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ABSTRACT | Anonymity is a subdiscipline of information

hiding, required in a number of applications, such as in

electronic voting. For network communications, anonymity

can be provided by a mix network (mixnet). A mixnet is a

multistage system that uses cryptography and permutations to

provide anonymity. The basic idea of a mixnet has evolved into

a number of different classes. In addition to presenting the

existing mixnet classifications, this paper classifies mixnets

based on the verification mechanisms employed for robust-

ness. The construction of mixnets is presented under a

common framework to provide insight into both the design

and weaknesses of existing solutions. Basic forms of attack on

mixnets and the corresponding robustness solutions are

reviewed. Comparison with other solutions for anonymity and

suggestions for interesting future research in mix networks are

also provided.
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I . INTRODUCTION

A. Overview
Advances in communication technology over the years

have broken geographical barriers, making communication

networks ubiquitous and seamlessly accessible. Wide-

spread use of these networks by the public has led to the

development of network-based personalized services

involving sensitive and private information. However,
data traffic on these networks can be easily tapped, making

privacy an increasing concern. Confidentiality of medical

records, restricted access to personal opinions on sensitive
societal issues, and prevention of online user profiling by

market researchers are among the concerns most fre-

quently raised by users deprived of online privacy.

Any communication can be considered private if it

involves confidential or personal data. For preserving

privacy of communications, it is essential that the data is

not accessed by any unauthorized entity. Equally impor-

tant is that the data is not linkable to its user with the
possible exception the authorized receiver of the data.

While access to the data can be restricted using crypto-

graphic encryption, to provide unlinkability of the data to

the sender requires anonymity for the communication.

Anonymity in a communication context, also known as

untraceability, prevents tracing back from a receiver to the

sender. To give a popular example of the interrelation

between anonymity and privacy, consider a social appli-
cation such as secure electronic voting. Untraceability be-

tween the voter and his/her encrypted vote received by the

electoral authority provides anonymity for the communi-

cation and, hence, preserves the privacy of the voter.

In the year 1981, motivated by the need for anonymity

in network communications, an anonymous communica-

tion channel, based on cryptography and permutation,

called mix network (mixnet), was proposed in [1]. A
mixnet is a multistage system that accepts an input batch

of quantities and produces an output batch containing the

cryptographically transformed, permuted input batch.

The change of appearance and the random reordering of

the batch by the mixnet prevents trace back from output

to input, hence achieving untraceability between the

input and output batches. This seminal work spurred

significant interest in the development of anonymous
channels for communication networks and for network

applications requiring privacy. In this paper, we provide a

tutorial review of mix networks constructed since the
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mixnet in [1]. While the existing body of literature on
mixnets is extensive, we restrict our coverage to maintain

clarity of exposition and to satisfy space constraints.

B. Applications
One of the most important applications of mixnets is in

secure electronic voting. In e-voting protocols, a mixnet

anonymously communicates the ballots from the voter to

the electoral authority, hence providing ballot secrecy [2].

For error-free elections, problems related to voter fraud
and coercion have to be resolved, and ballot/tally

verifiability must be provided. The mixnet accommodates

for incoercibility to an extent, while enabling verification

of voter eligibility, ballot integrity, and tally accuracy [3].

Moreover, using mixnets in remote e-voting, it becomes

possible to nullify the requirement for geographical

proximity for voting and to avoid the use of problematic

provisional and absentee ballots [4]. Hence, mixnets can
play a pivotal role in protecting the integrity and

enhancing the accessibility of electronic elections.

Other applications such as anonymous e-mail [5]–[8],

employ mixnets to satisfy flexible and distributed

deployment on public networks. Mixnets have also been

used for anonymous telecommunications [9], [10], and

anonymous internet communications [11]–[14], involving

delay-sensitive two-way interactions between two or more
entities over a public network. However, in such anony-

mous communication applications, misuse of anonymity

for illegal purposes is always a concern [7], [15]. In

addition to detection of such misuse, it is important for the

mixnet to be able to show that it was not an intentional aid

to any inappropriate activity. By designing such a mecha-

nism in the mixnet, reliable anonymous communication

providers can be encouraged to provide service.
Location privacy in wireless networks is another area

benefiting from mixnets [16]–[18]. Mixnet solutions to

privacy with radio frequency identication (RFID) tags was

recently reported in [19]. As the list of applications

continues to grow, the construction of mixnets is being

driven into distinct classes. Together, these classes
constitute a broad spectrum of working mechanisms that

tradeoff properties of the mixnet.

C. Mix Networks
The design of a mixnet is based on providing anonymity

for a batch of inputs, by changing their appearance and

removing the order of arrival information. As shown in

Fig. 1(a), the main component of a mixnet is the stage, also

known as the mix, that performs mixing on a batch of
inputs. Note that the inputs may arrive at the stage at

different times, as seen in Fig. 1(b). The mixing operation

involves a cryptographic transformation using either

decryption or encryption, that changes the appearance of

inputs, followed by a permutation on the batch of

transformed inputs. The mixed batch is then forwarded

in parallel by the stage at time Tout to the next destination,

as shown in Fig. 1(b). The batching and the permutation
together hide the order of arrival information of the inputs.

Note that if the batch size is l, by observing the mixed

output batch from a stage, one can only guess the cor-

respondence with an input with probability, 1=l. For

example, in Fig. 1 where l ¼ 5, the probability of guessing

an input will be at best, 1/5. Hence, an increase in the

number of inputs to the stage increases the anonymity

provided by the stage.
A mix network consists of several interconnected

stages depending on the robustness of anonymity required.

Each stage performs mixing on its inputs, and the mixed

batch is then forwarded to the next stage in the mixnet or

directly to their destinations. The interconnection of the

stages determines the mixnet topology, and based on the

topology of the mixnet, there can be a cascade mixnet or a

free-route mixnet, as illustrated in Fig. 2(a) and (b),
respectively.

A cascade mixnet consists of stages connected in a

fixed, sequential order, as shown in Fig. 2(a). The first

stage in the cascade mixnet receives a batch of inputs,

performs mixing, and then transfers in parallel the mixed

Fig. 1. (a) Mixing by stage changes appearance of inputs and also removes order of arrival information. Output batch is a permutation of the

transformed input batch. (b) Different times of arrival of inputs at the mix/stage and exit of mixed output batch.
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batch to the connected second stage. The second stage

then repeats mixing and forwarding, and the process

continues until the final stage outputs the untraceable

inputs. Hence, in a cascade mixnet, all the inputs traverse

the same path. On the other hand, in a free-route mixnet

there can be several anonymous paths available for each of

the inputs. As seen in Fig. 2(b), stage 2Vstage 4 forms an

anonymous path for an input i. Stage 2 receives input i,
waits for an input from stage 1, performs mixing on them,

and forwards them in parallel to stage 4. The topologies are

covered later in Sections IV and VII.

In the mixnet communication model, multiple senders

communicate anonymously with one or more receivers.

Each sender may communicate with a separate receiver as

in an e-mail application, or multiple senders may com-

municate with a single receiver as in electronic voting. It is
also possible that a sender communicates with multiple

receivers, as in multicast applications. A mixnet provides

anonymous communication, as long as there are two or

more senders using the mixnet, with the batch size being

two or more in at least one stage of the mixnet. Further, if

the mixnet is used for a two-way communication, then the

receiver must be able to reply to the anonymous sender.

D. Basic Attacks and Adversary Model in Mixnets
In order to evaluate the security properties of a mixnet,

we have to define an adversary model. The adversary can

launch passive or active attacks on the mixnet. A passive

attack is often called traffic analysis attack [20], where the

adversary observes traffic going into and out of the stages

of the mixnet. The objective of such an attack is to

correlate inputs to corresponding outputs at the stages,
and, hence, breach the anonymity provided by the mixnet.

An active attack is called traffic manipulation attack [20],

where the objective of the adversary includes corrupting

the inputs to the stages, hence attacking the integrity of the

mixnet while also enabling tracing of the corrupt inputs.

The manipulation can be in form of addition, deletion,

modification, or delay of traffic.

The adversary may control one or more compromised

stages to actively manipulate the traffic received or pas-

sively trace the messages at these stages. A mixnet may also

contain faulty stages that may fail to conduct mixing

operations, and thus not produce any output batches.

Further, in this paper, we assume a powerful adversary as
in [1]. A powerful adversary is capable of tapping all the

channels of the public communication networks and can

passively eavesdrop and trace all the communications to

and from the mixnet as well as between the mixnet stages.

By making this assumption, we ignore any possible

anonymity gained by the inputs before or after traversing

the mixnet.

E. Previous Work on Comparison and Classification
of Mixnets

Over the last two decades, there has been active

research on mixnets and the literature is abundant [21].

In [22] and [86], the different mixnet topologies have

been investigated and compared. In [23], the different

batching mechanisms and the resulting anonymity and

performance tradeoffs have been studied. An entire body
of mixnet research literature stems from the secure

electronic voting application, where mixnets have to be

verifiable and robust against compromised stages launch-

ing attacks on anonymity as well as integrity. In [2], an

overview of the mixnets proposed for secure e-voting

application has been provided.

Recent works such as [23]–[27] have classified mixnets

based on cryptographic transformation at the stages, the
topology, the batching strategy of the stages, and reli-

ability. Yet, they are not extensive in presenting the

mechanisms involved in the various classes of mixnets.

One of the main contributions of this paper is that it pro-

vides an extensive as well as in-depth coverage of mixnet

Fig. 2. Mixnet Topologies. (a) Cascade topology containing a fixed sequence of four stages. Anonymous communication path of five inputs

includes all four stages. (b) Free-routing topology containing four interconnected stages. Each of five inputs can have from one to

four stages included in communication path. For instance, an input i has stage 2 and stage 4 only in its anonymous path.
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designs and presents them under a unified framework. The
paper also provides a classification of mixnets, based on

verifiability mechanisms. Mixnets employing verifiability

mechanisms are particularly applicable in secure e-voting

protocols.

F. Paper Outline
Section II lists the requirements that mixnets need to

meet for secure applications. Section III presents the
types of mixnets based on the cryptographic transforma-

tions used at the stages. In Section IV, the cascade topo-

logy of mixnets is covered in detail. Section V classifies

the verifiability mechanisms used in cascade mixnets.

Section VI describes a method to decrease the latency

incurred in cascade mixnets. Section VII covers free-route

mixnets and the related robustness measures employed in

them. In Section VIII, the use of reputation in mixnets is
presented. In Section IX, a comparison of mixnets is

provided along with open problems. Section X presents

our conclusions and suggestions for interesting future re-

search in mixnets.

II . MIX NETWORK PROPERTIES

The mixnet properties are determined by the requirements
of various applications. These requirements can be

categorized into security, performance, and implementa-

tion requirements.

A. Security Requirements
Mixnet applications need to provide certain security

guarantees. Based on such guarantees and the adversary

model described previously, the following security prop-
erties can be listed for the mixnet.

1) Anonymity: The mixnet is designed to provide

untraceability (unlinkability) as the basic property

between senders and receivers [101]. No one

should be able to trace any input through the

stages of the mixnet. The untraceability provided

by a mixnet is captured by an anonymity set [81],

[85], and the level of anonymity can be quantified
by using entropy of the anonymity set probability

distribution [102], [103].

2) Integrity: The messages from the senders have to

be anonymized by the mixnet without any

corruption of the data. An integrity check is

provided in most mixnets by verification mechan-

isms and checksum techniques.

3) Verifiability: The mixnet must provide some means
for verification of the correctness of the messages

in the mixed output batch.

4) Robustness against attacks: The mixnet must be

robust against passive, as well as active, attacks by

an adversary. Various mechanisms are employed

in a mixnet (both by the communicating sender

and receiver, as well as the stages) to ensure

robustness, as seen in Sections IV–VII. Note that
the verifiability property is related to robustness

against some types of active attack, since verifi-

ability ensures honest participation of each stage.

5) Fault-tolerance: The mixnet must be able to tol-

erate a certain number of faulty stages among the

participating stages during its operation.

B. Performance Requirements
The mechanisms used to address the security proper-

ties in a mixnet determine the performance of the mixnet.

The performance metrics used to evaluate mixnets can be

listed as follows.

1) Latency: The processing at each stage and the

verifiability and other robustness mechanisms (see

Section VII) in the mixnet take a finite amount of

time, hence, adding to delay in the communica-
tions. Low latency is crucial for real-time applica-

tions requiring anonymity. However, most of the

security properties contradict latency, especially

under low-traffic conditions.

2) Throughput: This is a measure of the number of

actual sender messages a mixnet can output per

unit of time. It provides an estimate of the

overhead due to the mixnet. The overhead can be
mainly due to any traffic padding or dummy

messages employed for robustness by the mixnet.

C. Implementation Requirements
While providing security and performance guarantees,

the mixnet must also be implementable. More specifically

the following requirements must be addressed.

1) Scalability: In a mixnet, the level of anonymity can
be enhanced by increasing the number of

participants (increase in the batch size) and/or

increasing the number of stages in the anonymous

path. However, scalability of the mixnet, with

respect to the number of inputs and stages, is

mainly limited by the latency requirement.

2) Efficiency: The mix network protocol must min-

imize complex computations and communica-
tions. The computational complexity is measured

mainly in terms of modular exponentiations or

number of cryptographic operations required in

the protocol computations. Communication com-

plexity is often measured in terms of the number

of interactions needed between entities partici-

pating in the protocol.

Before describing mixnets and related mechanisms, we
note that the essential cryptographic primitives and

protocols used in the design of mixnets are presented in

the Appendix. In this paper, we consistently sacrifice

mathematical rigor and implementation specifics [28] for

clarity of the main concepts. Also note that modular arith-

metic is assumed throughout our exposition [28], [29].

Table 1 provides the notation used in this paper.
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III . MIXING OPERATION IN MIXNETS

In this section, the various types of mixnets based on the

mixing operation employed at the mixnet stages are

described. Recall that the mixing operation provides

anonymity by changing the appearance and removing the
order of arrival information of the inputs. The change in

appearance of the inputs is due to a cryptographic oper-

ation. The batching and the permutation of transformed

inputs hide any time of arrival information. The types of

cryptographic operations that can be employed at the

stages of the mixnet are decryption and encryption. Con-

sequently, there is a decryption mixnet consisting of stages

that decrypt and permute batches and a reencryption
mixnet where the stages reencrypt and permute batches.

We detail these mixnets and their variants as follows.

A. Decryption Mixnet
This category of mixnets was initiated in [1]. In

decryption mixnets, the sender is required to encrypt the
message with the keys of the stages. Hence, a stage can

change the appearance of its inputs by decrypting with its

key. This can be accomplished with the use of public key

cryptosystems such as RSA [30], seen in Appendix A. Note

that the use of symmetric keys [29] is also possible if the

sender shares a pairwise key with each stage of the mixnet.

A decryption mixnet using only the public keys of the

stages is as follows. A sender i encrypts a message m with
the public key of each of the n stages in its anonymous

communication path as

forwarding onionn

¼ EKx
ðmÞkrn;

forwarding onionn�1

¼ EKn
ðAxkforwarding onionnÞkrn�1;

:

forwarding onionj

¼ EKjþ1
ðAnkforwarding onionjþ1Þkrj;

:

forwarding onion1

¼ EK1
ðA2kforwarding onion2Þkr1;

EKðm; rÞ
¼ A1kforwarding onion1 (1)

where K ¼ ðK1;K2; . . . ;KnÞ are the public keys of n stages,

and A1; A2; . . . ; An are the addresses of the n stages.

Table 1 Standard Notation in Our Paper
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r ¼ ðr1; r2; . . . ; rnÞ are random strings that are used to ran-

domize the encryption of each layer (see Appendix A.1).

Ax is the address of the receiver. The key Kx is the
receiver’s public key.

