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Abstract—This paper presents a novel approach for automatic
recognition of human activities for video surveillance applications.
We propose to represent an activity by a combination of category
components and demonstrate that this approach offers flexibility
to add new activities to the system and an ability to deal with the
problem of building models for activities lacking training data.
For improving the recognition accuracy, a confident-frame-based
recognition algorithm is also proposed, where the video frames
with high confidence for recognizing an activity are used as a
specialized local model to help classify the remainder of the
video frames. Experimental results show the effectiveness of the
proposed approach.

Index Terms—Category components, event detection, local
model, video surveillance.

I. INTRODUCTION AND RELATED WORK

V IDEO surveillance is of increasing importance in many
applications, including elder care, home nursing, and un-

usual event alarming [1]–[4]. Automatic activity recognition
plays a key part in video surveillance. In this paper, we focus
on addressing the following three key issues for event recogni-
tion.

A. Flexibility of the System for Adding New Events

In many applications, people may often want to add new
events of interest into the recognition system. It is desirable that
the existing models in the system are not affected or do not need
to be reconstructed when new events are added. Using most ex-
isting activity recognition algorithms [12]–[17], [26], [27], the
whole system has to be retrained or reconstructed for the new
added events. Some methods [5], [6], [24] try to use a simi-
larity metric so that different events can be clustered into dif-
ferent groups. This approach has more flexibility for new added
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events. However, due to the uncertain nature of the activity in-
stances, it is difficult to find a suitable feature set for all samples
of an event to be clustered closely around a center.

B. Recognition of Events Lacking Training Samples

In many surveillance applications, events of interest may only
occur rarely (e.g., most unusual events such as a heart attack or
falling down stairs). For these events, it is difficult to collect suf-
ficient training samples for learning the unusual event models.
In this case, many event detection algorithms [8], [9] that require
large numbers of training data become unsuitable. Methods for
learning from small numbers of examples are needed [5]–[7],
[26]–[29]. In this paper, we call these lacking-training-sample
(LTS) events.

Several algorithms have been proposed to address the diffi-
culty of recognizing LTS events. Wu et al. [27] and Amari et al.
[26] try to solve the unbalanced-training-data problem by using
a conformal transform to adapt the support vector machine
(SVM) kernels. However, these methods still need boundary
training samples (samples around class boundaries) to obtain
good support vectors for differentiating different classes, while
in reality the insufficient training set may not include these
boundary training samples. Other researchers [28], [29] try to
improve the estimation of model parameters (e.g., the Gaussian
covariance matrix) for cases of limited training samples. How-
ever, these methods do not work well if the limited training data
are not sufficient to fully represent events.

C. Accuracy for Recognizing Human Activities

Recognition accuracy is always a major concern for auto-
matic event recognition. Many algorithms have been proposed
which try to detect human activities with high accuracy.
Cristani et al. [22], Zhang et al. [35], and Dupant et al. [36]
focus on developing suitable multistream fusion methods to
combine features from different streams (e.g., audio and video)
to improve the recognition accuracy. Cristani et al. [22] pro-
pose an AVC matrix for audio and video stream fusion. Dupant
et al. [36] propose to use Weighted Multiplication for com-
bining multistream data. Zhang et al. [35] compare different
stream-combining methods such as weighted multiplication
and early integration. Models such as hidden Markov model
(HMMs) or dynamic Bayesian network (DBN) [12]–[14], state
machine [4], [15], Adaboost [16], [17], and SVM [26], [27]
are widely used in these works for activity recognition. How-
ever, most of these methods only work well in their assumed
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scenarios and have limitations or lower accuracy if applied to
other scenarios. Therefore, it is always desirable to develop
new algorithms to improve the recognition accuracy.

The contribution of this paper is summarized as follows.
1) To address the flexibility problem for adding new events,

we propose to use a category feature vector (CFV)-based
model to represent an event.

2) To address the problem of recognizing events which lack
training samples (LTS events), we propose a new approach
to derive models for the LTS events from the parts from
other trained related events.

3) To address the accuracy problem for recognition algo-
rithms, we propose a confident-frame-based recognition
algorithm (CFR) to improve the accuracy of the recogni-
tion.

The remainder of this paper is organized as follows. Section II
describes our approach to represent activities. Based on this ac-
tivity representation, Section III discusses the flexibility of our
method for training new activities. Section IV describes our pro-
posed method to train models for events lacking training data. In
Section V, we present our CFR to improve the recognition ac-
curacy. Experimental results are shown in Section VI. We con-
clude the paper in Section VII.

