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ABSTRACT target detection, a number of sensors N are deployed to

Target detection and field surveillance are among the most monitor a Field of Interest Fol. The sensor deployment can

prominent applications of Sensor Networks (SN). The qual- be either stochastic or deterministic depending on the appli-
ity of detection achieved by a SN can be quantified by evalu cation and the Fol. Stochastic deployment is preferred when
ating the probability of detecting a mobile target crossing a the Fol is not under the designer's control at the time of
Field of Interest (Fol). In this paper, we analytically evalu- deployment (hostile environment), or when it is more cost-
ate the detection probability of mobile targets when N sen effective to randomly deploy the sensors than systematically
sors are stochastically deployed to monitor a Fol. We map place them (large-scale networks) [3,6,19].
the target detection problem to a line-set intersection prob- Once the SN is deployed, targets are detected using one or

1 1 1 *1 * 1 o 1 * 1 r T 1 more sensing modalities such as optical, mechanical, acoustic,lem and derive analytical formulas using tools from Integral g
Geometry and Geometric Probability. We show that the thermal, RF and magnetic sensing. In fact, to ensure robust-
detection probability depends on the length of the perime- ness and enhance performance, oftentimes a sensor fusion
ters of the sensing areas of the sensors and not their shape. approach is required [15]. As an example, a surveillance
Hence, compared to prior work, our formulation allows us to system can be realized via fusion of data aggregated from
consider a heterogeneous sensing model, where each sensor infrared, CCD, pressure and acoustic sensors.

can have an arbitrary sensing area. We also evaluate the Depending on the modality, sensing areas have any arbi-
mean free path until a target is first detected. trary shape, a reality significantly different from the widely

adopted idealized unit disk model [2-4,10,24]. Moreover, in
sensor fusion scenarios, devices of different modalities have
heterogeneous sensing capabilities. To date, prior work as-

C.2 [Computer System Organization]: Computer-Com- sumes identical sensing areas for all sensors [2-5,10,11,18,
munication Networks; C.2.1 [Network Architecture and 19,24]. In this paper, we address the problem of quantifying
Design]: Distributed networks Network topology the target detection capability of stochastically deployed SN,

when sensors have heterogeneous sensing areas.
General Terms In stochastically deployed networks, target detection is

only probabilistic. A metric that quantifies the detection
Algorithms,Performance, Design capability of a SN, is the probability of detecting a target

with at least one sensor [3]. This metric provides a worst-
Keywords case guarantee on target detection. Furthermore, to enhance

Heterogeneous Sensor Networks, Target Detection, Tracking fault tolerance and reduced false alarms, detection by more

than one sensors is required [6, 18, 19]. In such cases, the

1. INTRODUCTION SN detection capability can be quantified by the probabilityof detection by at least k sensors, where k is a design para-
Target detection is one of the fundamental services pro- meter. Finally, in several applications it is critical that the

vided by most Sensor Networks (SN). For the purposes of target is detected in a timely fashion, a quality that can be
*This work was supported in part by the following grants: quantified by computing the mean free path of the target
ONR YIP award, N00014-04-1-0479, ARO PECASE grant, until the first detection. Given a velocity model, the mean
W911NF-05-1-0491, and ARL CTA Grant DAAD 19-01-2- free path translates to the mean time until detection [3,10].
0011. We consider the following two detection models. In the

first model called the Instant Detection model (ID), a sensor
s detects a target X when the trajectory of X intersects
the sensing area of s. A similar model was considered in

Permission to make digital or hard copies of all or part of this work for [2-4,10,24]. We also consider the Sampling Detection model
personal or classroom use is granted without fee provided that copies are (SD), where a sensor s must sample the target X for at least
not made or distributed for profit or commercial advantage and that copies'.
bear this notice and the full citation on the first page. To copy otherwise, to tt unt'ftm,bfr a dtrietepeecfX
republish, to post on servers or to redistribute to lists, requires prior specific Several previous works have assumed the Energy Detection
permission andlor afee. model (ED), where a target is detected if the energy level
IPSN'O7, April 25-27, 2007, Cambridge, Massachusetts, USA. measured exceeds a pre-defined threshold [5,11,18,19].
Copyright 2007 ACM 978-1-59593-638-7/07/0004 ..$5.00.
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Figure 1: (a) A convex sensing area Ai of size Fi and perimeter Li, (b) a non-convex sensing area with a
convex hull boundary of size Lh and area size Fth, (c) the instant detection model: a target X is detected if
its trajectory crosses the sensing area of si, (d) the sampling detection model: a target X is detected if it is
sensed for at least tth units of time. Given a constant speed v of X, the length of the trajectory of X within
the sensing area of si must be greater than Vtth.