The resulting quantity in (1) can be visualized as an

n-layered onion [11], with the forwarding onions nested in

each of the n layers, that is broadcasted by the sender. This

is illustrated in Fig. 3. The sender onion in (1) is given as

EKðm; rÞ ¼ A1kEK1
A2kEK2

A3k . . . EKn�1
Ankððð

EKn
AxkEKx

ðmÞkrnð Þkrn�1Þ . . . kr2Þkr1Þ: (2)

Fig. 4 gives a graphical illustration of the decryption
performed on the sender onions by the mixnet. Each stage j
in the path peels off a layer from the onion, i.e., decrypts

using its private key K�1
j as

DKj
EKj

ðAjþ1kforwarding onionjþ1Þ
� �

: (3)

After decrypting more onions received (from other senders
and/or stages), the stage j permutes them using a random

permutation �j : l ! l, where l is the batch size. This

concludes mixing by stage j. The resulting quantities are

the forwarding onions which have been reduced in size

and constitute the mixed output batch of stage j. These

onions are then forwarded simultaneously to their

respective next stages. In the case of sender i, the next

stage is based on the address Ajþ1. The mixing is repeated
by the remaining stages until, finally, the last stage n
outputs the decrypted quantity EKx

ðmÞ, which is sent to the

receiver at the address Ax.

In the case of two-way anonymous communication

where the receiver has to reply to the anonymous sender,

the sender must also include return path information

(RPI) and a key ks, along with m. The RPI looks similar to

the sender onion in (2) except that only the address of the
sender As will be encrypted in the onion as follows:

RPI ¼ AnkEKn
knkAn�1kEKn�1

kn�1kAn�2k . . .ðð
EK2

k2kA1kEK1
k1kAskr01
� �� �

kr02
�
. . . kr0n�1

�
kr0n
�

(4)

where r01; . . . ; r0n are random strings and kj, j ¼ 1; 2; . . . ; n
are symmetric keys shared between sender and stage j. For

the sender to remain anonymous to the receiver, it is

necessary that ks must not identify the sender. Assuming ks

is a symmetric key, the receiver at Ax obtains the following

from the mixnet:

EKx
mkRPIkksð Þ: (5)

The receiver decrypts the message and may send a re-
ply m0 as

Eks
½m0
kRPI: (6)

Fig. 4. Illustration of onion decryption, in decryption and hybrid mixnets. Length of onions indicates their size, and we can notice the

decrease in size of onions as stages are traversed. Decrypted message received by receiver at Ax cannot be linked back to sender at As.

Fig. 3. Visualization of typical structure of n-layered onion. Inside

each layer we find next stage’s address, forwarding onion, and

also additional control information.
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Stage n receives the encrypted reply, peels a layer off the
attached RPI onion to obtain kn, and reencrypts Eks

½m0

with kn to change its appearance. The remainder of the

mixing process occurs as before in the forward path (from

sender to the receiver). Finally, stage 1 transmits the

reencrypted reply to the sender at As. Hence, a two-way

anonymous communication can be achieved using the

decryption mixnet. Note that it is not necessary for the

return path to include the same stages as the forward path.
An alternative approach to two-way communication in

decryption mixnets has been proposed in [9] and [10].

Here, the sender first sets up a path from stage 1 to stage n
and establishes a common parameter with the receiver and

the last stage n. The receiver also sets up a path through the

mixnet, from stage 1 to stage n. During this setup, the

common parameter is obtained by the last stage n and is

used to link the sender established path with the receiver
established path. In this approach, uninterrupted two-way

anonymous communication can occur once both paths are

established [9], [10].

B. Hybrid Mixnet
In the previous decryption mixnet, expensive public

key operations by the sender are performed on the

increasing size of the onions. A more efficient variant

of the decryption mixnet is the hybrid mixnet [1], [11],

[24], [31], which uses public key operations as well as

symmetric key operations and achieves efficiency. In a

hybrid mixnet, the forwarding onion obtained by a stage j
from stage j � 1 is

forwarding onionj¼ EKj
ðkjÞkEkj

½Ajþ1kforwarding onionjþ1
:
(7)

As in the decryption mixnet, stage j peels a layer by

decrypting with private key K�1
j . But here, on decryption,

the stage j obtains a symmetric key kj that it uses to decrypt

the forwarding onion to stage j þ 1. Hence, the complete

sender i onion in the hybrid mixnet is given as

EKðm; r; kÞ ¼ A1kEK1
ðk1Þk

Ek1
A2kEK2

ðk2Þk½
Ek2

A3kEK3
ðk3Þk . . . k½

Ekn�1
AnkEKn

AxkEKx
ðmÞkr0ð Þ½ 
 . . .

 (8)

where K ¼ ðK1;K2; . . . ;KnÞ are the public keys of the

stages, k ¼ ðk1; k2; . . . ; kn�1Þ are the symmetric keys
chosen by sender, and r is a random string. Note that

the hybrid mixnet is efficient since the expensive public

key encryption is only required for the symmetric keys

which are nonincreasing in size. The relatively efficient
symmetric key operations are used for the increasing-in-

size onion.

The hybrid mixnet in [11] encrypts a key material for

each stage, instead of the symmetric key. The hash of the

key material is used as the symmetric key. On the other

hand, the hybrid mixnet in [24] encrypts a public key K
for each stage, in place of the symmetric key k. The public

key enables use of zero-knowledge (ZK) proof [32] (de-
scribed in Appendix E) for robustness as seen later in

Section V-B2. Variants of the decryption and the hybrid

mixnet can include additional control information that

can be used by the stages. The control information can be

a set of keys used for future communications [11] or for

enabling faulty stages to be skipped [85] and crypto-

graphic checksums [6], [8]. These aspects will be covered

later in Sections IV and VII.

C. Reencryption Mixnet
The decryption and hybrid mixnets in the previous two

sections that are based on public key cryptosystems, such

as the RSA [30], have the following weaknesses.

1) The size of the onions decreases as the stages are

traversed.

2) The sender is able to trace its onion by appearance
as it traverses the stages.

3) The sender is required to encrypt for each stage.

4) The decryption is performed in a predetermined

(by sender onion) sequence of stages.

Note that the second weakness can be an advantage

under certain circumstances, since the sender can verify

that the stages of the mixnet are mixing its input [1].

However, the adversary can still misuse the advantage to
trace inputs through the mixnet as described later in

Section IV-C2. All the weaknesses listed are addressed in a

more efficient decryption mixnet proposed in [33], using

the ElGamal public key cryptosystem [34] (described in

Appendix A.2). Here, a sender i only needs to perform a

single encryption for all the n stages as

EKðm; rÞ ¼ grkðAxkmÞKrð Þ (9)

where g is the generator [34], r is a random string, and K is

the public key of the mixnet, computed from the public

keys of the stages as

K ¼
Yn

j¼1

Kj ¼
Yn

j¼1

gdj ¼ g

Pn

j¼1
dj (10)

where Kj ¼ gdj and dj, are the public and the private key,

respectively, of stage j. In this type of decryption mixnet,

there is no necessity for any predetermined sequence of

stages for decryption. Any stage j can randomly decrypt
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the sender i input, using its private key dj and random

string rj as

DKj
EKðm; rÞð Þ

¼ grgrjkðAxkmÞðKrÞðgrÞ�dj
Yn

a¼1;a 6¼j

gda

0
@

1
A

rj

¼ grþrjkðAxkmÞ g

Pn

a¼1;a 6¼j
dar

gdjr

� �
g�djr
� � Yn

a¼1;a 6¼j

gdarj

0
@

1
A

¼ grþrjkðAxkmÞ
Yn

a¼1;a 6¼j

gdaðrþrjÞ: (11)

Note that in the first step of (11), the stage j uses the

first component of its input in (9) to obtain ðgrÞ�dj and uses
the product of public keys of the stages that are yet to

decrypt to obtain ð
Qn

a¼1;a 6¼j gdaÞrj . After decryption of more

inputs to form a batch, the stage j broadcasts the mixed

batch to the remaining n � 1 stages. The process repeats,

with another stage performing the decryption, until finally

all n stages have decrypted using their private keys to

obtain g
rþ
Pn

j¼1
rjkðAxkmÞ, as one of the outputs of the last

stage. Note that the size of the decrypted inputs remains
the same at all the stages and that the sender will not be

able to recognize its input once the first stage performs

random decryption. Fig. 5 illustrates this type of mixnet.

However, the ElGamal-based decryption mixnet in [33]

has only limited use because of its inherent weaknesses.

1) Unlike other decryption/hybrid mixnets, the next

stage addresses or any other control information

cannot be included with the message in ElGamal-
based decryption mixnet, and it does not have a

hybrid variant.

2) On the other hand, like other decryption mixnets,

an ElGamal-based decryption mixnet is still

dependent on each stage j to decrypt the input

batch. Such a mixnet design cannot tolerate

failures in terms of any faulty stages and requires

the use of additional mechanisms for robustness as

described later in Section IV-B.

The second weakness is avoided in the reencryption

mixnet design [33], also based on the ElGamal crypto-

system. The main idea is to utilize the reencryption prop-
erty of ElGamal encryption (described in Appendix A.3).

The senders encrypt their messages with the public key of

the mixnet, as in (9), and to change the appearance of the

inputs a stage simply reencrypts them with random strings.

As before, no predetermined sequence of stages is required

for the reencryption mixnet. The following cryptographic

operation can be performed first, by any stage j, on the

sender i input in (9)

EKðm; r þ rjÞ ¼ grgrjkðAxkmÞKrKrjð Þ
¼ grþrjkðAxkmÞKrþrjð Þ (12)

where rj is a random string used by stage j for reencryption

of sender i input. After a batch of inputs are reencrypted and

permuted, stage j broadcasts the mixed batch to the

remaining stages, for further mixing. The mixing terminates

at a stage n. The reencryption mixnet is also illustrated in
Fig. 5, where after mixing the group of n stages may perform

a decryption phase to jointly decrypt each quantity of the

mixed output batch as

DK EK m; r þ
Xn

j¼1

rj

 ! !
¼ ðAxkmÞK

rþ
Pn

j¼1
rj

g
rþ
Pn

j¼1
rj

� �d

¼ ðAxkmÞK
rþ
Pn

j¼1
rj

K
rþ
Pn

j¼1
rj

¼ Axkm (13)

Fig. 5. Illustration of ElGamal public key cryptosystem-based mixnet. If it is a decryption mixnet, then each stage decrypts with its private

key K�1
j and random strings. Mixnet output batch will be sent to the corresponding destinations. But in a reencryption mixnet, stages

reencrypt inputs with random strings. Mixnet output batch will be either decrypted jointly by the group of stages or will be sent to

receiver with public key K.
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where K ¼ gd is the public key, and d is the private key that
can be shared by the n stages using a ðt; nÞ threshold scheme

[35] (described in Appendix C). Note that as in the

ElGamal-based decryption mixnet, in the reencryption

mixnet the sender is not able to trace its message as it

traverses the stages, since it does not have the knowledge of

the random strings used by the stages to reencrypt. Also, the

size of the inputs remains the same. However, in the

reencryption mixnet, not all stages are needed to reencrypt,
though they may still need to participate in the decryption

phase to contribute their shares of the decryption key d. Yet,

this slight improvement in the independence of the stages

makes the reencryption mixnet design better, compared to

its decryption mixnet counterpart in [33].

Note that in the reencryption mixnet design, the stages

do not have to share the private key if there is only one
receiver communicating with the senders. The public/
private keys can then be those of the receiver, with the

public key K known to the stages. The mixnet output is

broadcast to the receiver which decrypts with private key d.

This type of design is used in applications such as e-voting,

where a single authority receives the mixnet output.

Two-way anonymous communication in a reencryption

mixnet is possible, if the sender includes the necessary

information. As proposed in [36], the sender i broadcasts
three ElGamal encryptions to the mixnet as

EKðm; rÞkEKðAskKs; r0ÞkEKðAxkKx; r00Þ (14)

where K is the public key of the mixnet, As and Ax are

addresses of the sender and receiver, respectively, and Ks,

Kx are the ElGamal public keys of the sender and receiver,

respectively. r; r0; r00 are random strings. Any stage j first
reencrypts the three components using a random string rj.

Hence, the mixnet output batch will contain three

reencrypted components in each input as

EK m; r þ
Xn

j¼1

rj

 !
kEK AskKs; r0 þ

Xn

j¼1

rj

 !
k

EK AxkKx; r00 þ
Xn

j¼1

rj

 !
: (15)

The first component contains the message, and the second

component is essentially the RPI. The third component

containing the address Ax and the public key Kx of the

receiver is used to ensure privacy of the message m as

follows. After mixing, the stages of the mixnet jointly

decrypt the third reencrypted component in (15) to obtain

the address Ax and public key Kx of the receiver. The stages

then perform switching encryption [37] on the first
component in (15) as

EKx
m; r þ

Xn

j¼1

rj

 !
: (16)

The switching encryption is a technique used to blindly

decrypt m, i.e., without revealing it, while simultaneously

encrypting m under the public key Kx of the receiver. The

receiver at Ax obtains the following from the mixnet:

EKx
m; r þ

Xn

j¼1

rj

 !
kEK AskKs; r0 þ

Xn

j¼1

rj

 !
: (17)

The receiver can then reply using the sender’s RPI as

EKðm0; RÞkEKðAxkKx; R0ÞkEK AskKs; r0 þ
Xn

j¼1

rj

 !
(18)

where m0 is the reply message and R; R0 are random strings

chosen by receiver. The protocol then proceeds as in the

forward path.

Unfortunately, neither of the previous reencryption

mixnets is capable of handling multiple receivers without

requiring the stages to share the private key and perform

the decryption phase after mixing to obtain the address of

the receivers. Such a dependency is avoided in an
improved variant, called universal reencryption mixnet,

proposed in [19]. The universal reencryption mixnet

accommodates multiple receivers, without requiring a

separate decryption phase after mixing, as described in the

following.

D. Universal Reencryption Mixnet
In this mixnet the sender i broadcasts two ElGamal

encryptions, one containing the message, and the other

containing the public key of the receiver used to encrypt

the message, as follows:

EKðm; rÞkEKð1; r0Þ ¼ ðgrkmKrÞk gr0 kKr0
� �

: (19)

Next, a stage j performs the following cryptographic

operation:

grgr0rjkmKrKr0rj

� �
k gr0r0jkKr0r0j
� �

¼ grþr0rjkmKrþr0rj

� �
k gr0r0jkKr0r0j
� �

¼ EKðm; r þ r0rjÞkEK 1; r0r0j

� �
(20)
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where rj; r0j are random strings chosen by stage j for the
sender i. The remaining n � 1 stages repeat the reencryp-

tion operation with different random strings. Note that

since the sender includes an encrypted form of the public

key K used for message encryption, the stages can perform

reencryption without knowing K. Only the message

containing the portion of the mixnet output batch is

broadcast by the mixnet as

EKðm; RcÞ ¼ ðgRckmKRcÞ (21)

where Rc is a combination of the random strings used by

the stages to reencrypt sender i input. Hence, the mixnet

allows senders to communicate with multiple receivers

with different public keys and with no decryption phase

required after mixing. However, the receiver has to

perform an exhaustive search on every mixnet output
batch received for possible messages encrypted under its

public key K. This is a weakness of this design, in

addition to the inability to provide two-way anonymous

communications.

Table 2 provides a summary of the pros and cons

related to mixnets based on the cryptographic transfor-

mations. A significant drawback in the reencryption
mixnet and its variants is that the stage addresses cannot

be included in the encryption. This limits its application in

free-routing topologies, where the mixnet inputs must

include address of stages to define the anonymous path.

Nevertheless, the cascade topology can be employed to

effectively utilize the advantages of the reencryption type

mixnet. The next section presents the various details

related to mixnets with cascade topology.

IV. CASCADE TOPOLOGY FOR
ANONYMITY

It was noted earlier in Fig. 2(a) that a mixnet with cascade

topology (cascade mixnet) consists of a fixed sequence of

stages, leading to a single anonymous path for all senders

communicating with receivers. Only the first stage of the

cascade mixnet initiates mixing on all the sender input

batches. Since the path is already established from the

input to the output of the mixnet, there is no requirement
for explicit addresses for the stages to be included in the

sender input. However, the stages in the cascade mixnet

are interdependent, since a single stage in the mixnet can

compromise or fail its operation.

Table 2 Types of Mixnets Based on Cryptographic Transformations
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A. Synchronous Batching in Cascade Mixnets
An important feature of a cascade mixnet is its batching

process. The input batches exit the mixnet in the same
temporal sequence in which they are mixed. This is due to

the fact that all the batches have to traverse the same path

through the mixnet. Hence, the first batch created during a

batch period is followed by the second batch, and so on.