II. ACTIVITY REPRESENTATION

for flexible classification, activities can be described by a
combination of feature attributes. for example, a set of human
activities (inactive, active, walking, running, fighting) [11] can
be differentiated using a combination of attributes of two fea-
tures: change of body size (CBS) and speed. Each feature can
have attributes high, medium, and low. Inactive, which repre-
sents a static person, can be described as low CBS and low speed.
Active, which represents a person making movements but little
translations, can be described as medium CBS and low speed.
Walking, representing a person making movements and transla-
tions, can be described as medium CBS and medium speed. run-
ning, which is similar to walking but with a larger translation,
can be described as high CBS and high speed. Fighting, which
has large movements with small translations, can be described
as high CBS and low speed.

It is efficient to represent the activities by the combination of
feature-attributes as shown in the above example. A relatively
small number of features and attributes can describe and dif-
ferentiate a large number of activities ( features with at-
tributes could describe activities). However, this approach
has low robustness. The misclassification of one feature attribute
can easily lead to a completely wrong result. Furthermore, the
extent of “medium,” “low,” or “high” is difficult to define.

The above feature-attribute description for representing ac-
tivities can be extended to a description by a combination of
CFVs with each CFV containing a set of correlated features.

is defined by , where
are correlated features related to the same category . Each CFV
can be further represented by different models. For example,
using a Gaussian mixture model (GMM) [11], [31], [32] as

Fig. 1. Activity A is described by a combination of GMMs with each GMM
representing the distribution p(F jA ) of a CFV F .

shown in Fig. 1, the likelihood function of the ob-
served CFV for video frame , given activity , can be
described as

(1)

where is the weight of the th Gaussian distribution
for the CFV of given activity .

and are the mean and variance for distribution
, respectively. is normalized to

make a proper probability distribution. is
the number of Gaussian mixtures for given .

Essentially, CFV is the extension of the “feature” in the fea-
ture-attribute description. Features with high correlations for
describing activities are grouped into the same CFV. The GMM
model is the extension of the “feature attribute” in
the Feature-Attribute description. With the use of the CFV rep-
resentation, we will have more robustness in representing and
recognizing activities compared with the Feature-Attribute de-
scription. It should be noted that although in this paper we use a
GMM to represent a CFV, the proposed CFV representation is
not limited to the GMM model. Other models such as HMM or
DBN can also be used to represent a CFV.

In practice, CFVs can be formed by clustering features based
on feature similarities such as correlation coefficient [30] or K-L
distance [10], [25]. In the experiments presented in this paper,
the CFVs are formed by clustering the features based on their
K-L distances. The similarity of two feature distributions can
be approximated by the K-L distance in terms of the means and
variances of the Gaussian distributions [10], [25]

(2)

where are two features, and and are the mean
and the variance of the probability distribution . By
grouping correlated features into a CFV, the correlations of the
features can be captured by the GMM. Also, we can reduce
the total number of GMM models, which can facilitate the suc-
ceeding classifier which is based on fusing the GMM results.
Furthermore, by separating the complete set of features into
CFVs, it facilitates the handling of new added activities and the
training of models for LTS events as described below.
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Fig. 2. Flexibility for adding a new event A . (Gray circles: models do not
need to be changed; white circles: models need training).

III. HANDLING NEW ADDED ACTIVITIES

When new activities are added to the system, the already de-
fined features may not be enough to differentiate all activities,
necessitating the adding of new features. With our CFV-based
representation, we only need to define new categories for the
added features (i.e., define new CFVs) and train new models for
them (i.e., add a new GMM for each new CFV), while keeping
the other CFV-GMMs of the already existing events unchanged.
For example, in Fig. 2, the original system has two activities

and , each activity has CFV-based GMM models to
represent it (gray circles in Fig. 2). When a new activity is
added to the system, new features are needed to differentiate the
three activities. We define a new CFV with a GMM model

for these new features and add it to all activities .
The flexibility of our representation is that we only need to train
new models for the new event as well as the newly added
model for the existing events and (white cir-
cles in the bold rectangle in Fig. 2), while keeping all the existing
models in the original system unchanged (grey circles in Fig. 2).
In practice, the number of trained activities could be much larger
compared with the number of new added events. The flexibility
offered by the CFV-based system enables the possibility of de-
signing a programmable system which can incrementally grow,
instead of needing to retrain the whole system when a new event
needs to be added. In contrast to the above, the models of tradi-
tional methods will become increasingly complicated with the
addition of new features.