1.1 Our Contributions In [3], analytic formulae for the mean delay until a target
In this paper we make the following contributions. We is detected are provided, when targets move on a straight

map the target detection problem to a line-set intersection line at a constant speed. The authors consider a system
problem. Based on our mapping, we use tools from Integral model where N sensors are randomly distributed within an
Geometry and Geometric Probability to analytically evalu- Fol, with each sensor having identical sensing areas that
ate the probability of detecting targets moving at a random follow the unit disk model. Assuming that the target X
direction within the Fol. moves on a straight line, they provide closed analytic for-
Our formulation shows that the target detection proba- mulas that take into account the sleeping pattern for sen-

bility is independent of the shape of the sensing areas of the sors. Compared to our work, we additionally provide closed
devices, and depends only on the length of the perimeters analytic formulas when sensors have different sensing areas
of the sensing areas (length of the perimeters of the convex that do not follow the idealized unit disk model.
hulls of the sensing areas, for non-convex shapes). Hence, In [5,11,18], the authors proposed a collaborative detec-
compared to prior work, [2-5,10,11,18,19,24], our mapping tion model, where sensors collectively arrive at a consensus
allows us to consider a heterogeneous sensing model. Using about the presence of a target. Their formulation assumes
our formulation, we analytically evaluate the target detec- that the detection capability of each sensor decays as a func-
tion probability for heterogeneous SN, and derive the results tion of distance and hence, the sensing area of each sensor
for homogeneous SN, as a special case. follows the unit disk model. As performance metrics, the
We study the problem of target detection under both the authors consider the minimum exposure path, that is, the

ID and SD models, and show that the target detection prob- target path for which the target is least exposed to detec-
lem under the SD model can be reduced to the target detec- tion, and the maximum exposure path, that is, the target
tion problem under the ID model, by introducing the con- path for which the target is most exposed to detection.
cept of the effective sensing area. We also evaluate the mean In [14], the problem of optimum k-coverage of the bound-
free path until the target is first detected, a critical measure ary of an Fol is addressed. Covering the boundary of an
for timely detection. Our derivations provide an analytic Fol guarantees that any intruder will be detected with cer-
tool for network designers to select parameters such as the tainty. The authors in [14] assume that all sensors have
number of sensors, and type of sensing areas to guarantee a identical sensing areas following the unit disk model as well.
minimum target detection probability. In [7] the authors address the problem of determining the

delay until a target (intruder) is first detected. They con-

The rest of the paper is organized as follows. In Section sider the detection problem under the additional constraint
2 we present related work. In Section 3, we state our model that any sensor detecting the target must have a connected
assumptions, formulate the target detection problem, and path to the sink. They assume that targets move on a
provide relevant background. In Section 4, we analytically straight line, and all sensors have identical sensing areas
evaluate the target detection probability and the mean free conforming to the unit disk model.
path until the first detection. In Section 5, we verify our A relevant problem to target detection is the problem of
theoretical results via simulations. In Section 6, we present target tracking. Once the target X has been detected, the
our conclusions. SN is used to track the motion of X within the Fol. Several

methods for tracking moving targets with SNs have been

2. RELATED WORK proposed in the literature [2,10,16,16,24]. We do not address
2. RELATEDWORK the problem of target tracking in this paper.

The target detection problem in SN has been a topic
of extensive study under different metrics and assumptions 3. ASSUMPTIONS,PROBLEMFORMULA-
[2-6, 10, 11, 16, 18, 24]. In [10], the authors investigate the TION AND BACKGROUND
tradeoff between detection quality and power conservation.
They assume that nodes are randomly deployed within a
planar FoI, and have sensing areas that follow the unit disk 3.1 Network and Target Model Assumptions
model. Given a target X moving on a straight line, they In this section we state our model assumptions about the
derive the mean time until X is first detected. network deployment, sensor nodes and targets.
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Table 1: Mapping the mobile target detection problem to the line-set intersection problem
Mobile Target Detection > Line-Set Intersection