This is referred to as synchronous batching [38] and is

illustrated in Fig. 6, where the inputs arrive at different

times but exit in the temporal sequence in batches of two,

as indicated.
A typical cascade mixnet protocol can be described as

follows. Assume there are l senders and n stages. Each

sender i broadcasts an input I
ð0Þ
i to the mixnet. After l

inputs are received, the batch is formed, and the following

is executed by the mixnet.

Basic Cascade Mixnet Protocol

Input. I
ð0Þ
i ; i ¼ 1; . . . ; l.

For j ¼ 1; . . . ; n.
For i ¼ 1; . . . ; l.

Step 1) Perform cryptographic operation,

I
ðjÞ
i ¼ fjðIðj�1Þ

i Þ.
Step 2) Permute all the quantities obtained in Step 1

using random permutation �j.

Output. Oi, i ¼ 1; 2; . . . ; l, the batch of mixed/anonymized

sender inputs.

Note that fjð:Þ can be a decryption or a reencryption

operation at stage j, as described in the previous section.

The previous protocol is the basic cascade mixnet protocol,

providing anonymity and integrity when there is no active

attack. In the case of a reencryption cascade mixnet, an

additional subprotocol may be required for the decryption

phase, before broadcasting to the receivers. Also, to

address the presence of attacks or failures, the protocol
will need additional subprotocols, including shared key

generation and distribution [35], simulation of faulty

stages [39], authentication [1], as well as generation of

zero-knowledge proofs [40], as will be seen.

B. Cascade Mixnet Failure and Robustness Measures
Before considering robustness of the cascade mixnet

against attacks, we will consider robustness against a faulty

stage. A faulty stage in a mixnet will simply fail to perform

mixing of its input batch. As seen in Section II, this will

affect the fault-tolerance property of the mixnet. Since

there is only one path in the cascade mixnet, a faulty stage

can cause nonavailability of service. This is particularly

true in the case of a decryption cascade mixnet, since the

failure of one stage to decrypt its input batch means that

the mixnet cannot produce any output. As we have seen

earlier, however, in the case of a reencryption mixnet, this

is true only if the stages are required to decrypt the final

mixed batch. Otherwise, only one of the n stages needs

perform reencryption, for the cascade mixnet to success-

fully produce a mixed batch at the output.

In order to provide fault tolerance in a decryption/

hybrid cascade mixnet, the private key of each stage may

be shared by the group of n stages, using a ðt; nÞ threshold

secret-sharing scheme [35]. In the case of a reencryption

cascade mixnet, only the private key corresponding to the

public key of the mixnet may be shared by the n stages.

Nevertheless, prior to the execution of the cascade mixnet

protocol, the stages must participate in a protocol to share

the keys. The sharing of keys enables the simulation of the

faulty stage by the remaining stages, as will be seen in

Section V-B. We note that by using a ðt; nÞ threshold

scheme, the mixnet protocol is robust for up to t � 1 com-

promised stages and n � t faulty stages, which represents

a tradeoff between security properties.

From a security viewpoint, it has been argued that in

applications such as electronic voting, an observable

operation failure (such as faulty stage) is better than a

failure that may pass undetected. For example, a faulty

stage in a cascade mixnet may halt its operation but can

be detected and replaced to continue its normal

application. However, if the anonymity or the integrity
of the cascade mixnet is breached without detection, then

it may result in graver consequences. Hence, there exists

a vast amount of literature dedicated to finding weak-

nesses that may exist in a mixnet design and solutions for

such weaknesses.

Fig. 6. Synchronous batching in cascade mixnet with batch size 2.
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Different types of active attacks on a decryption cas-
cade mixnet were initially reported in [41], and attacks on

a reencryption cascade mixnet were reported in [42].

Traffic analysis attacks on anonymity of mixnets have been

addressed in detail in [20] and [43]. A general review of

the main weaknesses employed in the various attacks, and

the resulting mechanisms that are designed to ensure

robustness in cascade mixnets, are presented next.

C. Attacks on Anonymity in the Cascade Topology
In cascade mixnet design, anonymity is dependent on

the batch containing l inputs and the subsequent mixing by

the n stages. For a passive attack, the adversary has to

analyze a batch in order to trace any input in the batch,

while for an active attack the adversary must control the

inputs in the batch.

1) Passive Attacks: The adversary performs traffic

analysis in order to conjecture the correspondence

between the l inputs and the l outputs in a batch. By

observing the inputs to the cascade mixnet, the adversary
may get time and appearance information. But after

mixing is initiated in the first stage, for tracing an input to

the corresponding output, the adversary is forced to choose

from the l outputs in the batch. By increasing the batch

size l, robustness against this attack can be achieved.

2) Active Attacks: In an active attack, an adversary may

control some compromised stages and use them to trace an

input passing through. In order to break the anonymity of

the cascade mixnet, an adversary must control at least a
threshold number of t stages. Hence, by increasing the

threshold t (and the number of stages, n) in a cascade

mixnet, we can improve robustness against attacks on

anonymity.

However, the adversary may try to trace a target input

from a target sender by manipulating the mixnet input

traffic, such as by including some known l � 1 inputs in

the mixnet input batch. Alternatively, the adversary can
include one or more copies or replays of the target input

(or the RPI of the target sender in the return path). This

attack is not trivial in the case of ElGamal-based cascade

mixnets, since identifying any input is not possible

between the stages due to the random reencryption of

each input at a stage. However, the adversary can still

possibly break the anonymity of the unknown message in

the target input from the decrypted output batch. In the
case of a decryption/hybrid cascade mixnet based on RSA

cryptosystem, the inputs are recognizable between inter-

mediate stages; hence, the adversary can trace known

inputs, as well as the target input traversing the cascade

mixnet. Robustness against these active attacks at the input

of the cascade mixnet can be partially achieved by

employing authentication of the sender [1] and using

zero-knowledge (ZK) proofs [44] as explained next.

D. Authentication of Senders
By authenticating the senders, robustness against

manipulation of the mixnet input batch is achieved.

The adversary must now control different compromised

senders to successfully launch any attack. Authentication

can be integrated into the cascade mixnet protocol by

making the first stage authenticate the senders along with

receipts [1]. The first stage decrypts a layer from each

sender onion, signs the forwarding onion, and then sends
it as the receipt to the corresponding sender. On obtain-

ing receipt, the sender can confirm that its input has not

been corrupted en route to the mixnet. The receipt can

also be used as a proof in verification, as will be seen in

Section V-A.

A more robust approach has been used in [33], where

sender authenticated sections on a public bulletin board

(described in Appendix B) are employed instead of a
trusted first stage in the mixnet. A cascade mixnet using

the bulletin board and sender authenticated sections is

illustrated in Fig. 7. The senders as well as the stages have

authenticated append-only access to designated sections

on the board. The inputs are broadcast by the senders to

their designated sections on the board. No receipt is

needed since the sender can confirm the input posted on

the bulletin board. When there is a sufficient number of
postings on the board to form a batch, the mixnet per-

forms mixing of the encrypted messages. Each stage ob-

tains its input batch from the board and posts its mixed

output batch in a designated section of the board. It must

be noted that if an application requires the sender to be

anonymous even to the mixnet, then authentication of

senders can be performed using identification by pseu-

donyms [1], [45].

E. Proof of Knowledge of the Message
The use of a publicly accessible bulletin board, how-

ever, enables an adversary to more easily replay an input

that it wants to trace from the board [42]. This can be

addressed by forcing the mixnet to ignore all copies of an

input on the board. Yet, the adversary may suitably

modify the input so that it does not appear to be a direct
copy [41], [42], by using properties of the public key

cryptosystem (described in Appendix A.3). The adversary

can then replay the duplicate input in the same batch as

the original input (or the subsequent batches). Such an

input will not be detected by the mixnet, and will be

mixed and decrypted as normal. By observing the output

batch (or correlating two output batches) for a repeated

message m, the adversary may possibly breach the ano-
nymity of the sender of m. This attack is called a dupli-

cation attack [42].

The duplication attack can be addressed effectively in

ElGamal-based cascade mixnets, by requiring the sender

to provide a ZK proof [44] (described in Appendix E).

The sender needs to prove that it knows the random

secret exponent r used in the ElGamal encryption of the
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message m. However, in the case of RSA-based decryption/

hybrid cascade mixnets, a ZK proof may not be feasible

[24]; hence, defending against a duplication attack can be a
problem. As suggested in [41], a bulletin board must be

avoided in an RSA-based decryption/hybrid cascade mix-

net, and the senders must time synchronously transmit

to the mixnet. This ensures to an extent that the adver-

sary cannot duplicate an input during transmission and

send it in the same mixnet input batch. For robustness

against replay in subsequent input batches, public key

rotation [41] at the stages is required, as seen later in
Section VII-G2.

F. Attacks on Integrity in Cascade Topology
The previous solutions based on authentication and

sender proofs provide robustness against active attacks at

the input of the cascade mixnet. However, as illustrated in

Fig. 8, active attacks by compromised stages in the cascade

mixnet can still be performed as follows.
1) A compromised stage may simply forward one or

more inputs without any transformation.

2) A compromised stage may duplicate (replay) an

input and replace another input with this dupli-

cate to trace it at the mixnet output [42].

3) A compromised stage may corrupt a target input,

and based on the corruption, the target input can

possibly be identified and traced at a subsequent
stage or at the mixnet output (tagging attack) [8].

4) While the previous attacks enable tracing of in-

puts in the mixnet, a worse scenario is when an

attack is used to modify the mixnet output. A

compromised stage may delete one or more inputs

Fig. 8. Attacks on integrity of a batch of four sender inputs by a stage in cascade mixnet. (a) Compromised stage 1 in RSA-based decryption/

hybrid mixnet. (b) Compromised stage 1 in reencryption mixnet. Note that the same can be extended to ElGamal-based decryption mixnet

and also to any compromised stage in the mixnet.

Fig. 7. Robust cascade mixnet using public bulletin board and authentication.
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and add inputs containing other messages. For
instance, in an e-voting application, an adversary

can modify the encrypted votes at a compro-

mised stage of the mixnet, such that the tally is

biased towards a contesting candidate. In secure

e-voting, it then becomes crucial to provide

measures that ensure integrity of the ballots and

accuracy of the tally.

All these attacks involving corruption, deletion, and
addition of inputs by compromised stages of the mixnet

lead us to the analysis of the attacks on integrity in cascade

mixnets. A common robustness technique against such

attacks, employed in cascade mixnets, is verifiability.

V. VERIFIABILITY MECHANISMS IN
CASCADE TOPOLOGY

In mixnets, verifiability involves checking the correctness

of the output of the mixnet or the output of each stage. The

correctness can be analyzed based on the following

criteria.

C1) The input batch has been transformed (decrypted

or reencrypted) and permuted honestly.

C2) The messages in the input batch have not been

corrupted.
C3) Inputs have not been added/deleted.

In order to ensure a correct mixnet output, the veri-

fiability mechanism employed in the mixnet must satisfy

all the three criteria. As shown in Fig. 9, this translates

to the region of intersection of all three criteria, C1\
C2 \ C3. Based on the criteria satisfied, we can classify

cascade mixnets into the following: sender verifiable, stage

verifiable (SV), universally verifiable (UV), and condition-
ally universally verifiable (CUV). We first describe the

sender verifiable cascade mixnet and the verifiability
mechanism employed in it.

A. Sender Verifiable Cascade Mixnet
The verifiability mechanism in this mixnet only

provides detection of corrupt messages at the mixnet

output. The sender encrypts a redundancy as a checksum,

such as a string of zeroes, along with the message as

EK KskDKs
ðmk0wÞ; rð Þ (22)

where 0w is a zero string of fixed (publicly known) length

w. The public key Ks used by the sender does not reveal any
identity information. Only the sender knows the private

key K�1
s and, hence, can compute DKs

ðmk0wÞ.
After mixing is performed, the mixnet output batch

will include the decrypted quantity, KskDKs
ðmk0wÞ. By

encrypting with Ks, the receiver, as well as any other

entity, can verify the integrity of the message m by

checking the zero string. Any corruption of m modifies the

zero string with a high probability and, hence, can be
detected (criterion C2). Sender verifiable cascade mixnet

of decryption/hybrid type are proposed in [1], and those of

decryption/reencryption type in [33].

However, robustness against compromised stages is a

problem in these mixnets. The redundancy cannot detect

addition or deletion of inputs or the honest participation

of each stage. Each sender i is expected to verify if its

message KskDKs
ðmk0wÞ is present in the mixnet output

batch (thus called sender verifiable). If a sender i does not
verify, then a compromised stage in the mixnet can

replace the sender i input, without being detected. Hence,

Fig. 9. Venn diagram indicating classification of verifiable cascade mixnets, based on correctness criteria satisfied. C1) Input batch has

been transformed (decrypted or reencrypted) as expected. C2) Messages in input batch have not been corrupted. C3) Inputs have

not been added/deleted.
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as seen in Fig. 9, the sender verifiable mixnet can only

satisfy the hashed area in C2 and cannot satisfy the other

two criteria. Another disadvantage of this mixnet is that

the compromised stages responsible for the corrupted
inputs cannot be identified. These weaknesses are

addressed in the stage verifiable mixnets.

B. Stage Verifiable (SV) Cascade Mixnet
In these mixnets, the stages verify the mixnet output

batch on their own, hence, not requiring the unrealistic

sender verification. The stages together execute additional

subprotocols to ensure correctness of the mixnet output
batch. A minimum number of zero-knowledge proofs, and

other cryptographic techniques, are used to provide

robustness. The ElGamal-based reencryption type stage

verifiable (SV) cascade mixnets are described first.

1) Stage Verifiable Reencryption Cascade Mixnets: A

description of the main techniques used in the SV mixnet

protocols introduced in [44], [46] is given as follows.
1) Mixing Copies of the Input Batch: If the mixnet

performs mixing on c copies of an input batch,

then it becomes difficult for a compromised stage

to corrupt the same input in all the copies (dupli-

cate batches). This is because the mixing operation

on the duplicate batches will be different, with

random transformations (exponentiation or reen-

cryption) and random permutations. If a compro-
mised stage corrupts an input, then it is unlikely

(with increase in c) that it can locate and corrupt

the same input in all the remaining duplicate

batches. As illustrated in Fig. 10, where c ¼ 1, the

compromised stage 2 trying to corrupt input

related to I2 in the copy batch corrupts a different
input related to I1. Next, by revealing secrets and

comparing the mixed output batches, the mixnet

can detect the corrupted inputs f2ðI2Þ, h1ðI1Þ. In

general, this technique provides robustness if

there is a compromise in stage 2 to n of the cascade

mixnet.

2) Repetition of Mixing on the Input Batch: The mixing

of duplicate batches does not provide robustness
against a compromised first stage (stage 1) of the

mixnet. In a cascade mixnet, since the first stage

initiates the mixing, it can trivially locate and

corrupt the same input in all the duplicate

batches. In Fig. 10, stage 1 can corrupt I2 in the

input batch, as well as the copy batch. However,

once the input batch and its copies have been

mixed, if the mixnet has to repeat mixing on the
resulting mixed output batches, then a compro-

mised first stage can be detected. As illustrated in

Fig. 11, mixing is performed on an input batch and

then the mixnet repeats mixing on the resulting

mixed output batch. Therefore, a compromised

stage 1 is unable to locate target inputs in the

batch received for repeat mixing. Any corruption

of inputs (e.g., I4) during the first mixing of the
input batch as well as during repeat mixing can be

detected as seen next.

Fig. 10. Mixing of input batch and its copy. Mixnet contains three stages, where stage 2 is compromised. fiðIiÞ, hiðIiÞ denote random

transformation of the input Ii, i ¼1, 2, 3, 4, during mixing of input batch and its copy, respectively. Compromised stage 2 may not

locate same input in mixed copy batch obtained from stage 1 and, hence, corrupts a different input. Corrupted inputs are

detected in a comparison step involving two mixed output batches.
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3) Stages Revealing Secrets and Comparison of Batches:
By making the stages reveal secrets used in the

mixing operation of the input batch and its copies,

it is possible to detect any compromised stages

that may perform incorrect mixing. For an illus-

tration of the main idea, consider the mixnet in

Fig. 11 to be a reencryption cascade mixnet. After

mixing, each stage reveals the secrets used to

generate the final transformations fið:Þ, zið:Þ,
i ¼ 1; 2; 3; 4. If the compromised stage 1 has

corrupted the input (related to I4) EKðm; r þ r1Þ as

EKðmm0; r þ r1 þ r2Þ ¼ ðgrþr1þr2kKrþr1þr2 mm0Þ;

¼ grþr1þr2kgðrþr1þr2Þdmm0
� �

:

(23)

Since g is a generator of the group Z
p [28],

m0 ¼ gx 2 Z
p for some x, and (23) can be re-

written as

grþr1þr2kgðrþr1þr2Þdgxm
� �

¼

grþr1þr2kgðrþr1þr2Þdþxm
� �

: (24)

On revealing the secret exponent r2, the gx factor
can be detected, hence, leading to detection of the

compromised stage 2 having corrupted the input

EKðm; r þ r1Þ. However, revealing the secrets

breaches anonymity of input batch and defeats
the whole purpose of the mixnet, which is to ano-

nymize the input batch. Therefore, the approach

taken is to reveal the secrets only after the

repetition of mixing on the mixed output batches.