IV. TRAINING MODELS FOR LTS EVENTS

Since LTS events lack training data, we often do not have
enough data to construct a representative model for these events.
To solve this problem, we observe that people often describe a
rare object by a combination of different parts from familiar ob-
jects. For example, people may describe a llama as an animal
with a head similar to a camel and a body similar to a donkey.
Similarly, with our CFV-based representation of activities, it is
possible for us to derive a good initial LTS event model from
the CFVs of the previously trained activities. For example, as
shown in Fig. 3, we have trained two CFVs and
for recognizing four events: Active, Inactive, Walking, and Run-
ning. is the CFV for the category CBS, and is the
CFV for the category Speed. Assume Fighting is an event we
try to recognize but lacking training data. For the CBS category,
we can reason that the behavior of Running is the most similar
among all of the usual events to that of Fighting, therefore, the
GMM for will be adapted from that of . Sim-
ilarly, for the Speed Category, we find that the behavior of Ac-

Fig. 3. Training of an LTS event Fighting.

tive is the most similar to that of Fighting, therefore, the GMM
for will be adapted from that of . In this way,
we can have a good initial model for Fighting even if we lack
training data.

We propose to generate models for LTS activities as follows.
For each in category of the LTS activity , find the
trained GMM model where the behavior of activity

is most similar to the LTS activity in this specific cate-
gory.

This initial model can be adapted further to derive a new
model using the limited training data and the MAP-
based adaptation (MA) [7], [33]. MA is an extension of the EM
algorithm which contains two steps.
Step 1) Update the parameters by the regular EM al-

gorithm [34] with the limited training data.
Step 2) The GMM parameters are then adapted by the linear

combination of the parameters and the param-
eters of the initial model (the parameters of

):

(3)

where are the weight, mean, and vari-
ance of the adapted model for the th Gaussian in the
GMM, are the parameters of the
initial model , and are the
updated parameters from the regular EM algorithm
in Step 1). is the weighting factor to control the
balance between the initial model and the new esti-
mates.

V. CONFIDENT-FRAME-BASED RECOGNITION ALGORITHM

After the activities are described by the combination of CFV-
based GMMs, we can construct a GMM classifier for each
CFV with the MAP principle, as shown as

(4)

where is the likelihood function for the observed
CFV of in category at frame , given activity , cal-
culated by (2). is the probability for activity and

is the likelihood function for the CFV .
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Fig. 4. Global and local models.

The GMM classifiers for different CFVs will differentiate ac-
tivities with different confidence (e.g., the classifier is
more capable to differentiate Inactive and Fighting, while the
classifier may have more difficulty in doing so), leading
to various possible inconsistencies among results from classi-
fiers for different CFVs. Thus, it is desirable to fuse the classi-
fication results from different classifiers to obtain the final im-
proved result. In the following, we propose a CFR to improve
the recognition accuracy.

A. Combining the Global Model and Local Model for
Improved Recognition

Due to the uncertain nature of human actions, samples of the
same action may be dispersed or clustered into several groups.
The “global” model derived from the whole set of training data
collected from a large population of individuals with significant
variations may not give good results in classifying activities as-
sociated with an individual. In this section, we introduce the idea
of using local models to improve the accuracy of recognizing ac-
tivities.

Using Fig. 4 as an example, there are two global models:
for activity walking and for activity running. The cross

samples in the figure are frame positions in the feature space
with each cluster of crosses representing one period of action
taken by one person. Due to the nonrigidness of human ac-
tions, each individual person’s activity pattern may be “far”
from the “normal” patterns of the global model. In this example,
if Person 1 walks (cluster in Fig. 4) faster than normal
people and Person 2 walks (cluster in Fig. 4) slower than
normal people, then most of the samples in both clusters will
be “far” from the center of the “global” model for . When
using the global model to perform classification on Cluster ,
only a few samples in can be correctly classified. The other
samples in may be misclassified as . However, based on
the self-correlation of samples within the same period of action,
if we use those samples that are well recognized by the global
model (boldfaced crosses in Fig. 4) to generate “local” models,
it could greatly help the global model to recognize other sam-
ples.

Based on the idea described in the above example, our pro-
posed CFR algorithm can be described as follows.

1) For an activity , we use the “global” model to detect
frames which have high confidence for recognizing ,
instead of trying to match every frame directly using the
global model. We call Confident Frames, while the
rest of the frames are called Left Frames (denoted as )
as shown in Fig. 5. Many methods can be used to detect
confident frames, such as weighted average [37], [38] or
weighted multiplication [36] of recognition results from

the CFVs. In this paper, weighted average is used to de-
tect confident frames as

if (5)
if (6)

where is the current frame, is a Confident Frame, and
is a Left Frame. is the recognition result

from the global model of CFV . can be cal-
culated by (4). is the weight for the global model re-
sult of CFV under action . is the threshold
for detecting confident frames for . (

, ) and can be selected by the fivefold
cross-validation method [35].