Number of sensors N Number of sets N
Field of Interest Ao Set So

Sensing area Ai of perimeter Li > Set Si of perimeter Li
Random sensor deployment > Random set placement

Trajectory of target X > Random line f crossing So
Probability of target detection > Probability of f intersecting
by at least k sensors PD(k) at least k sets

(a) ID model: A target X is detected by a sensor si if the
Sensor Deployment: We assume that N sensors are iden- trajectory of X crosses the sensing area of si.
tically and independently distributed within a planar Fol
lb,~~~~~~ ~acodn to a rado (nfr)dsibto. Th 'o (b) SD model: A target X is detected by a sensor s~i if XAo, according to a random (uniform) distribution. The Folisend(aml)foatestt>thutsftm,is a connected and closed set of perimeter Lo of arbitrary is sensed (sampled) for at least t > tth units of time,

shape. In the case where the Fol is not convex, we assume
that the perimeter, denoted as Lo , of the convex hull of Fol The ID and SD models can be combined with any stochas-
is known. The target detection problem under deterministic tic sensor failure model to provide the overall probability of
sensor deployment is addressed in [17]. target detection. The events of sensor failures are indepen-

dent from the events of a target crossing the sensing area of
Target Model: We assume that the trajectories of the mo- sensors. Hence, the senor failure model and the target detec-
bile targets are straight lines, with all trajectories crossing tion can be independently computed. Providing a realistic
the Fol being equiprobable. Although such an assumption sensor failure model is beyond the scope of this article.
constraints the space of all possible trajectories, we adopt it Figure l(c) illustrates detection based on the ID model
for two reasons. which places no constraint on the length of the line segment

of the trajectory within Ai. Figure l(d) illustrates detection
(a) Given any arbitrary entry and exit point in the Fol, based on the SD model , where a target X moving at a

moving on a straight line minimizes the length of the constant speed v is detected, only if the trajectory inside Ai
trajectory of the target within the Fol (minimizes the is longer than Vtth. We now provide our formulation for the
time that the target can be detected). Hence, the tar- moving target detection problem.
get detection probability assuming line trajectories is
the worst case probability compared to the detection 3.2 Problem Formulation
of any other possible trajectory. The worst case analy- Mobile target detection problem: Given an Fol A0 of
sis allows us to compute network parameters such as perimeter Lo sensed by N sensors with sensor si having a
sensor density and length of the perimeters of the sens- sensing area Ai of perimeter Li, randomly and independently
ing areas, so that target detection is guaranteed with deployed within the Fol, compute the probability PD (k) that
a minimum probability. a target X randomly crossing A0 is detected by at least k

sensors.
(b) If an arbitrary trajectory is considered, the parame-

ters of the trajectory (length, curvature, multiple self- Mapping the mobile target detection problem: The
crossing points) need to be specified in the model, in problem of mobile target detection under stochastic deploy-
order to analytically evaluate the probability of target ment can be mapped to a line-set intersection problem in
detection. On the other hand, line trajectories have a the following way. Let the Fol be mapped to a bounded
simple parameterization that facilitates the analytical set So, defined as a collection of points in the plane with
calculation and physical interpretation. perimeter length Lo. Let the sensing area of sensor si be

mapped to a bounded set Si with perimeter length Li. Let
Straight line motion models have also been assumed in pre- the trajectory of the target X be mapped to a straight line
vious works addressing the target detection problem [3, 7, ((, 0) in the plane, with parameters ( and 0 be the shortest
10].Furthermore, though we do not present it in this paper, distance of f to the origin of a coordinate system, and 0 be
our formulation can be extended to include three dimen- the angle of the line perpendicular to f with respect to the
sional Fol. x axis. Then, the mobile target detection problem for sto-

chastic SN is equivalent to the following line-set intersection
Sensing Model: We assume that each sensor si, i = 1 ... N problem.
has a sensing area Ai that is a closed and connected set
of perimeter Li. In the case where the sensing area is not Line-set intersection problem: Given a bounded set So
convex, we assume that the perimeter, denoted as L h of of perimeter length Lo and N sets Si of perimeter length Li,
the convex hull of Ai is known. Based on our assumptions, randomly and independently placed inside So, compute the
sensors need not have an identical sensing area Ai. Figure probability P9D(k) that a ramdom lime f imtersectimg So, also
1(a) illustrates a sensing area Ai of convex shape. Figure imtersects at least k out of the N sets £i, i =1 . .. N.
1(b) illustrates a non-convex sensing area and the equivalent
convex hull boundary. For detecting a mobile target X we Table 1 summarizes the mapping from the mobile tar-
consider the following two cases: get detection problem to the line-set intersection problem.
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Throughout the rest of the paper the terms sensing area Ai
and set Si will be used interchangeably. J