But the revealed secrets will then have to be used

by the mixnet to obtain sets of quantities related to

the output batches resulting from mixing of the

input batch and its copies, as well as from repeti-
tion mixing [44], [46]. These sets of quantities are

sorted and compared, and based on the compar-

ison, if there are no anomalies, then the mixed

output batches are verified to be correct.

4) Tracing the Compromised Stages: On detection of

an anomaly in the mixnet output batch, a verified

trace back from the mixnet output towards the

mixnet input is done. Each stage reveals its secrets
and the operation of the stage is verified by the

remaining stages. In order to preserve anonymity

of the input batch, it then becomes crucial that the

mixnet output batch must not be decrypted to

reveal the message [46]. In an alternate approach,

the input batch contains the blinded messages

[44]. Hence, even if a compromised stage 1 is

present in the mixnet, the anonymity of any
corrupted input (possibly corrupted by stage 1) is

not lost, despite having traced it from the mixnet

output back to the input of stage 1.

5) Stage Proof Generation and Verification: All the

techniques discussed previously try to ensure that

each stage has not corrupted an input (criterion

C2) and has not deviated from its normal mixing

Fig. 11. Repetition of mixing of input batch. Corruption of target input I4 in first mixing is detected upon verification that occurs after

repetition of mixing. On the other hand, compromised stage 1 is not able to locate target inputs in batch received from stage 3 for

repeat mixing. Corruption of inputs during repeat mixing, e.g., I1, can be also detected by sorting and comparison protocol.

fiðIiÞ, ziðfiðIiÞÞ denote transformations of Ii, i ¼ 1; 2;3;4, during first mixing and repeat mixing, respectively.
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operation (criteria C1). Next, to ensure that at
each stage the output batch contains the input

batch, i.e., to ensure that a compromised stage has

not added or deleted any inputs (criteria C3), the

ZK proofs are used. After mixing, when no

anomalies are detected in the comparison of

batches, each stage proves that the product of the

input batch and the product of the output batch

are the same by using the random exponents
employed in repetition mixing [44], [46]. ZK

proofs may also be used before mixing, when a

stage may be required to prove knowledge of a

share of the private key of the mixnet, used in the

exponentiation of messages [44]. The proofs

generated by each stage j are verified by the

remaining stages during the mixnet protocol. If

correct, then stage j is verified to be uncompro-
mised. If all stages are uncompromised, then the

correctness of the mixnet output batch is verified.

However, if a compromised stage is detected, then

a recovery subprotocol is initiated as follows.

6) Reacting to a Compromised Stage Detection: If

before mixing, the proof of a stage j is verified to be

incorrect, then the stage can be simulated by the

remaining stages or simply removed/ignored.
Whereas, if incorrectness in the proof is detected

(or a compromised stage is traced) after mixing,

the compromised stage is removed/ignored and

the mixnet protocol is restarted (see Fig. 13).

While the previous techniques have been employed in

the ElGamal-based reencryption cascade mixnets of [44],

[46], there are some important differences between the

two mixnets themselves. In [44], initially the input batch is
blindly decrypted to obtain the blinded messages, which

ensures privacy of the input batch as described. The

decryption of input batch before mixing also provides for

computational efficiency, since each stage j will only need

to exponentiate a blinded message mb as

m

Qj�1

a¼1
ra

b

� �rj

(25)

where r1; r2; . . . ; rj are the random exponents used by

stages 1; 2; . . . ; j, respectively. In [46], decryption is
performed only after mixing. The protocol makes use of

reencryption of the encrypted messages. More specifically,

stage j performs the following multiplications on the

inputs obtained from stage j � 1:

gRþ
Pj�1

a¼1
ra grjkmKRþ

Pj�1

a¼1
ra Krj

� �
(26)

where R is a random exponent used by the sender. Note

that in terms of computations, the stage j can precompute

random grj , Krj , j ¼ 1; 2; . . . ; l and perform multiplication
with the input batch (containing l inputs) received. But in

the case of (25), the stage has to perform exponentiation of

its input batch. This makes the online computational

complexity of the mixnet in [46] better than that of [44].

The integrity of the mixnet in [44] can be broken, as

shown in [47]. A compromised stage can make use of the

homomorphic property of ElGamal encryption (in

Appendix A.3) and modify all the inputs in a batch,
without being detected by the mixnet protocol. However,

this attack is not possible in [46], since it makes use of

dummy inputs. These dummy inputs are generated jointly

by the n stages, and only a collusion of all the stages can

locate them in the mixnet input batch. But, as pointed out

in [48], if the location of the dummy inputs is known to the

first stage of the mixnet, then it will be able to break the

integrity of the mixnet in [46]. Therefore, the SV re-
encryption mixnets can only satisfy the correctness criteria

C1 and C3.

While the previous mixnets make use of one or more

ZK proofs, the SV reencryption cascade mixnet proposed

in [47] does not require ZK proofs and, moreover, satisfies

all three correctness criteria. Consequently, in Fig. 9, the

SV mixnets belong to the intersecting region C1 \ C3 that

includes C1 \ C2 \ C3. However, the approach requires
t � 1 stages participating as verifiers for each stage j in the

cascade mixnet. These t � 1 verifiers check the operation

of their assigned stage j in the cascade mixnet. During the

mixnet protocol, each stage j in the cascade mixnet

performs reencryption mixing and reveals the random

exponents to its t � 1 verifiers, who then check the stage

output. If determined to be incorrect, then the output of

stage j is ignored and output of stage j � 1 is transferred
directly to stage j þ 1. We note that this protocol, unlike in

[44] and [46], does not require a restart upon detection of

a compromised stage. For a cascade mixnet containing

t stages, if we consider the verifiers, there will be a total of

ðt � 1Þ � ðt � 1Þ stages in the mixnet. However, robust-

ness is still only t � 1, since if one verifier in each stage of

the cascade mixnet is compromised, then these t
compromised verifiers can reveal the secrets and, hence,
breach the anonymity of the mixnet.

2) Stage Verifiable Hybrid Cascade Mixnets: The cascade

mixnets in [44] and [46], [47] have been proposed only for

ElGamal-encrypted input batches. In Section IV-E, it was

mentioned that ZK proofs may not be feasible for

decryption/hybrid mixnets due to the multiple layer

encryptions and symmetric key encryptions. However, in
[24] and [49], the ZK proofs are enabled through the use

of public keys in the symmetric key algorithms as ex-

plained in the following. In [49], a hybrid cascade mixnet

is proposed, based on the robustness techniques of [47].

The approach taken in [49] was improved in [24], which

makes use of a relatively efficient ZK proof, and robustness

is also achieved without revealing any secrets or using
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additional verifier stages (required in [49]). The tech-
niques used in the hybrid cascade mixnet protocol in [24]

are described as follows.

1) Public Keys for Symmetric Encryption: The main

idea of this technique is to use the public key of a

stage to derive the symmetric key that the stage

has to use to decrypt a layer from the onion. If

Kj ¼ gdj is a public key of a stage j, then the stage

receives from stage j � 1, a key generator

keygenj�1 ¼ gr
Pj�1

a¼1
da (27)

and an onion of the form

forwarding onionj ¼ Ekj
Ajþ1kforwarding onionjþ1

h i
�kHk0j

Ekj
Ajþ1kforwarding onionjþ1

h i
k0w

� �
: (28)

Note that the sender initial ly includes

keygen0 ¼ gr, where r is a random string, with

the forwarding onion1. The key generator key-

genj�1 is updated to keygenj, by stage j, exponen-

tiating it as in (27) with its private key dj. In fact,

this operation is used in the ZK protocol technique

explained in the stage proof generation phase of

the mixnet protocol. The symmetric keys fkj; k0jg
are derived from keygenj�1 using two more private

keys from stage j. Hence, each stage has three

public keys that are used initially by the sender in

the onion encryption.

2) Message Authentication Code: As seen in (28), each

layer of the onion contains a message authentica-

tion code (MAC) [28]. The MACj ¼ Hk0j
ð:Þ,

provides verification of integrity of each input in
the batch received by stage j from stage j � 1. Note

that only stage j is able to verify the MAC, since

the key for the MAC can be obtained only with the

private key of stage j. Hence, if stage j � 1 is

compromised and corrupts any input, then stage j
can detect it by checking the MACs.

3) Stage Proof Generation, Proof Verification, and
Reaction to a Claim of a Compromised Stage: In
addition to MACs, each stage j � 1 generates a

proof of knowledge of the private key used in the

exponentiation of the key generator as seen

previously. This proof is verified by stage j and

ensures that the output batch from stage j � 1

contains its input batch. A computationally effi-

cient ZK proof [24] is used for this purpose.

Hence, the MACs and the ZK proofs together
provide robustness against a compromised stage

j � 1. Fig. 12 illustrates the operation of the hybrid

cascade mixnet in [24] containing three stages. If
a stage j in the hybrid mixnet verifies stage j � 1 to

be compromised, then a threshold of t stages in

the cascade mixnet (excluding stage j � 1) jointly

generate the private keys of stage j � 1 and verify

its mixing operation. For instance, in the mixnet of

Fig. 13 where t ¼ 2, if stage 1 is compromised, then

stages 2 and 3 would need to verify its operation by

reconstructing its private key. If stage j � 1 is
indeed compromised, then it is simulated by the

t stages and the mixnet protocol proceeds. Note

that the simulation of the compromised stage j � 1

is required, since decryption with the private key of

stage j � 1 is necessary. But if stage j � 1 is found to

be uncompromised, then there can only be two

possibilities: 1) a compromised stage j which is

then simulated or 2) one or more inputs to the
stage j � 1 may be incorrect, which initiates tracing

backwards until the incorrect inputs are located

and deleted from the mixnet input batch, followed

by repetition of the mixing.

4) Simulation of the Last Stage: Despite the tech-

niques, a compromised stage n of the hybrid

cascade mixnet can still break the integrity of the

inputs in the batch received from stage n � 1
without being detected. This is because there is no

stage n þ 1 to verify operation of stage n.

Therefore, to address this weakness, stage n þ 1

is simulated by the n stages. Joint decryption with

the private key of stage n þ 1 is performed to

obtain the mixnet output batch. For example, in

Fig. 12(c) and (d), stage 4 is simulated by the three

stages to finally obtain the mixnet output batch.
Though the hybrid cascade mixnet protocol in [24]

satisfies all three criteria ðC1 \ C2 \ C3Þ, the anonymity

can still be breached by an active adversary that is allowed

to participate as the sender in n þ 1 separate mixing

iterations of the mixnet. The attack, as shown in [50], is

enabled due to the reaction to the claim of a compromised

stage in the mixnet protocol. As seen previously, in this

technique, when an error in the output of stage j � 1 is
detected by stage j, the t stages verify the operation of stage

j � 1. During this verification a set of quantities (especially

the keys of the MACs in the input batch of stage j � 1) are

revealed to all the stages. Hence, any single compromised

stage in the hybrid mixnet can help the adversary to obtain

the revealed quantities and, thereby, launch the anonymity

attack in [50].

3) Limitations of Stage Verifiable Cascade Mixnets: An

important tradeoff between the SV reencryption mixnet,

and the SV hybrid mixnet is the reaction to a compromised

stage. As illustrated in Fig. 13, in the case of a hybrid

mixnet, the detected compromised stages have to be simu-

lated, but the protocol is not restarted. However, as seen

earlier, in an SV reencryption mixnet the compromised
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stage can be simply removed, but it still requires an un-

avoidable restart of protocol. The only exception is the SV

reencryption mixnet in [47] where a protocol restart is

avoided by involving the additional t � 1 verifiers for each
stage in the mixnet.

A major drawback of the SV cascade mixnets is their

limited robustness against attacks. A SV cascade mixnet is

robust only against a maximum of n � 1 compromised

stages, and if sharing of private keys is used in the mixnet,

then robustness is only t � 1. A collusion of t, or all n
stages, can corrupt the input batch without being detected

in the mixnet protocol. For example, consider the mixnet
in Fig. 13, where n ¼ 3, and threshold t ¼ 2. If more than

one stage ðt � 1 ¼ 1Þ is compromised, then the output

batches can contain corrupted inputs without being

detected by the mixnet protocols.

For critical, secure applications, including electronic

voting, a higher guarantee for the integrity of the mixnet

output batch must be provided. This leads to the design of

universally verifiable cascade mixnets.

C. Universally Verifiable (UV) Cascade Mixnet
In a universally verifiable (UV) cascade mixnet, even if

all the n stages are compromised, they cannot produce an

incorrect output batch, hence, always satisfying the three

criteria of correctness ðC1 \ C2 \ C3Þ. The main idea

behind the design of a UV mixnet is that each stage must

prove that each quantity in its output batch corresponds to
an unique quantity in its input batch, without disclosing

the relationship. Such a ZK proof provides correctness of

the output batch at each stage, but requires up to OðlÞ
exponentiations in the computations at each stage, l being

Fig. 12. Stage verifiable hybrid mixnet protocol, such as in [24]. (a) Stage 2 receives mixed input batch from stage 1, as well as a proof.

Stage 2 verifies the MACs of onions in its input batch, checks proof, and performs mixing. (b) Stage 3 repeats same operations. (c) Stage 4 is

jointly simulated by three stages to verify operation of stage 3. (d) Stage 4 performs decryption of the last layer of onions in input batch.
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the input batch size. The UV mixnet protocol is otherwise

similar to the SV mixnets. To address reaction to com-

promised and faulty stages, techniques of SV mixnets, as

shown in Fig. 13, may be used. The approaches to stage

proof generation and verification in the UV mixnet pro-

tocol are shown in Fig. 14.

Universal verifiability in the mixnet comes from the

fact that the verification of the proofs can be additionally
performed by any external entity. This entity, which we

refer to as the verifier, can guarantee correctness of the

mixnet output even if all stages have been compromised,

since any incorrect proofs can be detected. Note that

because of the computationally expensive proofs needed in

UV mixnets, the efficiency of the mixnet protocol is heavi-

ly dependent on these proofs. The UV cascade mixnets that

have been developed are based on the ElGamal cryptosys-
tem and are mostly of the reencryption type. A concise

presentation of these mixnets is given as follows.

1) Nonrobust UV Cascade Mixnets: After the ElGamal-

based reencryption and decryption mixnets introduced in

[33] were shown in [42] as lacking robustness against

compromised and faulty stages, the UV mixnets were in-

troduced in [40]. Though the UV mixnets in [40] are
made (partially) robust against attacks, using ZK proofs

to detect any compromised stage, in [51], it was shown

that the anonymity of the mixnets in [40] are breakable.

Moreover, since the mixnet protocols in [40] do not in-

clude any mechanism for recovery from compromised

and faulty stages, they are not fully robust to attacks and

failures. Reencryption mixnets in [39] and [52] and the

decryption mixnet in [53] overcome the robustness
weaknesses.

2) Robust UV Cascade Mixnets: The mixnet in [52] is

similar to the reencryption mixnet in [39] but with

relatively more efficient proofs. For robustness, as in the

SV mixnets, after mixing is performed, the group of

n stages jointly verify that each stage has performed a

correct operation. The stages generate a joint proof [52]

that can be verified later by any entity. Hence, even if all

n stages are compromised, it can be detected by veri-
fication of this joint proof. As in Fig. 13, if detection of

compromised stages occurs in the reencryption mixnet,

then the mixing protocol is restarted without the

compromised stages.