2) The confident frames will be used to generate a “local”
model (or specialized model) for the current period of ac-
tivity . The local model and global model will be used
together to classify the Left Frames . The global model
is used first to select the most possible candidate events,
and then the local model is used to decide the best one
among the candidate events. The decision on the best can-
didate event is based on our proposed multi-category dy-
namic partial function (M-DPF) which is extended from
the dynamic partial function (DPF) [21]. The M-DPF is
described by

(7)

where and are two feature sets. are features
in but not in . is the weight for the th feature
in CFV . is the weight for CFV of . is a constant
parameter,

the largest of the set of

and is the CFV for category .
The M-DPF in (7) is used to measure the dissimilarity between
the confident frame with the feature set and left frame

with the feature set (the testing sample). Since frames
during an activity represent the same consistent action of the
same person, the self-correlation between the frames during
should be higher than the correlation between the frames inside
the duration of and the frames outside the duration of .
This means that normally will be more similar to than
if , as shown in Fig. 5.

B. Summary of the CFR Process

The CFR process is summarized as follows.
Step 1) For a given video sequence, first detect all confident

frames associated with each activity by (5).
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Fig. 5. Confident Frames and Left Frames associated with an activity A .

Step 2) For each Left Frame , pick the two most possible
candidate activities for this frame by

(8)

Step 3) Select the two confident frames and
corresponding to the two most possible candidate
activities which are temporally closest to . If we
cannot find in the duration of the activity
associated with the current object, the temporally
closest of a different object with the same
activity can be selected. Then calculate the dissim-
ilarity of and by
(7).

Step 4) The candidate with smaller will be the result for
frame .

In the above process, the global model and the local model are
used together for classifying the left frames in order to increase
the accuracy of the recognition. The global model based on the
GMMs is first used to select the two most possible candidate
activities, then the local model (confident frame-based dissim-
ilarity checking) is used to classify a left frame into one of the
two candidate activities.

C. Discussion of CFR and Comparison With Other Methods

Since the CFR method can be considered as a method for
combining the results from the CFV classifiers, it can be com-
pared to other multisteam fusion (MF) methods. Compared
with most MF methods [22], [35]–[38] or other event detection
methods [10]–[17] described in Section I, the major difference
of our proposed CFR algorithm is the introduction of the local
models to help recognize the left frames. With the introduction
of local models, the CFR algorithm has the following four
advantages.

1) Most MF methods and other methods focus on detecting
the occurrence of events and are normally not good at de-
tecting the boundary between two actions precisely, while
our CFR method can effectively detect the starting and
ending point of activities.

2) In cases when it fails to detect any confident frame during
period of action , CFR may still be able to detect the
event by checking the dissimilarity with local models (con-
fident frames) of outside , as in Fig. 6. This makes
it more robust and accurate compare to MF methods.

3) Many MF methods [35]–[38] need to carefully select the
fusion parameters in order for these methods to perform
well on each sample in the test set. This parameter selec-
tion will become more difficult when the number of sam-
ples or activities increases. However, CFR only requires

Fig. 6. When failing to detect any confident frame during period P , CFR
may still be able to detect the event by checking the dissimilarity with confident
frames of A outside P .

TABLE I
NUMBER OF POSITIVE AND NEGATIVE SAMPLES (VIDEO FRAMES) FOR

EACH ACTIVITY

the parameters to work well with the local model (confi-
dent frames) for each activity period, which will greatly
facilitate the parameter selection process.

4) By introducing the local model into the activity recogni-
tion, we can also take the advantage of using more features.
Some kinds of features such as object location may not be
suitable for differentiating activities for the classifiers. For
example, many activities can take place anywhere, there-
fore object location is not able to differentiate them. How-
ever, when checking dis-similarities between the Confident
Frames and the Left Frames, these features will be useful.
Therefore, CFR enables the inclusion of more features to
facilitate the recognition.

VI. EXPERIMENTAL RESULTS

In this section, we show experimental results for our pro-
posed methods. The experimental results of the CFR algorithm
to improve recognition accuracy are shown in Section VI-A.
In Section VI-B, experimental results are shown to justify
the effectiveness of the proposed LTS event training method.
Section VI-C shows the results to justify the flexibility of our
algorithm to add new events.