h4< t <S w/ h / /

3.3 Relevant Background
The probability of target detection PD can be evaluated

using a simple frequency count argument. If all possible lines
in the plane that intersect set Ao (the Fol) are considered
as possible target trajectories, PD is equal to the quotient of
the "number" of lines that intersect Ao, over the "number" (a) (b)
of lines that intersect any k or more sets Ai (sensing areas).
However, the set of lines in the plane intersecting a set A Figure 2: (a) The thickness T(O) of a set A2 is equal
is uncountable. To bypass our difficulty in counting lines in to the length of the projection of Ai on a line with
the plane, we adopt a measure from Integral Geometry and dirpetiona0.O measr ithesect of lie Fo die ctio
Geometric Probability [20,22]. In geometric probability, the perpendicular to 0 that intersect Ai. (b) For the case
measure m(f) of a set of lines (t, 0) in the plane is defined of a disk, T(O) - 2r, VO, where r is the radius of the
as follows [20,22]: disk A

DEFINITION 1. Measure of set of lines m(f): The mea- The relation between m(f) and L as expressed in (3) can
sure m of a set of lines 0) i's defimed as the imtegral over be interpreted as follows. The measure m(f) of the set ofthe limne demsi'ty dl? =c A dO lines l?((, 0) intersecting a bounded set A is equal to the

m(f) = <t A da, (1) average length E(T) of the projection of A over all possible
directions, times the measure of all the possible directions.

where A denotes the exterior product used in Exterior Cal- 4. TARGET DETECTION PROBABILITY
culus [9].

In this section, we analytically evaluate the detection prob-
In the case where A is convex, the measure of the set of ability PD(k), that a target crossing the Fol is detected by

lines that intersect A is equal to: at least k sensors. We then evaluate PD (k) under the SD
p F27 model. Finally, we compute the mean time until a target X

m(f: A # 0) dA dO dO = L, (2) crossing the Fol is first detected.

where L is the perimeter of A. Interested reader is referred 4.1 Instant Detection
to [20-22], for the proof of (2). In the case where A is non- Under the ID model, the probability that target X is de-
convex, the measure in (2) can be computed by observing tected by at least k sensors is given by the following theorem.
that any line intersecting the convex hull of A, also intersects THEOREM 1. Let AO be a boumded Fol of perimeter lemgth
A. Hence, the measure of the set of lines that intersect a L v N
non-convex set is equal to the perimeter of the convex hull 0 momo b A'wth sensor si, i 1 ... N havtng a sensing area of perimeterof that set, denoted as L'h.
A geometric interpretation for (2), can be obtained by lemgth Li. The probability PD(k) that at least k> 1 semsors

considerin the thickness T ofaboundeddetect a target X crossing the Fol and mov'tng on a random
straight line traJectory is given by:

DEFINITION 2. Thickness of a bounded set T(0): k1 IZN,I lzjl iZgl
The thickness of a bounded set A at direction 0 is defined as PD(k) = 1- y r qzj(i) J1 (1 -q ,j (5)
the length of the projectzon of A to a line of directzon 0. W=o =1 i=1 V=1

The thickness of a set A measures the set of lines along the where ZN,W denotes the (iN) w-tuples zj of vector [1, ... , N].
direction perpendicular to 0, that intersect A. Figure 2(a), That is, ZN,w = {Zj Z(1),.. ,Zj(i),. ,Zj(W) j(i) C
illustrates the thickness of a set Ai at direction 0. Figure [1, N], j(i) 7# j(g), Vi #? g}. The z- denotes the complement
2(b) illustrates the thickness of a circular sensing area Ai, (N - w)-tuple of zj with respect to vector [1, . . , N], and qi
of radius r. Independent of the direction of projection, the is give by q= i
thickness of a disk is always equal to the diameter of the PROOF. LO
sensing~~~~ara thti ) 2,V .Thcns.srltdt PROOF. Let us first compute the probability that a target

m(f) via: is detected by a single sensor si. Based on our mapping in
Section 3.2, this event is equivalent to the probability qi that