In [53]–[55], mixnet protocols are constructed using

permutation networks [56] that enable the use of effi-

cient proofs. In contrast to [52], the verification of the

proofs is performed during mixing. In [53], addition to a
reencryption mixnet, a decryption mixnet protocol, is

also proposed, where each stage verifies the proofs of all

the previous stages before proceeding with the mixing of

its input batch. This is illustrated in Fig. 14(a). Hence,

only one stage needs to be involved in the verification of

the proofs at each step. However, when stage j detects a

compromised stage a, threshold t stages are required to

simulate the stages from the compromised stage a until
stage j � 1. On the other hand, in the reencryption mix-

net in [53], each stage mixes and produces a proof, which

is then verified by all the remaining stages, as illustrated

in Fig. 14(b). The advantage with this approach is that

unlike in the SV reencryption mixnets [44], [46], a de-

tected compromised stage can be ignored, and a restart

of the reencryption mixnet protocol is not necessary. The

input batch of the compromised stage j � 1 can be trans-
ferred directly to the next stage j for further mixing.

Fig. 13. Reaction to compromised stages in stage verifiable cascade mixnets. These mechanisms are also generally applicable to other

verifiable cascade mixnets.
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However, note that for a fair comparison between the
ElGamal-based UV reencryption mixnet and the ElGamal-

based UV decryption mixnet, the decryption phase

involved in the reencryption mixnet must be taken into

account. This phase also requires ZK proofs from each

stage, to prove exponentiation with the share of the private

key. Thus, as observed in [53], the decryption mixnet pro-

vides relatively lower latency compared to the reencryp-

tion mixnet. But in the presence of a compromised stage,
the latency of the decryption mixnet degrades significantly

compared to a reencryption mixnet, due to the intensive
recovery mechanisms involved. In [57], this weakness has

been addressed, using a trusted verifier to verify the proof

of each stage during mixing in the decryption mixnet. The

trusted verifier receives the mixed output batch from each

stage, verifies proof of the stage, and then forwards the

batch to the next stage. On detection of a compromised

stage j, the trusted verifier simulates the stage j. However,

any compromise in the single trusted verifier leads to
failure of the mixnet in [57]. It is also worth noting here

Fig. 14. Proof generation and verification during mixing, in UV cascade mixnets. (a) Each stage verifies proof of all previous stages.

(b) Proof generated by a stage is verified by all remaining stages in mixnet.
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that despite their robustness, some weaknesses in the in-
tegrity of UV mixnets presented in this section (including

the following) have been identified in [58] along with

countermeasures.

3) Efficiency of UV Cascade Mixnets: The reencryption

mixnet protocols in [53]–[55] are not scalable in the batch

size l, with the verifiability mechanism computational

complexity being Oðnl log2 lÞ for a n stage mixnet. On the
other hand, the mixnet protocols in [52] are limited by the

inefficient ZK proofs, with verifiability mechanism com-

putational complexity OðnlkÞ, where k is the number of

repetitions of the ZK proof [52]. Computationally efficient

ZK proofs for reencryption mixnet protocols have been

developed in [59]–[61], and an computationally efficient ZK

proof has been provided for ElGamal-based decryption

mixnet in [57]. These proofs are linear in the size of the
input batch, i.e., the verifiability mechanism with these

proofs can have reduced complexity of OðnlÞ. Further, in

[57], it is claimed that the overall computational complexity

of the mixnet protocol (including decryption of mixnet

output) based on [60] is lower compared to [59] and [61].

As efficient as it is, in the absence of any compromised

stages in the mixnet, the universal verifiability mechanism

taxes the cascade mixnet efficiency and degrades perfor-
mance. While in the case of stage verifiable mixnets, rel-

atively efficient performance can be achieved under such a

scenario. Yet, in UV mixnets, the presence of compro-

mised stages does not require a restart of the protocol

which is not necessarily true for all SV mixnets. Moreover,

UV mixnets allow for external verification of the mixing,
unlike SV mixnets. There is another category of verifiabil-

ity mechanisms in cascade mixnets that attempts to

achieve a balance between these two approaches, called

conditionally universal verifiability mechanisms.

D. Conditionally Universally Verifiable (CUV)
Cascade Mixnet

The verifiability techniques employed in CUV cascade
mixnets provide certain probabilistic guarantees for the

correctness of the mixnet output batch that may not always

satisfy correctness of the entire output batch of the mixnet.

Hence, as indicated in Fig. 9, the CUV mixnets may satisfy

from one to all the three criteria of correctness, i.e., the

region C1 [ C2 [ C3. Similar to a UV mixnet, any entity

can verify the mixnet output batch, but an anomaly is

detected only with a certain probability. We now describe
the conditionally universal verifiability techniques that

have been proposed in the literature.

1) Random Partial Checking (RPC): This technique was

proposed in [2] and does not require any ZK proofs. It is

very generic and can be used in any type of cascade mixnet.

As in SV mixnets, the technique can be used in a

subprotocol after mixing has been performed on the input
batch to detect any compromised stage. The main idea is

that the stages are made to directly reveal the correspon-

dences between a random selection from their input batch

or output batch and also the cryptographic quantity

involved in the transformation of the selections.

Fig. 15. RPC: Stage j and stage j þ 1 are paired together as shown, such that output batch of stage j is input batch of stage j þ 1. Verifier

selects a random set of outputs of stage j and makes it reveal corresponding inputs. Verifier then selects a random set of outputs

of stage j (but different from already selected outputs) and makes stage j þ 1 reveal its corresponding outputs.

Sampigethaya and Poovendran: Survey on Mix Networks and Their Secure Applications

Vol. 94, No. 12, December 2006 | Proceedings of the IEEE 2163



A graphical illustration of random partial checking is
shown in Fig. 15. For the purpose of revealing the secrets,

the stages are paired together (assuming that n is even),

such that the output batch of the first stage j is the input

batch of second stage j þ 1 of each pair. Prior to mixing,

stage j commits to a permutation �j ¼ ð�1;j; �2;j; . . . ; �l;jÞ,
and stage j þ 1 commits to ��1

jþ1 ¼ð��1
1;jþ1; �

�1
2;jþ1; . . . ; �

�1
l;jþ1Þ.

Note that �j; �jþ1 are the permutations used in the mixing

operation by stage j and stage j þ 1, respectively. During
the subprotocol, a random set of outputs of the first stage j
is selected as RSj. The inputs corresponding to the selected

outputs, and also the random exponents or keys used for

their transformations, are revealed by the stage j. The

proof is provided by stage j in the form of a decommitment

of the element permutations of the revealed inputs

f�i;j : i 2 RSjg. Next, a random set of inputs of the second

stage j þ 1 is selected as RSjþ1. However, these selected
inputs must be from the complementary set of the

revealed outputs in RSj of the stage j. This is crucial so

that an output from stage j þ 1 cannot be traced back to

the input of stage j, thereby helping to preserve

anonymity. Stage j þ 1 then reveals the outputs

corresponding to the selected inputs. The process of

revealing quantities in the transformation and the

decommitment of f��1
i;jþ1 : i 2 RSjþ1g is repeated by stage

j þ 1. This type of verification is repeated for the

remaining ðn � 2Þ=2 pairs of stages in the cascade mixnet.

We note that the RPC technique sacrifices the

anonymity that an input otherwise gains from batch size.

Randomly correlating quantities prevents a compromised

stage from predetermining which inputs to corrupt.

However, at the same time, random selection of the cor-

respondences may not detect a compromised stage, since
the selection may not include the corrupted inputs or the

added inputs. Therefore, the RPC technique provides only

a probabilistic guarantee of the correctness of the mixnet

output batch. Yet, it is quite efficient in computation, since

no ZK proofs are involved. We will now describe an

approach that makes minimal use of ZK proofs but offers a

stronger guarantee of correctness.

2) Optimistic Verification: This technique, proposed in

[62], is applicable to a reencryption cascade mixnet. After

mixing is performed by all stages, a set of random quan-

tities is selected from the output batch of each stage. Next,

each stage provides two computationally efficient ZK

proofs [44]: one proves that the product of the input batch

of the stage is the same as the output batch of the stage,

and the other proves that the selected quantities from
output batch of the stage are from its input batch. Hence,

the verification of the first proof detects any addition/

deletion of inputs, while the verification of the second

proof detects if any of the selected quantities have been

corrupted within the stage. Note that unlike RPC tech-

nique, in optimistic verification the anonymity provided by

the batch size is not lost, since the proof does not disclose

the correspondences at any stage. However, as in RPC, the
quantities selected may not be the corrupted quantities,

hence, not being detected in the mixnet.

Consequently, a related but improved approach has

been proposed in [63] where in addition to the optimistic

verifiability mechanism, for the purpose of detection of

corrupted inputs, the protocol uses cryptographic check-

sums (unkeyed hashes) [28]. Further, the approach makes

use of a technique called double encryption to preserve the
anonymity of corrupt inputs as seen in the following. Each

input in the sender input batch contains three ElGamal

encryptions

EKðF; rÞkEKðM; r0ÞkEK HðF;MÞ; r00ð Þ (29)

where F ¼ gR, M ¼ mKR are the ElGamal encryption com-
ponents of the message. H : f0; 1g ! G is a one-way hash

function. After reencryption of the input batch, each stage j
generates an efficient proof as in [62] to prove that the

products of the output and input batches are the same.

Nevertheless, a compromised stage can make use of the

homomorphic property of ElGamal encryption to corrupt

the input batch and still generate a valid proof (described in

Appendix A.3). The checksum detects such attacks as
follows. After mixing, the stages together decrypt the

mixnet output batch to reveal (F, M, HðF;MÞ), cor-

responding to each input. Then, by verifying the checksum,

any corrupt input can be detected. Because of the double

encryption in (29), the anonymity of a corrupt input is

protected, since the message m still remains encrypted and

can be mixed again in a separate input batch.

Note that a cascade mixnet employing the techniques
in [2] and [62] may not always satisfy all three criteria of

correctness. However, they are the most computationally

efficient of the verifiability mechanisms when there are no

compromised stages, hence, incurring low latency in

mixing. Under the condition that the inputs satisfy special

encryption requirements, the reencryption cascade mixnet

using the technique in [63] can satisfy all three criteria,

with a much lesser number of computations than a UV
cascade mixnet. Yet, upon detection of a corrupted input,

unlike a UV mixnet where a restart can be avoided, the

technique in [63] as well as in [2] and [62] require a restart

of the mixnet protocol, which makes them relatively less

efficient. These constraints justify the classification of

these approaches as conditionally universally verifiable

cascade mixnets.

Table 3 compares some of the most recent verifiable
cascade mixnets in terms of their computational efficiency.

VI. PARALLELIZING CASCADE MIXNETS

While efficiency and low latency in verifiability mechan-

isms can be achieved, the basic cascade mixnet protocol
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is inherently inefficient in its operation. In a decryption

cascade mixnet, the sequential order of mixing results in

inefficient use of the stages and in delay. This is mainly

due to the fact that when the first batch of inputs arrives

at stage 1, the remaining n � 1 stages wait until they

receive this input batch. The mixing process is pipelined

only after stage n receives the input batch. However, in
the case of a reencryption cascade mixnet, the sequential

ordered mixing is not necessary, as was initially observed

in [53]. In [64], this observation is utilized in the design

of a reencryption mixnet, where the stages perform

mixing in parallel. Such a mixnet achieves gain in latency

due to the parallelizing technique explained as follows.

Each of the n stages is assigned a random subset of

the input batch, i.e., each subset contains l=n inputs.
Fig. 16, where n ¼ 3, threshold t ¼ 3, and l ¼ 9, provides

a graphical description of the parallel mixing. The fol-

lowing is the protocol executed by the stages in the

mixnet.

1) Mixing: Each stage mixes the assigned subset of

size l=n. This operation occurs in parallel in all the

n stages.

2) Rotation: Next, the stages perform t � 1 rounds of

rotations, where threshold t � n. Each rotation is

a modulo operation ðmod nÞ, where stage j � 1

transmits its mixed output batch to stage j, while

stage j transfers its mixed output batch to stage

j þ 1, and so on. Stage n transfers its output batch

to stage 1. Each stage j on receiving the output
from stage j � 1 ðmod nÞ mixes and transfers to

next stage j þ 1 ðmod nÞ during the next rotation.

Note that all the stages are processing in parallel

for t � 1 rounds.

3) Random Exchange: At the end of the t � 1 rounds,

each stage retains a random fraction ðl=nÞ=n of its

output and sends equal random portions of the

remaining outputs to each of the n � 1 stages.
Hence, each stage j receives l=n2 inputs from each

of the remaining stages, to obtain a total of

nl=n2 ¼ l=n inputs.

4) Next, steps 1 and 2 are repeated, where after

mixing, another t � 1 rounds of rotation are per-

formed. The resulting output from the n stages is

the final mixnet output.

Fig. 16. Parallel mixnet containing three stages, with threshold t ¼ 3 and batch size l ¼ 9. Each stage receives l=3 ¼ 3 inputs, from input batch.

After initial mixing, t � 1 ¼ 2 rounds of rotation and mixing are performed by the stages. Next, stage 1 chooses randomly two quantities

from its output batch and sends one each to the other two stages. Process is repeated in parallel by stages 2 and 3. After mixing,

another t � 1 ¼ 2 rounds of rotation and mixing are performed. Totally, 2t ¼ 6 rounds of parallel mixing are performed by three stages.

Table 3 Comparison of verifiable cascade mixnets. Approximate costs for sender, each stage, and receiver in n-stage mixnet in terms of exponentiations

and multiplications, to verifiably mix l inputs. �VSecurity parameter in [62]
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The parallel mixnet in [64] is inherently robust against
anonymity attacks. The rotation step provides robustness

against tracing of inputs. For example, in Fig. 16, even if

stage 1 was compromised and enabled an adversary to trace

an input through it, the rotation with stage 2 would require

the adversary to also compromise stage 2 to complete the

tracing of the input. Now, if stage 2 as well as stage 3 are

also compromised, then the mixnet is compromised,

hence, indicating that robustness of the mixnet is limited
to t � 1 ¼ 2.

Next, when the input batch of size l is divided into l=n,

the anonymity of an input is decreased. But the random

exchange step ensures that the anonymity is increased back

to the batch size l. As an example, in Fig. 16, a passive

adversary can observe a target input to be in the input batch

of stage 1 and guess the input to be one of the three

quantities passed to stages 2 and 3 during the rotation step.
However, stage 3 then performs random exchange of two

of its outputs with stage 1 and stage 2, while retaining one

of the three outputs. Hence, after random exchange the

adversary will have to guess the target input to be in one

of the three stages, i.e., among the entire batch of nine

inputs. Note that the random exchange step can be con-

sidered as an interstage random permutation of the mixed

inputs.
The integrity and verifiability of the parallel mixnet is

dependent on the verifiability mechanism used by the

mixnet protocol. Note that the parallel mixnet requires a

total of 2ðt � 1Þ þ 2 ¼ 2t, rounds of mixing. Then, for

universal verifiability, the generation of proofs such as

[59], [60], with complexity linear in the number of inputs,

is required in each round. Since the mixing is performed

on l=n inputs by each stage, the proofs take up to 2tl=n
exponentiations for 2t rounds of mixing at each stage. To

achieve robustness of n � 1 as in a basic reencryption

cascade mixnet, threshold t ¼ n; hence, this would yield
the complexity as OðlÞ, with a constant factor more than

the reencryption cascade mixnet protocol. Therefore, by

parallelizing the cascade mixnet, the computational

efficiency remains at OðnlÞ for the mixnet, but the latency

in mixing is reduced, since all stages are processing in

parallel. However, observe that the reaction to a compro-

mised stage in this mixnet, necessitates a restart of the

mixnet protocol. Hence, detection of compromised stages
can degrade the latency.

VII. FREE-ROUTING TOPOLOGY
FOR ANONYMITY

As seen from the previous sections, a cascade mixnet

requires the stages to interact and, hence, be dependent on

each other for operation of the mixnet. Moreover, with the
use of the public bulletin board and other robustness

mechanisms, a centralized approach to mixnet implemen-

tation is desirable.

Network applications such as anonymous e-mail and

anonymous web browsing need a distributed implemen-

tation for their operation over public networks. In ad-

dition, they may require low latency communications. A

single cascade mixnet is unsuitable for such application
requirements, hence, leading to the design of free-routing

topology mixnets.