A. Experimental Results for the CFR Algorithm

We perform experiments using the PETS’04 database [20],
and try to recognize five activities: Inactive, Active, Walking,
Running, and Fighting. The total numbers of video frames for
each activity are listed in Table I.

For simplicity, we only use the minimum bounding box
(MBB) information (which is the smallest rectangular box that
includes the object [11]) to derive all of the features used for
activity recognition. Note that the proposed algorithm is not
limited to MBB features. Other more sophisticated features
[18], [19] can easily be applied to our algorithm to give better
results. It should also be noted that, in our experiments, some
activities do not have enough training data. The definitions
of features used for activity recognition are listed in the third
column of Table II. The features are grouped into two CFVs
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TABLE II
CFV AND FEATURE DEFINITIONS

TABLE III
K-L DISTANCE FOR FEATURES IN TABLE II FOR ONE SET OF TRAINING DATA

(Circles: CFVs are formed by grouping features with small distances)

by the K-L distances in (2), with for the category
body movement, and for the category body translation.
The K-L distances between the features in Table II for one set
of training data are listed in Table III. The grouping result is
shown by the circles in Table III. The matrix is similar for other
training sets and the grouping results are the same.

In order to exclude the effect of a tracking algorithm, we use
the ground-truth tracking data which is available in the PETS’04
dataset to get the MBB information. In practice, various prac-
tical tracking methods [10], [23] can be used to obtain the MBB
information. Furthermore, the features in Table II are calculated
by averaging several consecutive frames to improve the robust-
ness to the possible tracking error.

Due to the inclusion of the local model, more features for the
M-DPF dissimilarity checking become useful. The new added
features are listed in Table IV. When checking the M-DPF dis-
similarity by (7), we set , , and , where

is the standard deviation of feature . The ’s for the fea-
tures of , , and are set to 1. We discard the two
features with the largest distances [i.e., in (7)].

1) Frame-Error-Rate Comparison for Different Methods: In
this experiment, we compare the frame-level error rate of the

TABLE IV
NEW ADDED FEATURES FOR THE DPF DISSIMILARITY CHECKING

following five methods for fusing results from multiple streams.
Frame-level error rate measures the recognition accuracy for
each video frame.

1) Weighted Average [37], [38] (WA in Table V). Use a
weighted average of results from the two CFVs, as in

(9)

where is the current frames (or sample). The definition
of and are the same as in (5).

2) Weighted Multiplication [35], [36] (WM in Table V).
The results for the two classifiers are combined by

, where
and are GMM distributions for
and . is the weight representing the relative
reliability of the two CFVs for .

3) AVC method [22] (AVC in Table V). In [22], the his-
tograms of audio and video features are combined to
form an audio–video co-occurrence (AVC) matrix. In
our experiment, we create two labeled histograms for
the two CFVs for each activity (based on the method
in [10]) and use them to replace the histograms of audio
and video features in [22]. There will be one AVC ma-
trix for each activity. After the AVC matrix for activity

is created, the activity can then be detected based
on the AVC matrix.

4) Early Integration [35] (EI in Table V). Use one GMM
model for the whole six features in Table II.

5) The proposed CFR algorithm (CFR in Table V). Use
the weighted average of GMM as a global model to de-
tect confident frames and use them as the local model,
and then combine the global and local models to detect
the left frames.

The experiments are performed under 50% training and 50%
testing. We perform five independent experiments and average
the results. The results are shown in Table V. In order to show the
contribution of each individual CFV, we also include the results
of using only the classifier ( in Table V) or only

classifier ( in Table V).
In Table V, the Misdetection (Miss) rate and the false alarm

(FA) rate [10] are compared. In the last row of Table V, we
include the total frame error rate (TFER) which is defined by
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TABLE V
FRAME-LEVEL ERROR RATE RESULTS FOR 50% TRAINING AND 50% TESTING

Fig. 7. Recognition results comparison. (White frame sequence: action A ;
gray frame sequence: action A ).

, where is the total number of misdetec-
tion frames for all activities and is the total number of
frames in the test set. TFER reflects the overall performance of
each algorithm in recognizing all these five activities.

From Table V, we can see that the proposed CFR algorithm,
which introduces the local model to help detect activities,
has the best recognition performance compared with other
methods. Furthermore, for activities such as Active, Running,
and Fighting where the GMM classifiers have high Misdetec-
tion rates (miss in Table V), our CFR algorithm can greatly
improve the detection performance.