(e= dIt A dO (-) tW T(O)dO (-) tE(T) = L (3) a line intersecting A0, also intersects Ai. This probability is
J A

d f TE(T) = L. 3 equal to the quotient of the measure of the set of lines that
intersect both A0, Ai over the measure of the set of lines

Step (i) holds due to the fact that for a fixed 0, the integral that intersect Ao.
of dIf (set of positions) of the lines that intersect A is equal
to T(0). Step (ii) holds due to the uniform distribution of q_ m(flA0 fnA2 # 0) (, m( flA2 # 0) ( __i 6
the lines: qz m(l?flAo#+0) m(l?flAo#+0) Lo (6

fl 1, Step (i) holds due to the fact thatAi is within A0 and hence,
E(T '-J 1TrOdO'(4) any line intersecting Ai also intersects Ao. Step (ii) follows
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due to (2). The probability qi in (6) is computed for the equiprobable. Let f(0) denote the probability distribution
case where both Ao, Ai are convex sets. In the case where of the trajectories of target X with respect to the trajectory
any of the sets are not convex, the length of the perimeter direction 0. Then the target detection probability PD(k) is
of the convex hull, denoted as Lh, is used to compute qi. expressed in the following corollary.

Using (6), we now compute the probability that a line f
intersects exactly k sets. Let ZN,k denote the (N) k-tuples zj COROLLARY 1. The probability PD (k) that at least k >
of vector [1, ... , N]. That is, ZN,k {Z Zj(i),7.. , Zj(i),., 1 sensors detect a target X crossing the Fol and moving
Zj(k) j(i) C [1, N], j(i) 7? j(g),Vi 7 g}. Let also z-j denote on a straight line trajectory, with the line trajectories being
the complement of zj with respect to the vector [1, ... , N]. distributed according to f (0), is given by:
The probability that a line f intersects all sets indicated by ( k-I IZN,I lzjl
the k-tuple zj is given by: PD(k) Jf(0) I|-1 E E qz(i)(0)

M(Z'- n z(,+:-:A j, 7° \ w=O j=1 i=l
enAfj(l) = 0 ...e nAzj(N-k) =) J (1 q-d (,) (0)) (11)

nAzj (1) 7~0..Pf Azj(k) 7
where f(O) denotes the target trajectory distribution with re-

P (e A.j 0 P enAzj(Nk) ) spect to the direction 0, ZN,w denotes the (N) W_tUpleS Zj Of

lzj I ifil ~~~~~~~~~vector [1,... IN]. That i'S, ZN,~ {Zj Zj(i), j,Z(j),
IzjlIziI Zj(w) j(i) C [1,N],j(i) 7? j(g),Vi 7? g}. The z- denotes

1qzj(i) 171((1- qfj(v)) (7) the complement (N - w)-tuple of zj with respect to vector
i=l v=i [1, ... , N], and qi (0) is given by qi (0) = T (0)

In step (i), we express P(zj) as the probability that a ran- PROOF. For a iven direction 0 the target detection rob-
dom line intersects exactly the k sets denoted by the k-tuple PDOOF. Foria given byetoby target witi prob-
zj. Since the sets Ai are randomly and independently de- ability PD(k,0)is given by(5),by substitutingqt withq (0)
ployed within the Fol, in step (ii) the probability of the TO (0) Corollary 1, follows by computing the average value
intersection of events becomes equal to the product of the of PD (k, 0), over all 0.
probabilities of the individual events. To compute the prob-
ability of a random line intersecting any k sets, P(zj) must PD (k) (f(0)PD (, 0) d (12)
be summed over all possible k-tuples zj.

Iz I ZifI
P (ZN,k) = 7 (]qzj (i) 11 (1 - qZj(v)) (8) The complexity of computing (5) and (11) grows exponen-

ZN,k i=1 v=1 tially with the heterogeneity of the sensing areas. If all sen-
Theorem 1 holds by noting that sors had sensing areas of different perimeters, an exponential

number of terms must be summed to calculate (5),(11). For
k-I large-scale networks, PD(k) can be efficiently approximated

PD(k) = I1- P (ZN,w). (9) with the use of the following theorem.
w=O

F-1 THEOREM 2. Let the probability qi that a target X is de-
tected by sensor si be small, while the sum of the probabili-