A. Asynchronous Batching in Free-Route Mixnets
Fig. 17 illustrates a free-route mixnet topology that

consists of interconnected, but not necessarily dependent,

stages. Note that a stage in a free-route mixnet can itself be

a cascade mixnet. The free-route mixnet protocol is similar
to the cascade mixnet in the mixing operation on the

onions at the stages. However, the following important

Fig. 17. Asynchronous batching in free-route mixnet with batch size threshold 2. Transformed input i at output of mixnet is denoted

as fiðiÞ, i ¼ a;b; c;d.
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differences exist in the operating conditions of a free-route
mixnet.

1) Any stage may receive inputs (onions) from the

senders at different times, as illustrated in Fig. 17.

2) Additionally, the inputs to a stage may come from

more than one connected stage. For example,

stage 3 in the free-route mixnet of Fig. 17 receives

inputs from stages 1 and 2.

3) Any stage can forward an output directly to an
addressed receiver, which is again seen in the

mixnet of Fig. 17, where stages 2–4 forward some

outputs directly to a receiver.

4) Considering a fixed batch size l, each stage may

wait for at least l inputs to arrive or may simply

wait for a certain fixed amount of time before

forwarding the inputs received to the next stage.

In order to address latency constraints, there may
be a batch threshold based on size (number of

inputs), or time (batching period), or a combina-

tion of both, as described in [23]. For example, in

Fig. 17, all stages have a batch size threshold of

two inputs. Stage 4 receives only one input, and

since it does not receive any more inputs, after a

certain batching time period it forwards the

transformed input to the addressed receiver.
Note that in a cascade mixnet, a batch size thresh-

old can also be applied, but only to the first stage

of the mixnet. Therefore, the delay from waiting

for a threshold number of inputs is incurred only

once in cascade mixnets.

The previous four differences lead to asynchronous

batching in a free-route mixnet. As shown in Fig. 6, recall

that in cascade mixnets synchronous batching was used,
where the mixnet input batches exited the mixnet in the

same temporal order. In the case of asynchronous

batching, such a temporal ordering may not exist, and

inputs entering the mixnet at the same time may leave the

mixnet at different times.

Fig. 17 illustrates asynchronous batching, where inputs

arrive at different times. Though input c arrives after in-

puts a; b, it leaves the mixnet before them. This is because
stage 1 waits for input c to arrive before forwarding in

parallel the transformed b to stage 3 and transformed c to

stage 2; while, stage 2, having received input a, will be

waiting for another input. Upon receiving the transformed

c, it is able to mix and forward in parallel the transformed

input a to stage 3 and fcðcÞ to its destination. Hence, input

c exits the mixnet before any of the other three inputs.

Next, stage 3, which has already received the transformed
b, receives the transformed a almost simultaneously with

input d. Therefore, all three are forwarded in parallel in a

batch, with the transformed a going to stage 4, and fbðbÞ,
fdðdÞ to their respective destinations. Exit times of all

inputs are indicated. As mentioned earlier, faðaÞ will only

be sent after stage 4 waits for a batch period expecting

more inputs.

B. Free-Route Mixnet Failure and
Robustness Measures

Unlike the cascade mixnet topology, a number of

anonymous paths with different number of stages are

available in free-route mixnets. Because of the availability

of a number of paths, a sender can choose an anonymous

path, and the choice is reflected in the stage addresses

included in the sender onion. A sender path can also

contain loops, i.e., a stage may be traversed more than
once in a path. For example, in the free-route mixnet in

Fig. 17, a possible anonymous path can be sender-stage

1-stage 2-stage 3-stage 1-receiver. The multiple paths in

the free-route mixnet inherently provide robustness

against faulty stages (higher fault-tolerance). For exam-

ple, in Fig. 17, if stage 2 fails, then to reach stage 4, the

sender of input a can use the path stage 1-stage 3. How-

ever, the sender is required to reinitiate communication,
including constructing and transmitting a new onion. This

can be a disadvantage in certain mixnet applications. Tech-

niques to reduce retransmissions include using diverse

paths between sender and receiver, preassigning backup

stages to support faulty stages, or enabling a stage to skip

succeeding faulty stages in a path [85]. A concise pre-

sentation of the various application specific free-route

mixnet designs that have been proposed is given as follows.

C. Remailer Applications
Free-route mixnets providing two-way communication

have been proposed for remailer applications [6]–[8].

The remailers provide anonymous e-mail service. The

security of the basic remailer using mixing, called Type-I

remailer [5], was improved in the next generation of

remailers (Type-II), such as the Mixmaster [6], [65] and
Babel [7]. Recently, Mixminion, which belongs to the third

generation of remailers (Type-III), was developed in [8],

[66], addressing certain attacks on Type-II remailers. The

basic mixnet protocol in all the remailers is identical to

the decryption/hybrid mixnets given in Section III, with

the RPI included by the sender, if a reply is expected

from the receiver.

D. Low-Latency Applications
Free-route mixnets designed for remailers can incur

delays that are not acceptable for real-time applications

such as anonymous web browsing. This is because the

remailers operate using a store-and-forward mechanism,

which is not suited for the HTTP traffic involved in web

browsing. In these applications, two-way communication

is often bursty in nature and also delay-sensitive. Free-
route mixnets providing two-way, real-time communica-

tion have been proposed in [11], [13], [67], and [68].

These mixnet protocols generally contain the following

distinct phases.

1) Anonymous path establishment: Each sender gen-

erates and transmits an onion to set up a sequence

of stages. As illustrated in Section III, the onion

Sampigethaya and Poovendran: Survey on Mix Networks and Their Secure Applications

Vol. 94, No. 12, December 2006 | Proceedings of the IEEE 2167



contains the addresses as well as other necessary
control information for each stage. This control

information includes a forward symmetric key,

and a reverse symmetric key, for each stage along

the anonymous path.

2) Anonymous communication: Once the path is es-

tablished, data communication takes place. The

sender encrypts data using the forward symmetric

keys that were included in the path establishment
onion. Each stage decrypts a layer of encryption

using the corresponding forward symmetric key

obtained during path establishment. The data

going from the receiver to the sender is encrypted

using a reverse symmetric key at each stage.

There are additional mechanisms in the previous

protocol phases that are used to achieve robustness against

passive and active attacks (see Section VII-F). Such free-
route mixnets have been proposed and practically im-

plemented in onion routing [11], [14], [68] for two-way,

real-time anonymous traffic. The mixnet in [11] has been

improved, in terms of implementation, in the second gen-

eration of onion routing [68]. Unlike [11], the anonymous

path establishment in [68] is initiated but not finalized by

the sender.

E. Inapplicability of Reencryption Mixing,
Authentication, and Verification in
Free-Route Mixnets

In the previous sections, we saw that reencryption

cascade mixnets outperform their decryption counterparts

in terms of security and performance. However, we also

mentioned in Section III-D, that reencryption mixnet

design does not support free-routing topologies, since it
cannot include the address of the stages. Hence, the

advantages and properties of reencryption mixnets cannot

be extended to free-routing topologies. The approach that

is considered for the design of free-route mixnets is to have

independent, interconnected, decryption/hybrid mixing

stages, deployed on a public network.

In contrast to the cascade mixnet, a free-route mixnet

cannot employ robustness measures such as sender
authentication and verifiability. These mechanisms con-

tradict with the purpose of the free-route mixnets. Since

all stages may receive sender inputs, authentication would

require a centralized approach to enable stages to verify

the validity of any sender input. This restricts a distributed

implementation and may also incur additional delays.

Moreover, sender authentication by stages can be misused

by a compromised stage to add inputs that it can claim to
be from valid senders [67]. Also, as noted earlier in

Section IV-E, an authenticated public bulletin board has to

be avoided in decryption/hybrid mixnets for robustness

against replay of inputs. Therefore, authentication is

substituted with other solutions as discussed in the next

section. Note that authentication can still be used between

stages in the free-route mixnet.

As seen previously, most of the verifiability mechan-
isms require stages to participate jointly in the mixnet

protocol. This leads to latency concerns and also to

coordination requirements between stages that are

undesirable properties in free-route mixnets. Thus, except

for sender verification and checksums, other verifiability

mechanisms are avoided. Consequently, without sender

authentication and verifiability being available, a free-

route mixnet is less secure compared to a cascade mixnet,
as observed in [22]. We now consider the different types

of attacks and the heuristic robustness solutions used in

free-route mixnets.

F. Passive Attacks on Anonymity in the
Free-Routing Topology

Many of the proposed free-route mixnets are depen-

dent on the assumption that constant traffic is distributed
uniformly in all paths of the mixnet, i.e., there are two or

more sender communications in all the paths of the free-

route mixnet. The assumption enables analysis of per-

formance of the mixnet in terms of latency and analysis of

the security of the mixnet under active attacks. But under

variable traffic conditions at the stages, a sender’s path

may be traceable by a passive attack, since the stages in the

path may not be used by other senders. Traffic analysis
attacks, including attacks based on the variable batch size

at the stages in a free-route mixnet, are described as

follows. Detailed investigations into these traffic analysis

attacks can be found in [20], and [69].

1) Misuse of the Decreasing Size of Onions: Consider the

case, where the traffic in the mixnet is not uniformly

distributed over the stages. By the inherent property of the
layer encrypted onion, each sender’s onion will reduce in

size as it traverses the stages in the mixnet. This is

illustrated in Fig. 18(a). As seen, stage 2 receives a single

onion which it transfers and forwards to stage 1 after a

batching period. Stage 1 receives the single onion of a

particular size from stage 2, and also two sender onions of

a different size. Then, by using this onion size information,

it may be possible for an adversary to trace a specific target
onion from input of stage 2 to the output of stage 4. As

shown in Fig. 18(b), such an analysis attack can be

partially avoided using padding [6], [11] at each stage to

ensure a uniform size for all the onions exiting the stage.

The padding can be a redundant string that is known only

to the stages of the mixnet. Note that the overhead

associated with padding results in decreased throughput of

the mixnet.

2) Misuse of the Variable Batch Size: It can be noted that

in Fig. 18(a) an adversary would still be able to partially

trace a target input from stage 2 to stage 1. Such attacks

can be dealt with by using dummy traffic [6] generated at

the stages. The dummy onions must appear similar to the

actual sender onions. In Fig. 19(a), stage 2 generates a
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dummy onion that prevents tracing of the input from

stage 2 to stage 1 by the adversary. The dummy onion is

identified and discarded later by stage 3. A more robust

mechanism can be obtained by using end-to-end dummy

traffic, i.e., inactive senders keep sending dummy mes-

sages to receivers to maintain a fixed batch size at all

the stages [9], [67]. Fig. 19(b) illustrates the benefit of
end-to-end dummy traffic, where tracing through stage 4

is not possible. The disadvantage with end-to-end dummy

traffic in a mixnet is the overhead generated for the

senders/receivers having nothing to communicate, as well

as overhead for the network. The tradeoff between the

performance and the security properties with the use of

dummy traffic still requires further investigation, as in-

dicated in [23], [27], and [70].

3) Misuse of Deterministic Delay of a Path: The various

anonymous paths in a free-route mixnet may have different

fixed delays associated with them. Based on: 1) time of

arrival of a target input; 2) the outputs exiting the mixnet

at subsequent times; and 3) the known path delays, the

adversary can conjecture the path of a target sender’s

input. It is also possible for a collusion of compromised
stages in the mixnet to perform timing-based attacks [71].

To address these timing-based attacks, random delay of

inputs can be used at the stages [6]. A stage essentially

stores the inputs received in a pool [6], [72], and once a

batch threshold (number of inputs and/or time) is reached,

then a random selection of the inputs from the pool are

mixed, along with (optionally) some dummy inputs, and

sent in the output batch of the stage. The remaining inputs

Fig. 19. (a) Dummy onion generated at stage 2. Dummy onion is discarded by stage 3, which forwards transformed sender onions and

dummy onion to stage 4 as output. Note that adversary is not able to trace sender onion from stage 2 to stage 1 but can still trace an onion

at stage 4. (b) End-to-end dummy onion between a sender and a receiver. Stage 2 receives dummy onion from sender, and stage 4

will forward dummy to receiver. Hence, no tracing is possible.

Fig. 18. (a) Nonrobust free-route mixnet where a passive adversary can trace an input through mixnet. (b) Tracing is partially disabled with

use of padding at stages. All onions in mixnet are padded to be of the same size.
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are kept in the pool for mixing at a later time. Therefore,
the adversary may not be able to conjecture the delay

incurred by a target input at each stage. However, the

random delay mechanism may only slightly increase the

difficulty of the adversary, since the average estimates of

the delay at each stage, hence the paths containing them,

can be computed by the adversary [23].

Another drawback of employing random delay at the

stages is that it adds to latency in the communication
process. An interesting variant has been proposed in [73],

where the sender is able to choose the tradeoff between

anonymity and latency. The technique employed is to

make the sender include in the onion a time duration as

well as an upper and lower time bound for each stage. For

example, a stage j decrypts the sender onion and obtains a

duration Tdj
, an upper time limit Tuj

, and a lower time limit

Tlj . If the current time is T, then stage j verifies if
Tlj � T � Tuj

, and if correct, then the forwarding onion is

delayed by Tdj
. Hence, the sender decides the acceptable

latency in its path as well as the possible anonymity gained

from that latency. Observe that on the downside, the

sender’s onion may be dropped if any additional un-

intended (but harmless) delay occurs in the path.

It is important to note here that the use of random

delay of inputs further contributes to asynchronous
batching in free-route mixnets. An input entering a stage

at time T1 may exit the stage only after an input entering at

time T2 � T1 has exited the stage.

Timing-based attacks can also be avoided to some

extent, using end-to-end dummy traffic as in [9], since it

would increase the uncertainty in the pool at each stage

traversed by the targeted input. Another technique is to

use dummy traffic only between stages in a segment of

the anonymous path as in [74]. A related approach was
proposed recently in [71], where random stages drop

dummy onions traversing them, to address timing-based

attacks by a collusion of compromised stages. The idea is,

again, to create uncertainty for an adversary attempting to

trace target onions.

G. Active Attacks on Anonymity in a
Free-Routing Topology

In a free-route mixnet, since no authentication is used

and since all stages can accept inputs, the adversary can

manipulate the inputs entering any stage. This leads to a

series of possible attacks and corresponding robustness

mechanisms in the mixnet.

1) Manipulating Input Batch of Stage: In an active attack,

the adversary can delay the target input and then wait for
the remaining inputs to exit the stage j. The adversary can

then send l � 1 of known inputs along with the target input

to stage j. It is also possible that the adversary may delay all

but the target input to a stage j, so that it can then be traced

through the stage, after the target input is forwarded when

the batching time period concludes. These attacks are

illustrated in Fig. 20.

To address such traffic manipulation attacks, time
stamps can be used in the onions [7], [11]. Time stamps

determine the freshness of an input. If the current time at

the stage is a predetermined period beyond the time stamp

in the onion, then the onion is dropped at the stage.

However, time stamps require synchronization and also

can lead to traffic analysis attacks based on time stamp

granularity [8]. For instance, if the granularity is in the

range of seconds, then it is likely that an input entering the

Fig. 20. (a) Passive attack requires adversary to guess input corresponding to one of the outputs in mixed batch. (b) Active attack where

adversary delays all inputs except target input, which may then be flushed by stage after batching period T. (c) Active attack where

attacker delays only target input. (d) After delaying target input, adversary floods the stage with four known inputs and delayed

target input. Hence, adversary can trace target input even in mixed output batch.
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mixnet has a unique time stamp in the onion, which will
make the input traceable through the stages on its path.

Another robustness mechanism uses link encryption

between stages [6], [8], [13]. Such an approach makes it

difficult for the adversary to recognize the known l � 1

inputs exiting stage j. It can be observed that the use of link

encryption between all stages of a decryption mixnet

makes it equivalent to the reencryption mixnet, assuming

that the sender cannot collude with any stage in the
mixnet. A sender cannot trace its own input through the

mixnet. However, a compromised stage j þ 1, which knows

the pairwise key used for link encryption by stage j, can use

the key at a later time to decrypt the inputs. To address this

weakness, session keys are used for link encryption [8].

Session keys are used for only one input batch and then

deleted. Hence, even if a stage j þ 1 is compromised, it

cannot be used to obtain keys to decrypt old input batches
received from other stages.

