a limited
capacity to do so, and therefore must intelligently choose
which nodes provide the most benefit.

C. Properties of Link Key Security Metric

Before defining the properties of a link key security metric,
we introduce the concept of a redundant key.

Definition 1: A key k is redundant to link (i, j) if there
exists a key k′ ∈ Kij \ {k} satisfying Nk′ ⊂ Nk.

Since Nk′ ⊂ Nk, capturing key k′ implies the capture of
key k. Thus k does not contribute anything to the security of
the link, since capturing the other keys securing the link will
automatically result in the compromise of key k.

We define a link key security metric as follows.
Definition 2: A link key security metric (LKSM) is a func-

tion f that takes as input the tuple ((i, j),K1, . . . ,Kn), where
(i, j) is a communication link in the network, and outputs a
positive real number. f satisfies the following properties:

1) For any link (i, j) and any key k /∈ Kij , we have that

f((i, j),K1, . . . ,Ki, . . . ,Kj , . . . ,Kn) ≤
f((i, j),K1, . . . ,Ki ∪ {k}, . . . ,Kj ∪ {k}, . . . ,Kn) (1)

We have equality if and only if k is redundant to (i, j).
2) For any link (i, j), any key k ∈ Kij , and any node a

with k /∈ Ka, we have that

f((i, j),K1, . . . ,Ka ∪ {k}, . . . ,Kn) ≤
f((i, j),K1, . . . ,Ka, . . . ,Kn) (2)

with equality if and only if k is redundant to (i, j).
The first property states that adding a key to a link cannot

decrease the security of the link. This is because the link
retains its original keys, and the security of those keys is not
reduced simply by adding a new key to the link. Adding a
redundant key k does not change the security of the link, since
any set of node captures by the adversary that recovers all of
Kij will also recover Kij ∪ {k}.

The second property states that, if a node is given one of
the keys comprising a link, then the security metric of the
link should decrease. Adding a key to a node elsewhere in the
network weakens that key, and hence the link as a whole, by
providing another option for the adversary to capture that key.

These properties are motivated by the adversary model.
Since the adversary knows the key distribution, the adversary’s
attacks will be based on the frequency of key reuse in the
network. The first property reflects the fact that links secured
by relatively few keys will be more vulnerable to attack.
Furthermore, keys that are held by many nodes will be quickly
exposed in an attack, and therefore links that rely on these keys
will have limited security, motivating the second property.

In the next section, we present our metric and prove that it
satisfies the desired properties.

III. PROPOSED LINK KEY SECURITY METRIC

Our proposed LKSM is defined as follows. Suppose we
choose a node uniformly at random from N , add its keys to
a list of keys found so far, and then repeat the process until
all the keys in Kij have been found. The metric is defined as
the expected number of nodes collected in this way until Kij

has been completely recovered. We state the definition more
formally here.

Definition 3: Let {N1, N2, . . .} be a sequence of indepen-
dent, identically distributed random variables, each of which
is uniformly distributed on the set {1, . . . , n}. We then define,
for each k ∈ K and (i, j) ∈ E,

Tk = min {l : k ∈ KNl
} (3)

Tij = max
k∈Kij

Tk, φ(i, j) , E(Tij) (4)

φ(i, j) is the value assigned to link (i, j) by our LKSM.
Definition 3 has the following interpretation. At each time

step, we collect one node uniformly at random and add its
keys to a set of captured keys. For any key k, the random
variable Tk defined in (3) represents the number of time steps
until k has been captured. Since the link is not captured until
all keys have been captured, Tij , the time to capture (i, j) is
defined as the maximum value of Tk over all k ∈ Kij . We
assign φ(i, j) to be the expected capture time.

This definition quantifies the security of the keys used by
each link. If a key is held by relatively few nodes (and is
therefore more secure), it will on average take more random
collections until a node holding the key is found. Adding
a key in Kij to another node decreases the expected time,
and therefore the security, by creating more opportunities for
collecting that key. Adding a new key to Kij will increase the
expected time by increasing the number of keys that must be
collected.

A. Verification of LKSM Properties

We now prove that the metric φ in Definition 3 satisfies
conditions 1 and 2 in Definition 2.