From Theorem 1, note that PD(k) depends only on the ra- ties >i qi is nearly a constant -y, as i -) oc. The probability
tios Li of Ai and not the specific shape, or size of the sensing P(ZN,) comverges to a Poissom distributiom of rate -y.
areas. Hence, Theorem 1 allows the analytic computation of k
the detection probability in the case of sensors with hetero- P(ZN,k) =ye ,E - y, max qi - 0. (13)
geneous sensing areas. Also note that sensors with sensing k
areas of different shapes but same perimeter length, yield
identical detection capabilities. This fact is true only if all PROOF Te proofof Theorem 2 is a special case of Lim-
possible target trajectories are assumed equiprobable.
Theorem 1, can also be used to describe the target de- Substituting (13) to (9) yields PD(k), for the case of large-

tection capability of a SN, at a particular direction 0. The scale heterogeneous SN. If sensors have sensing areas withmeasure of a set of lines intersecting with a set at a fixed
diretio 0 i eqal t th thcknes T0) o th setin hat perimeters of equal length (not necessarily identical shapes),direction 0 is equal to the thickness T(O) of the set in that .5 ca besmlfe.oth olwn om

direction. Hence, the elementary probability qi (0) that a
target X is detected by a single sensor when moving at di- COROLLARY 2. The probability PD (k) that a target cross-
rection 0 is equal to rng the Fol will be detected by at least k sensors, when all

qi (0) Ti(0) sensors have sensing areas with equal perimeters L is equal
T'o(0) (10) to:

Substituting (10) to (5), yields the probability PD(k,()0 /) 1 X, _N_L_L___ i (14
at a particular direction 0. The probability PDD (k, 0), can be DL- (vi(LJ>L)N
used to evaluate the target detection capability of SN, when =
the possible trajectories of target X crossing the FoI are not PROOF. Corollary 2 follows by setting q2 = L in (5). D
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COROLLARY 3. The probability PM that a target crossg j,
the Fol 's mot detected by any semsor is equal to: W=O ZNJ, i=1v

....N E

Li where /i = E(T)(a) (bc(15)ive i o PROOF. The proof of Theorem 3, follows the same steps of

PROOF. The proof of Corollary 3 follows, by observing the proof of Theorem 1 in the case of the ID model. The only
that PM P(ZN,0), and zj 0, {, . .. N} on difference between the two proofs is the computation of the

Using Thorm , e analo vauae heprobability qi for a single sensor to detect a target X. Based
Depending on the application, (15) allows us to select on our mapping in Section 3.2, in the case of the SD model,

Li, N so that PM remains below any desired threshold value, target detection is equivalent to the conditional probability
qC that a line that intersects ito, also intersects Ait, with the

4.2 Sampling Detection length of the cord being iflnitl . Vtth. This probability
Under the SD model, a target X must remain within the is equal to the quotient of the measure of the lines that

sensing area of a sensor s~i for at least tth units of time, intersect both ito, Ait and have a cord lengthi~flnit . Vtth,
before si can detect X. Given a velocity model for X, SD over the measure of the set of lines that intersect iO,
occurs if the length of the intersection of the trajectory of pm(if itof i . Vtth)
X with the sensing area Ait is at least Ith(v). Assuming the m aseio= 0) (18)
simplest velocity model of constant speed' for X, SD occursvn o

when the length of the intersection is longer than Vtth. To The measure of the set of lines that intersect to is given
measure the set of lines that intersect a set i and have a by (2) and is equal to E(To) = Lo. The measure of the set
cord within i of length longer than Vtth we define the notion of lines that intersect both io, ait and have a cord length
of effective thickness T ci(o). lnAith Vtth, is computed as follows:

DEFINITION 3. Effective Thickness T'(0) The effec- m( 0Ato Ati .uoiVtth) mm(i itA . ineVtth)
tinvethickmess T(0) for a set i is defimed as the measure
of the set of lines m(t) perpemdicular to the directiom 0, for ] Ad0
whuich the length of the cord wi'thim it i's greater or equal Vtth Ifni (18Vtth

That is, (ri) j~~~~~~~~~~~~~~~~~~~Tl(O)dO(iv) iE(T/).
TX(0) J t (16) In step (i), Ai is a subset of ito and, hence, the length ofw l, AvthnAlttth the line that is common to both to and it is equal to the

The probability of moving target detection under the SD length of the cord in Ait2 In step (ii), we integrate the line
model is given by the following theorem. density dl =o A dO over all lines that intersect Ait and have