2) Activity-Level Error Rate Comparison: In the previous
section, we showed experimental results for the frame-level
error rates. However, in some scenarios, people are more
interested in the error rate in the activity level (i.e., the rate of
missing an activity when it happens). In these cases, frame-level
error rates may not be able to measure the performance accu-
rately. For example, in Fig. 7, the two results have the same
frame-level error rates while their activity-level error rates are
different (Recognition Result A has a lower activity-level error
rate because it detects both of the actions while Recognition
Result B only detects one).

Here, we compare the activity-level error rate performance.
First, we define the time interval to be an Activity Clip of
activity if

not before
all label is during
not after

where is the ground-truth activity label of frame .
The activity-level error rate (AER) in this experiment is then

defined as AER , where is the total
number of missed Activity Clips in (10) for activity .

TABLE VI
ACTIVITY-LEVEL ERROR RATE RESULTS FOR 50% TRAINING AND

50% TESTING

is the total number of Activity Clips for . An Activity Clip of
time interval is a missed Activity Clip if

(10)

where is the ground-truth activity label at frame .
is the recognition result at frame .

In Table VI, we compared the AER performance of the five
methods described in Section VI-A1.

Some important observations from Table VI are listed below.
1) Compared with the Frame-level Misdetection (Miss) Rates

in Table V, some methods have much closer performances
in AERs (e.g., the Miss rate for running of EI in Table V is
more than 25% lower than that of WA, however, their AERs
are the same in Table VI). This is because these two rates
(Miss and AER) reflect different aspects of the recognition
methods. The Miss rate reflects more on the ability of the
methods to precisely locate the boundary of events (i.e.,
the ability to recognize all frames between the starting and
ending points of the events), while the AER reflects more
on the ability of the methods to detect events when they
happen (i.e., the ability to detect at least one frame when
the event occurs).
Comparing Table V and Table VI, we find that most
methods have a much lower AER than the Miss rate (es-
pecially for activities with high Miss rates such as active,
running, and fighting). This means that most of these
methods are more capable of detecting the existence of the
activities than precisely locating their boundaries. Com-
pared with these methods, the proposed CFR algorithm
has a similar AER but a greatly improved Miss rate. This
shows that CFR can locate the activity boundaries more
precisely.

2) The CFR uses weighted average (WA) to detect the confi-
dent frames as the local model. This means that, if an ac-
tivity clip is missed by WA, CFR will also fail to detect any
confident frames in the same activity clip. However, the re-
sult in Table VI shows that many of the AERs of CFR are
lower than those of WA. This is because, when WA fails
to detect any confident frame during an activity clip of ,
CFR may still be able to detect the event by checking the
dissimilarity with local models of outside the clip.

3) Based on the previous two observations, we see that the
introduction of the local model in CFR has two effects:

a) it helps detect the left frames within its own activity
clip, thus locating the clip boundary more precisely
and also reducing the frame-level error rates (Miss
and FA);
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Fig. 8. Comparison of the impact of changing w to the recognition performances for WA and CFR. (a) The impact of w to the performance of walking
(Left: Miss; right: FA). (b) The impact of w to the performance of active (Left: Miss; right: FA).

b) it helps detect other activity clips where no confident
frame is detected, thus reducing the misdetection rate
for activity clips.

4) From Table VI, we can see that the AERs of CFR for most
activities are close to those of WA. This means that the
AER performance of CFR mainly depends on the algo-
rithm to detect confident frames. Therefore, a suitable con-
fident-frame detection method is important. In this paper,
WA is used for detecting confident frames. However, other
methods such as WM and AVC can also be applied if they
have better performance.

3) Experimental Results for Weights and Thresholds Selec-
tion: In several methods such as WA and WM, we need to se-
lect a suitable weight [i.e., the in (9)] to fuse the results
from two CFVs. Furthermore, since the CFR algorithm uses
WA to detect the confident frames, the weights and thresholds
[i.e., and in (5)] also need to be selected for con-
fident frame detection. In the previous experiments, all these
weights and thresholds are selected by the fivefold cross-vali-
dation method [35]. However, the cross-validation is relatively
complicated. We need to try all the possible combinations of
parameters. Furthermore, the complexity of the cross-valida-
tion algorithm will increase exponentially with the increasing
number of parameters. As mentioned in Section V-C, our pro-
posed CFR algorithm is more robust to the change of weight
values since the weights only need to work well on confident
frames rather than the whole testing data. This implies that with
the proposed CFR algorithm, we may be able to use a rough
weight or use a simpler way to select the parameters. In the fol-
lowing, we show two experimental results to justify this claim.