Lemma 1 (First Property of Link Metric): For any link
(i, j) and any key k /∈ Kij , we have that

φ((i, j),K1, . . . ,Ki, . . . ,Kj , . . . ,Kn) ≤
φ((i, j),K1, . . . ,Ki ∪ {k}, . . .Kj ∪ {k}, . . . ,Kn) (5)

with equality if and only if Nk′ ⊂ Nk for some k′ ∈ Kij . In
other words, φ satisfies the first condition of Definition 2.

Proof: Let Kij = {k1, . . . , kp}, and let {N1, N2, . . .} be
defined as in Definition 3. Define T = max {Tk1 , . . . , Tkp

},
the time to collect all the keys in Kij . Furthermore, define
K′ij = Kij ∪ {k} and T ′ = max {Tk1 , . . . , Tkp

, Tk}. Equiva-
lently, we have T ′ = max {T, Tk}, and as a result T ≤ T ′.
We now have two cases, the case where k is redundant and
the case where k is non-redundant.

Case 1: If Nkl
⊂ Nk for some l, then we have Tk ≤ Tkl

.
This is because any node holding kl will also hold key k,
and therefore it cannot take more time to collect k. Thus
max {T, Tk} = T , and so T = T ′, which implies that
E(T) = E(T ′).

Case 2: Suppose that for every l ∈ {1, . . . , p}, there exists
nl ∈ Nkl

\ Nk. Define event A by

A , {N1 = n1, . . . , Np = np} (6)

Since every sequence of node collections is feasible, A occurs
with nonzero probability. When A occurs, all of the keys in
Kij have been collected within the first p rounds, but k has
not yet been collected. This gives1

T ′1A > T1A. (7)

We have

E(T) = E(T1A) + E(T1Ac) (8a)
≤ E(T1A) + E(T ′1Ac) (8b)
< E(T ′1A) + E(T ′1Ac) (8c)
= E(T ′) (8d)

Inequality (8b) comes from the fact that T ≤ T ′, while the
strict inequality (8c) follows from (7). Hence we have E(T)
strictly less than E(T ′) if and only if k is a non-redundant
key.

Lemma 2 (Second Property of Link Metric): For any link
(i, j), any key k ∈ Kij , and any node a with k /∈ Ka, we
have that

φ((i, j),K1, . . . ,Ka ∪ {k}, . . . ,Kn) ≤
φ((i, j),K1, . . . ,Ka, . . . ,Kn) (9)

with equality if and only if there exists k′ ∈ Kij with
Nk′ ⊂ Nk. In other words, φ satisfies the second condition of
Definition 2.

Proof: Let Kij = {k1, . . . , kp}, and assume without loss
of generality that k = kp. Define T = max {Tk1 , . . . , Tkp}
to be the time to collect all keys in Kij . Now, suppose that
we add key k to node a. Let T ′ = max {Tk1 , . . . , Tkp} when
k ∈ Ka.

First, we have T ′ ≤ T . This is because, since no keys have
been removed from any nodes, any sequence (N1, . . . , NT)
that collects all keys when k /∈ Ka will also collect all keys
when k ∈ Ka. Now, depending on whether k is redundant, we
have two cases.

11A is the indicator function of event A, i.e. it is 1 when A occurs and 0
otherwise.

Case 1: If Nkl
⊂ Nk for some l 6= p, then Tk =

Tkp ≤ Tkl
, and so T = max {Tk1 , . . . , Tkp−1 , Tkp} =

max {Tk1 , . . . , Tkp−1}. Furthermore, Nkl
⊂ (Nk ∪ {a}), and

therefore T ′ = max {Tk1 , . . . , Tkp−1} as well. Since the sets
Nkl

for l < p are unchanged, this implies that T = T ′.
Case 2: Suppose that, for every l < p, there exists nl ∈

Nkl
\ Nkp

. Define the event A to be

A , {N1 = n1, . . . , Np−1 = np−1, Np = a} (10)

Now, if a ∈ Nkp , then all keys in Kij have been collected.
Otherwise, additional nodes must be gathered, and so

T1A > T ′1A (11)

Since T ′ ≤ T in general, this equation implies that E(T ′) ≤
E(T).