Also, the random delay mechanism that was used

earlier for robustness against misuse of the path delays can

be used against these traffic manipulation attacks. In order

to flush the target input from the pool at the stage under

attack, the adversary has to spend time and resources by

continuing to send known inputs and delaying unknown

inputs trying to enter the stage. The adversary must also be
able to differentiate the stage transformed target input

from the dummy inputs that might be added to the pool by

the stage [107]. Self-addressed dummy inputs can also be

used by stages to detect traffic manipulation attacks on the

mixnet [75]. However, a compromised stage can still le-

verage random delay mechanism to deterministically delay

a target input in the pool and enable its tracing in a

subsequent batch. Such an attack can be detected by using
commitment schemes for ensuring randomness in the

batching at each stage [105].

2) Replay of Inputs: As seen in Section IV-E, in cascade

mixnets an adversary may try to replay a target input in the

same batch or a subsequent batch, in order to trace its

path. To address such a replay attack in a free-route

mixnet, each stage j in the path needs to store processed
inputs and drop any detected replays. By storing time

stamps and nonces used in the onions, detection of replay

onions at the stages can take place. Alternatively, the

stages can remember other quantities in the onion, such as

the public key encryption of the symmetric key [7] or the

hash of inputs [8]. Note that storing the hash of inputs

prevents unwanted future access to information on the

inputs received by a stage.
The period of time for storing the inputs may be de-

termined by a public key rotation period [8]. This technique

is similar to the use of session keys to provide forward

secrecy [76]. Essentially, the public/private key of a stage is

changed at the end of a rotation period, and the old public/

private key is deleted. Hence, even when compromising a

stage j, the adversary will not be able to decrypt old input

batch replays beyond the fixed rotation period. Similarly,
forward secrecy with session keys is achieved in [68]. The

overhead associated with these techniques is mainly the key

establishment and key distribution.

Replay attacks can also be addressed using interstage

detours [7]. Each stage j selects a detour path to the next

stages that are addressed in the onions of its input batch.

The detour paths are randomly selected. As illustrated in

Fig. 21. Stage j receives a batch of onions. Two onions a;b have a stage j þ 1 as next stage in their path. Two onions are encrypted by stage j

with public keys of randomly selected stages in detour path, with stage j þ 1 as receiver. If an onion, say a, is replayed by an adversary,

then random selection of stages may be different, hence leading to different encryption by stage j.
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Fig. 21, after decrypting a layer from the onions a; b, stage j
obtains the next stage j þ 1 address in both of them. Stage j
then sends the two onions on a path containing a random

selection of stages, with stage j þ 1 as the receiver. Before

sending the onions on the detour path, stage j encrypts
them with the public keys of the random stages in the

detour path. Hence, if an onion is replayed by an adversary

in any subsequent batch, the onion may appear different at

the output of stage j, since a different detour path may be

chosen by stage j. A similar approach called loose routing is

proposed in [11], where additionally the length of the

detour path is constrained by a parameter included in the

onion. As pointed out in [11], this technique can also be
used if the topology of the free-route mixnet is not known

completely by the sender, thereby allowing each stage to

independently determine the path to the next stage. How-

ever, both of the mechanisms in [7] and [11] add to the

latency incurred by the sender onions, since the onions

have to traverse the additional random stages selected at

each stage in the original anonymous path of the sender.

We observe that these mechanisms can be considered as an
extension of link encryption with a session key between

stage j and stage j þ 1.

3) Misuse of Return Path Information: While replay of

inputs can possibly be detected or avoided in the forward

path (sender to receiver), an active adversary can still

utilize the RPI onion to trace the sender. The sender’s RPI

is included by a receiver in its reply. It is possible that a
receiver may send the same reply to the sender messages.

Hence, a stage j cannot distinguish a valid repeated reply

from the receiver, from a replay by the adversary. The

adversary can send l copies of the reply originally sent by

the receiver, to stage j. Then, based on the path (included in

the RPI of the reply) taken by l onions from stage j through

the mixnet, the adversary may be able to successfully

trace the sender receiving the l copies. Such an attack is

possible in [7], since the same RPI can be used multiple

times by the receiver, allowing the adversary to also use it
for tracing. The attack is addressed in [8] by allowing only

a single use of the RPI. With such an approach, however,

the sender must be able to provide multiple RPI with

different return paths to a communicating receiver.

Further, we note that the use of RPI enables tagging

attacks which can be employed to trace the sender. Suitable

defense mechanisms for such attacks are in [8]. Table 4

summarizes some of the main robustness techniques em-
ployed in free-route mixnets against passive and active

attacks and their associated performance tradeoffs.

H. Attacks on Integrity in Free-Routing Topology
As seen in Section VII-E, verifiability mechanisms are

not generally applicable to free-route mixnets. Hence, it is

possible for an adversary to break the integrity of the

inputs. Additionally, the adversary can launch an anonym-
ity attack based on active corruption of inputs. This is the

tagging attack [8], where a compromised stage j can

corrupt an input and possibly identify it at a subsequent

compromised stage j þ 2. Such an attack can be addressed

partially by including checksums with each layer of the

onion as in [24] (Section V-B-2) to verify the integrity of

the received onion at each stage [6], [8].

However, the addition and deletion of inputs at a
compromised stage can still occur in free-route mixnets.

The assumption is that the sender will eventually be

notified through mechanisms using receipts [1], [25] that

its message has not been received. The sender will then

reinitiate the anonymous communication. Consequently,

Table 4 Some of Robustness Techniques in Free-Route Mixnets: "-Increase; #-Decrease
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it is useful to design a mechanism that can enable a sender
to identify reliable paths in a free-route mixnet for

anonymous communication. Such a mechanism based on

reputation of mixnets is presented in the following section.

VIII . REPUTABILITY MECHANISMS
IN MIXNETS

A reputability mechanism in mixnets provides a means for
an uncompromised stage or an uncompromised cascade

mixnet to improve its reputation. If the reputation is

determined by the reliability, then a sender can construct a

reliable anonymous path, by choosing stages or a cascade

mixnet with high reputation. However, a reputability

mechanism presents the danger of being misused by an

adversary. A set of compromised stages or a compromised

cascade mixnet can increase its reputation by performing
correct mixing of inputs, while simultaneously attacking

the uncompromised stages and cascade mixnets, so as to

decrease their reputation. Senders may then possibly end

up choosing the compromised stages with relatively high

reputation in their paths. These anonymous communica-

tions can then be compromised by the adversary without

detection. It is important that the design of a reputation

mechanism address such a misuse by the adversary. We
first describe a reputation mechanism proposed in [25]

that can be used in free-route mixnets.

A. Reputation in Free-Route Mixnets
The mechanism proposed in [25], involves a set of

raters that essentially includes the senders and the stages

themselves. Also, a set of trusted/semi-trusted third parties

called scorers are involved. The trusted scorers determine
each stage’s score (reputation) based on the ratings

obtained by the stage. The stage’s behavior during the

mixing protocol determines its rating. Each stage in the

sender’s anonymous path is required to provide a signed

receipt to the sender. Failure to follow protocol leads to

the intervention by the scorers who then confirm the stage

to be compromised/faulty and give the stage a negative

rating. A successful transmission results in a positive rating
for the stages involved. If the scorers are only semitrusted

entities, then senders will be provided with a mechanism

to maintain the scores of the stages on their own.

In order to address misuse of the reputability mech-

anism, every stage in the mixnet is required to obtain

positive ratings from many senders to increase its score/

reputation effectively. Hence, an adversary will find it

difficult to send its own messages through the compro-
mised stages and thus increase their reputation while

attacking other uncompromised stages.

B. Reputation in Cascade Mixnets
In a free-route mixnet it is possible that a stage may

itself be a cascade mixnet. In a cascade mixnet, it is suf-

ficient for the adversary to compromise a single stage to

decrease the reputation of the entire mixnet. To address
this type of attack, in [77] the proposed reputation

mechanism reconstructs the cascade mixnets periodically,

using a random choice of stages with high reputation. The

remaining available stages are combined to form other

cascade mixnets. There is no trusted third party, only the

stages jointly participating in the reconstruction of the

cascades. Hence, in such a reputation mechanism the ad-

versary has to control several stages before it can create a
high reputation cascade mixnet. However, the overhead

generated by the periodic distributed reconstruction of the

cascade mixnets requires further investigation.

While the previous reputability mechanisms can be

integrated into mixnet protocols, both approaches assume

that the adversary can decrease reputation of stages and

cascade mixnets. In contrast, a mechanism that can be

integrated into the cascade mixnet protocol to enable the
mixnet to prove its reputation and also to detect any

compromised stage is proposed in [78]. As long as the

cascade mixnet does not contain threshold t or more

compromised stages, the mechanism provides robustness

against any misuse of reputation.

The main idea of the reputability mechanisms in [78] is

that the stages can jointly show that a message comes from

a valid input batch, without breaking the anonymity of its
sender. This allows the cascade mixnet to assert that it is

has not added or corrupted any message in its output

batch. Hence, upon detection of a corrupted message at

the receiver, the mixnet can indirectly prove that the

message was corrupted before arriving or after leaving the

mixnet. On the other hand, if a stage is compromised, then

the mechanism does allow for its detection. The following

are the reputability mechanisms that are proposed in [78],
using threshold signature schemes [79], [80].

1) Mechanism for a Decryption/Hybrid Cascade Mixnet:
The sender i interacts with the n stages to first

obtain a threshold blind signature S on the

message m (described in Appendix D). The sender

then broadcasts the encryption of ðmkSkbÞ to a

public bulletin board, where b indicates the cur-

rent batch number, which is publicly known. Note
that the blind signature is used to ensure that

message m is not revealed to the stages, hence

protecting sender privacy. From the mixnet output

batch, anyone can verify if the signature S cor-

responding to each message m is valid, and if not,

tracing is initiated. Tracing detects either corrupt

inputs to the mixnet or a compromised stage. In

the case of a corrupted input, anonymity of the
communication from the sender to the receiver is

breached. If a compromised stage is detected, then

the mixnet reputation decreases.

2) Mechanism for ElGamal Reencryption Cascade
Mixnet: In this mechanism, the ElGamal en-

crypted sender inputs containing ðmkbÞ, broad-

casted to the bulletin board, are jointly signed by
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the n stages using a threshold signature scheme
[78] as ðmkbÞd, where d is the private key shared

by the n stages. The stages then perform the

reencryption of the message, as well as that of the

signed form of the message. After the decryption

of the mixed output batch is performed, anyone

can verify based on the signature if an output is

derived from one of the inputs in batch b. As

before, any corrupted output leads to a tracing
which in turn leads to either a corrupt input or a

loss of mixnet reputation.

It can be observed that in both the mixnet protocols, if

the threshold t or more stages are compromised, then the

mixnet is compromised. Note that as in sender verifiable

cascade mixnet, the sender here must verify if its message

is present in the mixed output batch. Also, if the sender

does not verify its input posted on the bulletin board, then
its anonymity can be broken, since corruption of the input

would lead to eventual trace back in the mixnet protocol.

Hence, use of reputation in a mixnet may not provide

robustness against attacks. In fact, the robustness of the

mixnets in [78] is comparable to the sender verifiable

cascade mixnets seen in Section V-A, where only detection

of corrupted inputs is provided by a checksum.

IX. COMPARISON OF ANONYMITY
SOLUTIONS AND MIXNETS

A. Solutions for Anonymity
Before providing a comparison of mixnets, we consider

other types of solutions for anonymity that have been pro-

posed, such as [81]–[84]. As shown in Fig. 22(a) and (b),
in these channels the sender may have two or more con-

nected peers, and as long as all of its connections are not

tapped and all the peers are uncompromised, the sender
cannot be traced from a communication [85]. Thus, sender

anonymity [85], as well as untraceability, can be achieved.

In contrast, the sender can be identified and traced to the

input of the mixnet, as seen in Fig. 22(c). Untraceability is

all that is achieved by the stages of the mixnet.

The anonymous channel proposed in [81] and [85]

[Fig. 22(a)] is useful particularly for broadcast commu-

nications, and can provide unconditional anonymity to
sender as well as receiver [85], [104]. The anonymous

channels in [83] and [84] [Fig. 22(b)] are useful for low-

latency communications. However, these anonymity

solutions are suitable for peer-to-peer networks, requiring

network nodes (senders and receivers) to participate, even

if they have nothing to communicate. A single node can

disrupt any anonymous communication traversing it.

Moreover, assuming a powerful adversary that is capable
of tapping all communication channels in the public

network, the mixnet provides better anonymity compared

to the solutions in [83] and [84]. In their current form,

when compared to the mixnets, these peer-to-peer anon-

ymous channels are not necessarily scalable, robust, or

efficient for secure applications [86].

Fig. 24 summarizes the different approaches to anon-

ymity and also presents the classification of mixnets based
on verifiability. It should be noted that mixnets can indeed

provide sender/receiver anonymity when combined with

digital pseudonyms for the senders [1], [45], [85]. A com-

parison of the main classes of mixnets is provided as a

summary, together with open problems in each type of

mixnet.

B. Topology of Mixnet
In both the mixnet topologies, except for the first and

last stages, an intermediate stage j would not know its

Fig. 22. Solutions for anonymity. (a) Peer-to-peer-based solution capable of providing sender and receiver anonymity. (b) Peer-to-peer-based

solution capable of providing sender anonymity. (c) Mixnet solution providing only untraceability.
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location in the anonymous path. Each intermediate stage is

only aware of its preceding and succeeding stages in the

path. Note that under no active attack, the anonymity of a

path in a mixnet is preserved as long as at least one stage in

the path is uncompromised. In [22], it is observed that

while the cascade topology provides overall better security

properties compared to the free-routing topology in
mixnets, under certain conditions, the free-routing topol-

ogy can provide more robust anonymity.

1) Assume that a mixnet is to be designed for a low-

latency application, so verifiability cannot be used

in the cascade mixnet. As observed in [22], Fig. 23

illustrates a scenario where the anonymity of a

target input a can be protected in the free-routing

topology, while in the cascade topology it can be
breached.

2) Also, recently, it was shown in [38] that a free-

route mixnet with synchronous batching can

provide better anonymity, fault-tolerance, and

scalability properties, compared to cascade mix-

nets. The analysis in [38] is, however, limited to a

fully connected free-routing topology, and it

assumes that the input batch of the mixnet is
large enough to provide uniform distribution of

inputs across all the stages and that the anony-

mous paths in the mixnet are of equal length.

Hence, input batches are received and processed

synchronously by all the stages and will exit the

mixnet in the same temporal order. An interesting

observation is that the parallel mixnet proposed in

[64] (Section VI) maps to a combination of two
free-routing topologies from [38].

Fig. 23. Comparison of anonymity of two decryption/hybrid mixnet topologies for low-latency application, assuming that a single compromised

stage replaces input batch to trace an input a. (a) In free-routing topology, anonymity of input is still protected by input batch from

the other uncompromised stage. (b) In cascade topology, tracing of input a is possible. However, verifiability can address this

attack at the expense of latency.

Fig. 24. Overall classification of anonymity and mixnets.
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Further, we note that under a model weaker than the

powerful adversary model, the free-routing topology re-
quires more adversarial effort for controlling input and

output points of the mixnet. An interesting direction of

research, as suggested in [87], is to develop a mixnet

design that can provide the advantages of the free-routing

as well as the cascade topologies.

C. Cryptographic Transformation in the Mixnet
Table 5 provides an overall comparison of the various

cascade mixnets that were presented in the previous

sections. As can be observed, the ElGamal-based reen-

cryption and decryption mixnets efficiently satisfy many

of the security properties. Further, computationally effi-

cient proofs have been developed in [59] and [60], for

universally verifiable reencryption mixnets, and in [53]

and [57] for universally verifiable decryption mixnets.

However, due to the inability to accommodate for ad-
dresses of the stages, the ElGamal-based mixnets cannot

extend their advantages to support free-routing topologies

that require senders to include the addresses. Thus,

extending the ElGamal-based mixnet design to free-

routing topologies remains an open problem. A possible
solution to this problem may be obtained by adapting the

reencryption mixnet designs proposed in [19]. However,

recent results have indicated that this solution can be

challenging [106].

The RSA-based decryption/hybrid mixnets are readily

applicable to free-routing topologies, since they can

accommodate stage addresses. However, they need the

sender to perform multiple encryptions. An open problem
in the design of decryption/hybrid cascade mixnets is that

they are not universally verifiable. A threshold number of

compromised stages in RSA-based decryption/hybrid cas-

cade mixnet can break the mixnet integrity without de-

tection. Hence, in their current form, they have limited

use in applications such as secure electronic voting.