a) Experiment 1 for Parameter Selection: In this exper-
iment, we justify our claim that the recognition performance
of our CFR algorithm is robust to the change of parameters.
Since the CFR in this paper uses the same method as WA to de-
tect confident frames, we will focus on the comparison of these
two methods. Furthermore, since we only have two CFVs in the
experiment, the CFR and WA algorithm in (5) and (9) can be
rewritten, respectively, as

if

(11)

if

(12)

where and represent the features for and
, respectively. The definition of , , , , and

are the same as in (5) and (6).
We first select the parameters [ and in (11) and (12)]

by cross validation. The parameter values selected from the val-
idation set is defined as and . Then, we change the
weight value for one activity and keep the weight value
for other activities unchanged. For the CFR algorithm, we also
keep the threshold for all activities unchanged. We then use
the changed parameter set to perform recognition on the testing
data and plot the recognition performance changes.

Fig. 8(a) and (b) shows the recognition performance (Miss
and FA) change for activities under different values of ac-
tivity (i.e., ). It is the result from one
experiment of 50% Training and 50% Testing. The results from
other experiments are similar. Fig. 8(a) shows the impact of
changing to the recognition performance for ,
and Fig. 8(b) shows the impact of to active. Fig. 8
shows results when is changed. Similar observations
can be found when the weights of other activities are changed.

From Fig. 8(a) and (b), we can see that the performance of
the WA method fluctuates substantially with the change of .
This reflects that the recognition performance of WA is very
sensitive to the change of . On the contrary, the recognition
performances of our CFR algorithm are quite stable with the
change of . The performance of CFR is close to those under

even when is far from (the dashed vertical
line). This justifies that CFR is robust to the change of .

Since CFR also uses threshold to detect confident frames,
a similar experiment is performed on to see its impact on the
recognition performances of CFR. We fix all ’s to be .
Then we change the value of for activity and keep the
threshold value for other activities unchanged. The recognition
performances under different values of (i.e.,

) are plotted in Fig. 9(a) and (b). Fig. 9(a) shows the
impact of changing to the performance of .
Fig. 9(b) shows the impact of to the performance of
active. Three observations from Fig. 9 are listed below.

1) The performance of CFR is stable when changes
within a certain range around (the vertical lines in
Fig. 9). This means that CFR is also robust to the change
of within a certain range around . We call this
range stable range.

2) A too small or too large value of the threshold will
obviously decrease the recognition performance of CFR.
A too small threshold value may include many false alarm
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Fig. 9. Comparison of the impact of changing th to the recognition performances of CFR. (a) Performance change for walking under different th .
(b) Performance change for active under different th .

TABLE VII
RESULTS UNDER ROUGHLY SELECTED PARAMETERS

(The gray columns named “C � V ” are results under cross-validation
parameters; the white columns named “R” are results under roughly set
parameters.)

samples as confident frames (an extreme case: if ,
it will be exactly the same as the WA method). On the
other hand, a too large threshold value may reject most of
the samples, making the recognition difficult (an extreme
case: if , there will be almost no confident frames
detected).

3) Different activities may have different . How-
ever, since each has a stable range around , we
may still be able to find a common stable range for all ac-
tivities. Our experiments imply that values between 0.65
and 0.8 may be a suitable choice of thresholds for most ac-
tivities.

The results from Figs. 8 and 9 justify that our CFR algorithm
is robust to the change of parameters and . This advantage
implies that for the CFR algorithm, we may be able to set the
parameters to rough specific values or by a simplified parameter-
selection method such as increasing the searching step-size or
decreasing the searching range, instead of using the complicated
cross-validation method to select the parameters. This is further
justified in the following experiment.

b) Experiment 2 for parameter selection: In this experi-
ment, we set the for all activities to be 0.5 and for all ac-
tivities to be 0.7 and then use this parameter set to recognize the
activities. We perform five experiments with 50% training and
50% testing and average the result (the same setting as Table V).
The experimental results are listed in Table VII. In order to com-
pare with the results under cross-validation parameters, we at-
tach the results of Table V (the gray columns).

In Table VII, three methods are compared (WA, WM, and
CFR). From Table VII, we can see that our proposed CFR al-

TABLE VIII
PROPOSED METHOD IN DEALING WITH INSUFFICIENT DATA

(The gray columns labeled as “Dt” are results whose models are modeled
directly from the training data; the white columns labeled as “Adt” are
results whose models are adapted by our proposed method.)

gorithm can still perform well under the roughly selected pa-
rameters while the performances of both WA and WM methods
decrease significantly under this situation. This validates that
the CFR algorithm allows us to select parameters through more
simplified methods with small impact on the performance. As
we will see in Section VI-C, this advantage also increases the
flexibility of our algorithm for adding new events.