B. Computation of Proposed LKSM

We can find the expected time to recover all keys securing
a link (i, j) through a random walk formulation. Consider the
set P(Kij), the set of subsets of Kij . We express our metric in
terms of a random walk on P(Kij). After l steps, the current
state of the walk will be the set S given by

S =
l⋃

r=1

(KNr ∩ Kij), (12)

the set of keys in Kij held by nodes N1, . . . , Nl. At step l+1,
a transition from S to T occurs if Nl+1 is in the set N (S, T),
defined by

N (S, T) , {a ∈ N : Ka ∩ Kij = T \ S} (13)

I.e., if Nl+1 contains the keys in T \S but no additional keys
in Kij \S, which would cause a transition to a different state.
Since nodes are collected uniformly at random, the transition
probability is given by |N (S,T)|

|N | .
If we start our walk at the set ∅, where no keys have been

collected yet, then the value of our proposed LKSM will be
equal to the expected number of steps before the walk reaches
state Kij , the state in which all keys have been found.

Let Pst be the probability of a transition from state s to state
t, and let Hst be the expected number of steps in a random
walk starting at s before state t is attained. Then we have

Hst = 1 +
∑

k 6=s

PskHkt + PssHst (14)

Gathering terms, we then have

Hst =
1 +

∑
k 6=s PskHkt

1− Pss
(15)

Our goal is to compute Hst when state s is ∅ and state t
is Kij . In the worst case, this will require computing the time
to reach state Kij from all other possible states. Although
we can find Hst by solving a matrix equation, computation
time is reduced by taking advantage of the structure of the
transition matrix. Suppose we are at the state corresponding
to set S . Since collecting additional nodes can only add to the

TABLE II
ALGORITHM FOR EXACT COMPUTATION

Input: Key distribution K1, . . . ,Kn.
for all (i, j) ∈ E
Kij ← Ki ∩ Kj

s ← 0
while s ≤ |Kij |

for all S ⊂ Kij , |S| = s
for all T ⊂ Kij , T ⊇ S

P (S, T) ← 1
|N| |

⋂
k∈T \S Nk|

s ← s + 1
q ← |Kij |
while q ≥ 0

for all S ⊂ Kij , |S| = q

H(S,Kij) ← 1
1−P (S,S)

(
1 +

∑
S(T

P (S, T)H(T ,Kij)

)

q ← q − 1
φ(i, j) ← H(∅,Kij)

list of keys found, it is only possible to transition to states with
greater cardinality than S , or to S itself if no additional keys
are found. We can therefore compute the expected times of all
states S satisfying |S| = |Kij |−1 first. Using this information,
we can then compute the expected times of all sets satisfying
|S| = |Kij |−2, and so on, until we can compute the expected
time starting from state ∅. An algorithmic description can be
found in Table II.

C. Asymptotic Runtime Analysis

We now derive the computation time required to evaluate the
metric. For each edge, we first find the state transition matrix
and then the relevant values of Hst. In order to find the state
transition matrix, we must find the number of nodes holding
all the keys in T \ S for all S, T ⊆ Kij satisfying S ⊆ T .
If |S| = `, there are 2|Kij |−` sets containing S . Furthermore,
for every `, there are

(|Kij |
`

)
subsets of size `. Thus the time

to find the transition matrix is equal to

O

|Kij |∑

`=0

[(|Kij |
`

)
2|Kij |−`

]
 (16)

In the worst case, we need to find the expected time to reach
Kij from every state S ⊆ Kij . The expected time of each state
depends on the expected times of the states containing it, so
the workload is

O

|Kij |∑

`=0

[(|Kij |
`

)
2|Kij |−`

]
 (17)

This must be done for every link, giving an overall workload
of

O

 ∑

(i,j)∈E

|Kij |∑

`=0

[(|Kij |
`

)
2|Kij |−`

]

 (18)

When |Kij | is not very large on average, this computation
is still feasible. For larger values of |Kij |, however, the total
computation time becomes prohibitively large. To avoid this
problem, we have developed an algorithm that approximates
our LKSM.