THEFNTORE 3. LEt agtXcosteFlmvm maeulthffective thickness T'(0).Theargeeffec- (lA n i,Vt)- m ln iV tive
stagtlimea osatsedv.Te poaityP(ktht thickness T()for rano lines is giefneby:h eaue

ofnyotherveloclit modeltcanberpen asum to mapthe san- f 1i,for (1ddt)

which~ ~~~~~~~~~~~~~~~~~---the lengt of the cord withi -A1 Ifi Araeor--qua Vth It n i

pling ~ ~~ ~ ~ ~ ~ ~~~~~~~htime thresol tth into ootoan trjctr legt eqth(v)-t0hTe0O

Th pobbliyf oin tretdeecin ndrth S lnthofth or i i.Instp(i),w iter524h ln



TraJectoryofV In figure 4, we show the equivalence between the sensing
/ L;=2=aE,) n area of a sensor si under the SD model. Note that in the

case of the unit disk model, the effective sensing area is a
subset of the original sensing area. As an example, in figure

* - 2 t Wp3(c) the effective sensing area of a disk of radius r, is a

concentric disk of radius r' r2 (Vtth ))2 Through the
I0(Xi X umxctiveaiva A, rest of the paper we focus on the ID model, with equivalent

results holding for the SD model.
A i- I P iniLter: L

4.4 Mean Free Path until the First Detection
Figure 4: The effective area of a sensor si. In several applications, the distance that the target X

travels within the Fol undetected is an important metric
Hence, step (iv) follows. The combination of (18), (19), (2) of the quality of detection. In this section, we analytically
and (3) yields: compute the mean free path E(u) until the first detection

77E(Ti')7E (Ti') E (Ti') of a target X. To facilitate the computation we assume that
qi E(Ti) _rE(Ti) (Ji) (20) sensors have identical sensing areas. Note that computing

Lo 7FE(To) E(To) the mean free path E(u) traveled by X, is sufficient to de-

Following the same steps as in the proof of Theorem 1 termine the mean time E(t) until X is first detected, given
yields Theorem 3. w a velocity model for X. The mean free path problem can be

stated as follows.
4.3 Mapping the SD Model to the ID Model Mean Free Path Problem: Let N sensors with identi-

cal sensing areas be randomly and independently deployedThe ID model facilitates a geometric interpretation of the withina area Fe assum ingtaatretXi mov-
target detection problem. Any target crossing the sensing
area of a sensor is detected. However, no such geometric ing on a straight line, compute the mean free path before
interpretation exists for the SD model. We now provide a the target X is detected.~~~~~~~~~~~~~The mean free path for which the target X remains un-reduction from the SD model to the ID model that allows us detedi gien byth follwing theo rem.
to map any results for the simpler ID model to the SD one.
Our goal is to define for each sensor si, an effective sensing THEOREM 4. Let N sensors with identical sensing areas
area Ai with the following property. If a target X crosses be randomly and independently deployed within a FoI of area
the boundary of Ai (ID model), then X is detected under Fo. Assuming a target X moving on a straight line, the mean
the SD model. free path before X is detected equals:

For sensing areas of arbitrary shape, the average effective fi
thickness of Ai, does not correspond to the average thickness E(u) ° (21)
of a subset of Ai. As an example, in figure 3(a), all lines NE(T)
of direction 2 intersecting the rectangular sensing area Ai, PROOF. Under the ID model, a target X travels for a2
have a line segment within A longer than Vtth (assuming distance ax undetected, if it does not cross the sensing area
Vtth < b.). However, for a direction 0 0,{°,2} there is of any sensor. When the sensors have a sensing area of
a set of lines with a line segment within Ai shorter than identical thickness for all 0, on a given trajectory, any sensor
Vtth. The subset of Ai that does not result in detection for within distance E (T) from the trajectory of X, detects X.
lines in direction 0 is depicted by the shaded areas in figure This event is equivalent to considering that the target X has
3(b). Hence, one cannot define a subset of Ai with average an average thickness of E(T)

co

T(O),V, while the sensing
thickness equal to the average effective thickness of AP. area of all sensors is reduced to point masses. Figure 5(a)