B. Experimental Results for Training LTS Events

From Table V, we can see that the misdetection rate (Miss)
for activities such Running and Fighting are relatively high
(although our CFR algorithm has significantly improved the
misdetection rate from other methods). This is because the
number of training samples in Table I is small. The training
samples are not sufficient to model the whole distribution of
these activities, which reduces the prediction capability of these
models for the unknown data.

We use our proposed LTS event training method to deal
with the insufficient training data problem, where we adapt
both CFVs’ GMM models of Running from Walking, while
both CFV GMM models of Fighting are adapted from Active
(which is different from Fig. 3 because running itself is also
lacking training data). The recognition results based on our
adapted-GMM models are shown in Table VIII.

The results in Table VIII show the effectiveness of our pro-
posed method in dealing with insufficient training data. We can
see that although improved by our algorithm, the misdetection
rate for fighting is still relatively high. The main reason for this
is that, besides lacking training data, the features we use (in
Table II) are relatively simple (all from MBB), while the fea-
ture distributions of these activities are similar to other activi-
ties, making the classification difficult. In order to improve the
performance further for the activities, more sophisticated fea-
tures can be used, or the interaction between different objects
can be considered, which will be our future work.
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C. Experiment Results for the Flexibility of Adding New Events

We give an example to illustrate the flexibility of adding a
new event. In this example, a CFV-based system with two CFVs
defined by Table II has been trained to detect five activities:
Inactive, Active, Walking, Running, and Fighting. We define a
new event “picking up or leaving a bag.” Since there is no
ground-truth label for picking up or leaving a bag in the dataset,
we label it manually. The total number of positive samples for
“picking up or leaving a bag” is 366. Note that these samples
have been excluded from the dataset in the previous experiments
so that they are new to the system when the event is added.

As mentioned in Section III, when new events are added to
the system, the existing CFVs may not be enough to differen-
tiate all activities, necessitating the adding of new CFVs. In
this example, we assume that the two existing CFVs in Table II
are not enough for differentiating the new “picking up or
leaving a bag” event. Therefore, we add one more CFV named

. In , there
is only one feature which represents the change of
MBB ratio. The new CFV is defined as

where , , and are the same as in Table II.
Then, the flexibility of our algorithm for adding new events

in this example can be described in the following two points.
1) When the new event picking up or leaving a bag was added

to the system, we do not need to change or retrain the
and models for events inactive, active,

walking, running, and fighting. We only need to train the
models for these events as well

as all the three CFV models for the new event picking up
or leaving a bag. The models that need training (white cir-
cles) and models that do not need training (gray circles) in
this example are shown in Fig. 10. In practical situations,
the number of models that do not need training is much
larger than the number of models that need training.

2) Since the new is added for each
event, we need to update parameters that fuse these CFV
models [ and in (5))] However, as mentioned, the
CFR algorithm is robust to the change of these parameters.
This means that we can set these parameters roughly or by a
simple parameter selection method, instead of performing
the complicated cross-validation method to update the pa-
rameters.

Based on the above two points, in the experiment, we can train
the new system through a simple way by: 1) only training the
white labeled CFV models in Fig. 10 and 2) setting the weights
and thresholds roughly (here, we set all weights to be 0.33 and
all thresholds to be 0.7). Table IX (white column) shows the
results for 50% training and 50% testing (the setting is the same

Fig. 10. Models need training or do not need training. (Gray circles: models
do not need training; white circles: models need training.)

TABLE IX
EXPERIMENTAL RESULTS FOR ADDING NEW EVENT

(The gray columns named “C � V ” are results under cross-validation
parameters; the white columns named “R” are results under roughly set
parameters)

as in Table V). Table IX (gray column) shows the recognition
results under cross-validation parameters.

From Table IX, we can see that, when the system is adapted
to include the new event through a simple manner by our al-
gorithm, we still can achieve good results close to those under
cross-validation parameters. This justifies the flexibility of the
algorithm.

VII. CONCLUSION

In this paper, we made the following three contributions.
First, we proposed to represent activities by the combination of
CFV-based models which has good flexibility in representing
activities as well as in handling new events. Second, based
on the CFV-based representation, we proposed a method to
deal with the model training problems for events which lack
training data (LTS events). Finally, we also proposed a con-
fident-frame-based recognition algorithm which is capable
of improving the recognition accuracy. Experimental results
demonstrate the effectiveness of our proposed methods.
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