IV. APPROXIMATE COMPUTATION OF LKSM

We introduce the following non-exponential approximation
algorithm to compute the LKSM values. We first select a fixed
number of trials L and the number of rounds per trial, r.
During the j-th round of trial l, we select a value at random
from {1, . . . , n} and examine the keys held by the node with
that index. For each key k, if k has not yet been collected,
then we set T (l, k) (the number of rounds before key k is
collected in trial l) equal to j. If k is not collected during the
r rounds, we set T (l, k) = r as an approximation. r should
be chosen large enough to make this unlikely.

After the number of rounds reaches r, we move on to
the next stage. For every link (i, j), we define the approx-
imate metric value for link (i, j) based on round l to be
T

(l)
ij , maxk∈Kij T (l, k). Our estimate of the metric is then

the average of the approximations computed in each round,
given by

T ′ij , 1
L

L∑

l=1

T
(l)
ij (19)

This algorithm can be found in Table III.
Each trial represents a sample path of the random variables

{N1, N2, . . .} defined above, and so also represents a sample
path of the random variables {Tk}k∈K. Since we are approx-
imating an infinite sequence of node collections, the number
of rounds r must be sufficiently large so that every key used
in the network is gathered. In our simulations, we found that
choosing r = O(n) leads to an accurate approximation. By
averaging over a sufficiently large number of trials L, we get
an estimate of E(Tij) for all i and j (see the error analysis
provided below).

TABLE III
APPROXIMATE LKSM ALGORITHM

Input: Key distribution K1, . . . ,Kn

T (i, k) ← r, i = 1, . . . , L, k = 1, . . . , |K|
for l = 1, . . . , L

for j = 1, . . . , r

s
R← {1, . . . , n}

for k ∈ Ks

if T (l, k) equals r
T (l, k) ← j

for each (i, j) ∈ E
for l = 1, . . . , L

V (l) ← maxk∈Kij
T (l, k)

φ(i, j) ← mean of V (l)

A. Asymptotic Runtime Analysis

During each trial, we generate r = O(n) random numbers,
each representing a node index. For each of these indices, we
update the collection times for this trial. Since there are L
trials, the total workload is O(Lnm).

After this phase is complete, we then estimate Tij for every
link (i, j). The workload for link (i, j) is O(L|Kij |), for an

overall computation time of

O

L

nm +

∑

(i,j)∈E

|Kij |

 (20)

B. Approximation Error

Since the approximation algorithm does not actually find the
expected time but rather estimates it via Monte Carlo methods,
it will produce some approximation error, which we analyze in
this section. The approximation algorithm conducts a series of
L independent trials, each trial representing a different sample
path of the sequence {N1, N2, . . .} in Definition 3. For each
link (i, j), trial l gives a random variable T

(l)
ij , which is that

trial’s value of Tij . The output of the algorithm is an overall
approximation T ′ij , defined above in (19). We assume that r,
the number of rounds, is sufficiently large so that T

(l)
ij has the

same distriubtion as Tij . The Central Limit Theorem tells us
that, for L sufficiently large, the distribution of T ′ij converges
to N(µ, σ2

L), where µ and σ2 are the mean and variance of
Tij , respectively. Since we are trying to estimate E(Tij), the
variance σ2

e = σ2

L will determine the error of the estimate.
From the properties of the normal distribution, T ′ij will be
within σe of E(Tij) with 95% probability. Therefore we treat
σe as a bound on the absolute error of the estimate.

To simplify the analysis, we assume that the T
(l)
ij ’s have a

geometric distribution with mean E(Tij). This is true when
Kij consists of a single non-redundant key, and it is a
reasonable approximation in general because T

(l)
ij represents

the number of independent trials that occur before a condition
is satisfied. For a geometric random variable with mean µ, the
variance is given by µ2 − µ. We then have

σe =

√
µ2 − µ√

L
<

√
µ2

√
L

=
µ√
L

(21)

The relative error |T ′ij −E(Tij)|
E(Tij)

(22)

is therefore bounded above, with 95% probability, by µ

µ
√

L
=

1√
L

. We therefore have that the relative error is determined
only by the number of trials and is independent of the network
parameters, implying that the approximation error scales well
with network size. These results agree with the simulation data
supplied below.