X. CONCLUSION

In this tutorial paper, we have described mix networks

under a common framework and have presented the

Table 5 Comparison of Cascade Mixnets: D-Decryption; H-Hybrid; R-Reencryption; E-ElGamal; n-Number of Stages in Mixnet; t-Threshold of ðt;nÞ secret
sharing scheme used to share keys;

p
-Satisfied; C-Conditionally Satisfied; �-Not Satisfied; Med-Medium; SV-Stage Verifiable; UV-Universally Verifiable;

CUV-Conditionally Universally Verifiable
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tradeoffs that arise in its design. While the number of ap-
plications of mixnets has grown since its construction, we

focus on presenting its use only in some secure applications.

Electronic voting, which is a popular social application of

cryptography, benefits from the anonymity as well as other

security properties exhibited by the mixnets. Anonymity

itself can be provided by other cryptographic constructions

and network architectures. But, for anonymous communi-

cation in terms of untraceability from the receiver to the
sender, the mixnet is still the most attractive solution when

both security properties and scalability need to be satisfied.

The peer-to-peer-based anonymity solutions can offer

unconditional sender and receiver anonymity and are

attractive in terms of protection from the consequences of

the use/misuse of anonymity. However, in their current

form, these solutions can fail to meet both security as well

as performance requirements.
One of the most challenging future works in mixnets is

its efficient and secure application to free-routing topol-

ogies. Currently, the decryption and hybrid type of mixnets

are solutions one can provide for a distributed implemen-

tation, requiring multiple encryptions at the user end. A

robust solution, based on the reencryption type of mixnet,

can be more computationally efficient as well as secure.

Although a step towards achieving such a solution has been
taken in [19], the design still needs multiple encryptions

by the sender and has reported weaknesses in its

applicability.

An inherent limitation of mixnet design is that the

maximum anonymity is limited only to a collusion of all

stages of the mixnet. Design of a mechanism in mixnets

that enables detection/prevention of such a collusion is an

open problem. In [88], an approach that performs fragile
mixing has been proposed, where stages are discouraged

from breaking anonymity of specific inputs in the input

batch. However, this approach assumes that the stages

have a vested interest in preserving anonymity of other

correspondences in the batch.

Another area of research in mixnets is related to its

practical implementation. Recent developments have

shown that the anonymous communication providers can
be discouraged to provide service, due to the possible

consequences related to misuse of anonymity. The rep-

utation mechanism in [78] provides an interesting

direction by enabling a reencryption cascade mixnet to

prove its innocence, if any illegal messages are detected

from it. A similar mechanism for a free-route mixnet can

be attractive for remailers and anonymous web browsing

providers.
In this paper, we have also provided a classification of

mixnets, based on verifiability mechanisms, that plays a

pivotal role in secure applications. The classification helps

in understanding the effective role of anonymity and

mixnets in widespread social applications, such as secure

electronic voting schemes and the related performance

and security tradeoffs. h

APPENDIX

A. Public Key Cryptosystems
As in many applications of cryptography, public key

cryptosystems [29] play a central role in the construction

of mixnets. They are used by the senders and receivers to

encrypt the messages and by the stages to transform inputs
during the mixing operation. The public key cryptosystems

that have been employed in mixnets are: 1) RSA [30] and

2) ElGamal [34].

1) RSA Cryptosystem: In the RSA public key crypto-

system [30], encryption of a message m is computed as

EKðm; rÞ ¼ ðmkrÞK
mod N (30)

where K is the public key, N is the RSA modulus [30], and r
is a random string. The decryption of the message m is
performed as

DK EKðm; rÞð Þ ¼ ðmkrÞK� �d
mod N

¼ðmkrÞKd
mod N � ðmkrÞ (31)

where d is the private key used for decryption, and

Kd � 1 mod �ðNÞ, where �ð:Þ is the Euler’s Phi func-

tion [28]. Note that the random string is used to randomize

the RSA encryption of a message m. If two inputs to a

mixnet contain the same message m, it is important that

their encryptions are different, in order to protect the

privacy of the corresponding senders.

2) ElGamal Cryptosystem: In ElGamal cryptosystem [34],

the randomized encryption algorithm is

EKðm; rÞ ¼ ðgrkmKrÞ mod p (32)

where p is a large prime, K ¼ gd is the public key, d is the

private key, r is a random string, and g is a generator [34] of
the group Z

p , i.e., gp�1 � 1 mod p. In some implementa-

tions of ElGamal cryptosystems [42], g is chosen from a

subgroup G � Z
p , such that the order of G is jGj ¼ q, where

q is a large prime, and p ¼ uq þ 1, with u being an integer.

The decryption of the message m is performed as

DK EKðm; rÞð Þ ¼ mKr

ðgrÞd
mod p ¼ mKr

Kr
mod p ¼ m: (33)

In the remaining sections, the modulo operation is as-

sumed in all the cryptographic transformations.

3) Homomorphic and Reencryption Properties of Public Key
Cryptosystems: An encryption algorithm EK is said to be
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homomorphic, if given two encryptions, EKðm1; r1Þ and
EKðm2; r2Þ, one can obtain EKðm1 � m2; r1 ? r2Þ without

decrypting m1 and m2 individually. The operations �; ? can

be modular addition or multiplication. For additive

homomorphism, the operation � is a modular addition,

and for multiplicative homomorphism, � is a modular

multiplication. The RSA cryptosystem, as well as ElGamal

cryptosystem, exhibit multiplicative homomorphism [28].

For example, given two ElGamal encryptions,
EKðm1; r1Þ ¼ ðgr1km1Kr1Þ, EKðm2; r2Þ ¼ ðgr2km2Kr2Þ, b y

multiplying the two encryptions, we obtain

EKðm1; r1ÞEKðm2; r2Þ ¼ ðgr1 gr2km1m2Kr1 Kr2Þ
¼ ðgr1þr2km1m2Kr1þr2Þ
¼ EKðm1m2; r1 þ r2Þ: (34)

The homomorphic property, while being useful for many

applications [89], can be misused in the case of mixnets

[48], [63]. For example, as illustrated in [63], an adversary

can modify inputs from two senders, {EKðm1; r1Þ;
EKðm2; r2Þ}, to be fEKð1; 1Þ; EKðm1m2; r1 þ r2Þg. Note that

the product of each pair is the same, hence such a

modification may not be detected as seen in Section V-D2.

The ElGamal cryptosystem also has the reencryption

property [54]. Given an ElGamal encryption of a message

m with a public key K, it is possible to reencrypt as

EKðm; rÞ ¼ ðgrgr0 kmKrKr0 Þ
¼ ðgrþr0 kmKrþr0 Þ
¼ EKðm; r þ r0Þ: (35)

Notice that by reencrypting as shown, with a random
string r0, the appearance of the encryption of m is changed.

This is an important property that is used in the mixing

operation at the stages of a mixnet, as seen in Section III-C.

However, reencryption can also be misused [42], since an

adversary can successfully replay the reencryption of a

target sender input and then possibly trace it at the mixnet

output (see Section IV-E).

B. Bulletin Board
A publicly accessible bulletin board [33], [89] is a

broadcast communication channel with memory. Each

sender i broadcasts its encrypted messages to the bulletin

board, which contains an authenticated section for sender

i, with append-only write access. However, the contents of

the section are publicly readable. Such a bulletin board can

be implemented robustly using multiple servers. The
authenticated bulletin board, as seen in Section IV-D,

provides robustness against certain attacks on mixnets. An

additional advantage is that the bulletin board provides

verifiability of the message to the sender, since the sender

can verify if the encrypted message has been received

without any error. Apart from obtaining the input batches,
the stages of the mixnet may also use the bulletin board to

broadcast their mixed output batches and proofs, as seen in

Section IV-D.

C. Secret Sharing
In a mixnet, anonymity can be achieved by letting a sin-

gle stage perform mixing operation. However, a robust

mixnet design will require multiple stages (see Section IV-B).
In such a design, a cooperating group of stages, particularly

in a cascade mixnet, may require secrets to be shared among

the group members. A ðt; nÞ threshold secret sharing scheme

[35], [90]–[94], where the threshold t � n, can be used to

share a secret S between n stages. To reconstruct the secret,

at least t stages have to submit their shares, which are then

combined. Consequently, the secret can be unconditionally

protected up to a collusion of t � 1 compromised and n � t
faulty stages [35].

D. Blind Signatures
As seen in Section VIII-B, a sender may need to obtain

the signature of the stages of a mixnet on a message, before

encrypting it. Then, in order to protect the privacy of the

sender, the message m must not be accessed by the stages.

A blind signature is a cryptographic protocol that can be
used to obtain the signature without revealing the

message. For example, an RSA blind signature protocol

[95] can be described as follows. As illustrated in Fig. 25, a

sender i blinds its message m using a random string r, and

the RSA public key K of the mixnet as mrK . The stages of

the mixnet sharing the RSA private key d [79], [80], [96]

obtain the blinded message and then jointly sign it as

ðmrKÞd ¼ mdrKd � mdr, and send mdr to the sender i. Since
the sender i knows r, it can obtain md, which is the message

m signed by the stages of the mixnet.

E. ZK Proofs
In order to avoid replay of inputs by an adversary [42],

as seen in Section IV-E, a sender may be required by the

mixnet to prove knowledge of the message encrypted [44].

Also, to address the integrity of the mixnet, the stages may
be required to prove the validity of the mixing operation

[40], as seen in Section V. This can be achieved using

interactive and noninteractive proofs [32], [97]–[99] that

Fig. 25. RSA blind signature protocol between sender and stage or

mixnet containing stages sharing private key d.
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are cryptographic protocols implemented by an entity P
(prover) to prove knowledge of a secret to an entity V
(verifier). If a proof does not leak the secret then it has ZK

[32]. Since ZK proofs require expensive public key op-

erations including modular exponentiations, the efficiency

of the mixnet using ZK proofs is dependent on them. A

single noninteractive ZK proof may need up to k com-

munication rounds, k being a security parameter, to attain

high probability of error detection [99]. However, efficient
noninteractive ZK proofs for mixnets in [59], [60] need

only one round.

F. Cryptographic Hash Functions
Cryptographic hash functions [28] have a variety of

applications in mixnets. In certain types of mixnets [8],

[63] (Section V-D2), a practical collision-resistant hash

function, such as SHA-1 [100], is used as a checksum to

ensure the integrity of the sender inputs. A keyed hash

function can be used as a MAC [28] to securely ensure

integrity of the input at each stage of the mixnet

(Section V-B2). A hash function is also used to compute
symmetric keys [13] and to securely store inputs for

avoiding replay of inputs [8], [76].

RE FERENCES

[1] D. Chaum, BUntraceable electronic mail,
return addresses, and digital pseudonyms,[
Commun. ACM, vol. 24, no. 2, pp. 84–88,
1981.

[2] M. Jakobsson, A. Juels, and R. Rivest,
BMaking mix nets robust for electronic
voting by randomized partial checking,[
in Proc. USENIX’ 02. New York:
Springer-Verlag, 2002, pp. 339–353.

[3] R. Sampigethaya and R. Poovendran,
A framework and taxonomy for comparison
of electronic voting schemes, 2004, manuscript
submitted for publication.

[4] VV, Evaluating secure remote electronic
voting systems, 2004, manuscript submitted
for publication.

[5] S. Parekh, Prospects for remailers. [Online].
Available: http://www.firstmonday.org/
issues/issue2/remailers/.

[6] L. Cottrell. (1994). Mixmaster and remailer
Attacks. [Online]. Available: http://www.
obscura.com/loki/remailer/remailer-essay.
html.

[7] C. Gulcu and G. Tsudik, BMixing email with
Babel,[ in Proc. Internet Soc. Symp.
Network and Distributed System Security,
1996, pp. 2–16.

[8] G. Danezis, R. Dingledine, and
N. Mathewson, BMixminion: Design
of a type III anonymous remailer protocol,[
in Proc. 2003 IEEE Symp. Security Privacy,
2003, pp. 2–15.

[9] A. Pfitzmann, B. Pfitzmann, and
M. Waidner, BISDN-Mixes: Untraceable
communication with very small bandwidth
overhead,[ in Proc. GI/ITG Conf.
Communication Distributed Systems,
Informatik-Fachberichte. New York:
Springer-Verlag, 1991, pp. 451–463.

[10] A. Jerichow, J. Muller, A. Pfitzmann,
B. Pfitzmann, and M. Waidner,
BReal-time mixes: A bandwidth-efficient
anonymity protocol,[ IEEE J. Select.
Areas Commun., vol. 16, no. 4, pp. 495–509,
Apr. 1998.

[11] D. Goldschlag, M. Reed, and P. Syverson,
BHiding routing information,[ in Proc.
Information Hiding, 1996, pp. 137–150.

[12] P. Syverson, D. Goldschlag, and M. Reed,
BAnonymous connections and onion
routing,[ in Proc. IEEE Symp. Security
Privacy, 1997, pp. 44–54.

[13] M. G. Reed, P. F. Syverson, and
D. M. Goldschlag, BAnonymous
connections and onion routing,[ IEEE
J. Special Areas Commun., vol. 16, no. 4,
pp. 482–494, Apr. 1998.

[14] Onion routing. [Online]. Available: http://
www.onion-router.net/.

[15] A. Young and M. Yung, Malicious
Cryptography: Exposing Cryptovirology.
New York: Wiley, 2004.

[16] H. Federrath, A. Jerichow, and A. Pfitzmann,
BMIXes in mobile communication systems:
Location management with privacy,[ in Proc.
Information Hiding, 1996, pp. 121–135.

[17] M. G. Reed, P. F. Syverson, and
D. M. Goldschlag, BProtocols using
anonymous connections: Mobile
applications,[ in Proc. Security Protocols,
1997, pp. 13–23.

[18] L. Huang, K. Matsuura, H. Yamane, and
K. Sezaki, BEnhancing wireless location
privacy using silent period,[ in Proc. IEEE
Wireless Communications Networking Conf.,
2005.

[19] P. Golle, M. Jakobsson, A. Juels, and
P. Syverson, BUniversal re-encryption for
mixnets,[ in Proc. RSA Conf. Cryptographers’
Track, 2004, pp. 163–178.

[20] J. Raymond, BTraffic analysis: Protocols,
attacks, design issues and open problems,[
in Proc. Designing Privacy Enhancing
Technologies Workshop, 2001, pp. 10–29.

[21] Free haven project bibliography. [Online].
Available: http://www.freehaven.net/
anonbib/date.html.

[22] O. Berthold, A. Pfitzmann, and R. Standtke,
BThe disadvantages of free mix routes and
how to overcome them,[ in Proc.
Anonymity, 2001, pp. 30–45.

[23] A. Serjantov, R. Dingledine, and P. Syverson,
BFrom a trickle to a flood: Active attacks
on several mix types,[ in Proc. Information
Hiding Workshop, 2002, pp. 36–52.

[24] M. Jakobsson and A. Juels, BAn optimally
robust hybrid mix network,[ in Proc. 20th
Annu. ACM Symp. Principles Distributed
Computing (PODC 2001), 2001, pp. 284–292.

[25] R. Dingledine, M. J. Freedman, D. Hopwood,
and D. Molnar, BA reputation system to
increase MIX-net reliability,[ in Proc.
Information Hiding Workshop, 2001,
pp. 126–141.

[26] C. Diaz and A. Serjantov, BGeneralizing
mixes,[ in Proc. Workshop on Privacy
Enhancing Technologies, 2003, pp. 18–31.

[27] C. Diaz and B. Preneel, BTaxonomy of mixes
and dummy traffic,[ in Proc. 19th IFIP Int.
Information Security Conf., 2004.

[28] A. J. Menezes, P. C. van Oorschot, and
S. A. Vanstone, Handbook of Applied
Cryptography. Boca Raton, FL: CRC , 1997.

[29] D. R. Stinson, Cryptography: Theory and
Practice, 2nd ed. Boca Raton, FL: CRC,
2002.

[30] R. Rivest, A. Shamir, and L. Adleman,
BA method for obtaining digital signatures
and public key cryptosystems,[ Commun.
ACM, vol. 21, pp. 120–126, 1978.
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