V. SIMULATION STUDY

In order to demonstrate the feasibility of the proposed
LKSM, the run time of the approximation algorithm and the
deviation from ideal behavior were simulated. The results are
presented below.

A. Simulation setup

A network of n nodes, distributed uniformly at random
within a fixed deployment area, was simulated for different
values of the parameters specified in Table IV. The deployment
area was a square of area 1, and the node radio range was equal

TABLE IV
LIST OF SIMULATION PARAMETERS

Parameter Description Setting in runtime analysis Setting in error analysis
L Number of trials Fixed at L = 250 Varies
n Number of nodes Varies Fixed at n = 200
r Number of rounds/trial Fixed at r = n Fixed at r = n
P Size of key pool Varies Varies
m Size of each node’s set of keys Fixed at m = 30 Fixed at m = 30

to 0.15. Keys were distributed according to the probabilistic
key distribution scheme [2]. In each case, the LKSM defined
in Section III was computed for each communication link in
the network.

Simulations were implemented using Matlab on a computer
with an Intel Core2 Duo 3GHz processor and 3.25GB of RAM.

B. Runtime of Approximate Algorithm

The run time (in seconds) of the approximate algorithm
is presented below (Fig. 1) for various network sizes. The
run time represents the average amount of time to calculate
the metric for every link in the network. The key pool size
was varied as a way of changing the average size of |Kij |,
since a smaller key pool will lead to more overlap. Even for
a relatively large network with a great deal of key overlap, it
only takes on the order of one minute to compute the metric
for the entire network on a desktop PC.

200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

Number of nodes in network, n

A
ve

ra
ge

 C
om

pu
ta

tio
n

T
im

e
(s

)

Computation Time of Approximate Algorithm

P/n=2
P/n=1.5
P/n=1

Fig. 1. Run time of approximate algorithm

C. Error of Approximate Algorithm

The following plot (Fig. 2) shows the average percentage
error of the calculations produced by the approximate algo-
rithm. The difference between approximate and actual drops
off quickly, making the approximate algorithm both accurate
and computationally feasible.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we proposed the concept of a link key security
metric that can be used to evaluate the resilience of key
distribution schemes to adversarial attack. We presented one
feasible LKSM, along with two algorithms for computing it.
The first algorithm computes the exact value of our metric and
is suitable for smaller networks or networks with limited key

0 500 1000 1500 2000
1

2

3

4

5

6

7

Number of Trials, L

P
er

ce
nt

ag
e

E
rr

or
 (

%
)

Percentage Error of Approximate Algorithm

P=450
P=300
P=200

Fig. 2. Error of approximate algorithm

reuse. The second algorithm produces an approximate result
and is designed for large networks with more key overlap.

These results are part of a broader goal of developing secu-
rity metrics that can be considered jointly with performance
metrics such as throughput, error rate, and latency. Thus the
main goals of future work will be to develop metrics for other
adversarial attacks, such as jamming, cloning, and attacks on
routing schemes, and to extend definitions of link vulnerability
to vulnerability of network flows.

Another direction for future work will be to analyze key
distribution schemes using this metric, and to use the metric
to understand how networks degrade under different kinds of
adversarial attack.

REFERENCES

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,” IEEE communications magazine, vol. 40, no. 8, pp.
102–114, 2002.

[2] L. Eschenauer and V. Gligor, “A key-management scheme for distributed
sensor networks,” in Proceedings of the 9th ACM conference on Computer
and communications security. ACM New York, NY, USA, 2002, pp.
41–47.

[3] H. Chan, A. Perrig, and D. Song, “Random key predistribution schemes
for sensor networks,” in IEEE Symposium on Security and Privacy. IEEE
Computer Society, 2003, pp. 197–215.

[4] M. Ramkumar and N. Memon, “An efficient random key pre-distribution
scheme for manet security,” IEEE Journal on Selected Areas of Commu-
nication, 2005.

[5] D. Liu, P. Ning, and R. Li, “Establishing pairwise keys in distributed
sensor networks,” ACM Transactions on Information and System Security
(TISSEC), vol. 8, no. 1, pp. 41–77, 2005.