However, from (17), the probability of detection PD(k) illustrates target X being detected by sensors with sensing
only depends on E(TcI), and not the shape of the sensing areas of average thickness E(T) while it crosses the Fol.
area. Hence, we can define an effective sensing areaA' for Figure 5(b) illustrates the equivalent scenario, where the
each sensor s~i, that is not necessarily a subset of A. target X has an average thickness of E(T), while the sensing

areas of the sensors are reduced to point masses.
DEFINITION 4. Effective Sensing AreaA'q : Let the When the target X moves a distance ox, it covers an

average effective thickness of a set A be equal to E(T'). area of size .F(ox) = E(T)ox + f, where f denotes the
The effective sensing area A' is defined as a disk of radius residual shaded area in figure 5(c). Hence, the probability
r'=E(T')/2. that the target X is not detected for a distance of a >. x

is equal to the probability that no sensor is located within
Using the notion of the effective sensing area, we can map F(cx). Given that the sensors are randomly and indepen-

the target detection probability under the SD model, to a dently deployed, the number of sensors within .F(cx) is
target detection problem under the ID model using the fol- given by a homogeneous planar Poisson point process of den-
lowing corollary. sity p = F [20]:

COROLLARY 4. The target detection probability under the F)S_k_(pF)k_pF2
SD model is equal to the target detection probability under ( S k) k! (2)
the ID model, when the sensing areas of the sensors are re- whr eoe ubro enos qain(2 od

placedbytheffectivesnsing areas.under the assumption that F0 -) oo, while the sensor density
PROOF. The proof follows by setting Li 2wrr' in (5). D p remains constant. Based on (22), the probability that the
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Figure 5: (a) Any sensor within a distance E (T) from the trajectory of the target X, detects X, (b) Equivalent
formulation, for a target of average thickness E(T), and sensors with sensing areas reduced to point masses,
detection occurs if a sensor si "collides" with the target, (c) the mean free path of a target X and the
equivalent free area.
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0 Simulated 0.5 Simulated
0.7 | Theoretical Theoretical

0.6 0.4-

0.5
~-0.3-

0.4-

0.3 0.2

0.2

0.1~~~~~~~~~~~~~~~~~~~~~~.
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80

r (radius) Side length cc

(a) (b)
Figure 6: Homogeneous SN: (a) Probability of detecting a target by the deployment of a single sensor with
circular sensing area, as a function of the radius r. (b) Probability of detecting a target by the deployment
of a single sensor with square sensing area, as a function of the side a.

free path of target X is u > ox, is equal to the probability 5. VALIDATION OF THE THEORETICAL
that no sensors exist within an area of size .F(ux) RESULTS

P(u > ux) = P (Nr(-)X) ) In this section, we verify the validity of our theoretical
-p T(i)

=
-p(E(T)7+ff) (23) results be performing extensive simulations. We randomly

deployed N sensors in a circular Fol of radius R = lOOm.
The random variable u is a non-negative continuous random We then generated random lines corresponding to random
value and, hence its expectation is given by: trajectories of targets and measured the number of sensors

Q _ pf
E(T)Q

that detect the moving targets. We performed the following
E(C) j P(u > orx)dx =pe (iI - PE(T)Q) experiments.

JO ~~~pE(T)
(24) 5.1 Probability ofDetection by a Single Sensor

where Q denotes the maximum possible length of the tra- In our first experiment,we randomly deployed a single sen-
jectory of X within the Fol. When the residual area f iS sor, with a circular sensing area of radius r. We varied r from
small enough so that P 1 and Q is long enough so that lOm to 80m and measured the probability that a target mov-
epE(T)Q 0, ing at a random trajectory is detected by the sensor. For

E(u) 1 _ Fo. each radius r we repeated the experiment 100 times to en-
pE(T) NE(T) (2) sure statistical validity. Based on our derivations in Section

r-i 4, the probability that the target is detected is equal to:

Note that in the present analysis we have assumed sensing PD q2r (26)
areas of constant thickness T(O), VO. This assumption can L
by relaxed if one assumes sensing areas of equal thickness In figure 6(a) we show the probability of detection P)D for
on a given direction 0, but not constant over all 0, and then varying r for our first experiment. We observe an almost
average over all 0. exact match between the theory and the simulation, con-
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Figure 7: (a) Heterogeneous SN: Probability of target detection by at least one sensor as a function of the
network size, when the radius of the sensing area is uniformly distributed within r C [0,1]. (b) Probability
of target detection by at least one sensor as a function of the network size, when the radius of the sensing
area is uniformly distributed within r C [0, 0.1]. (c) Homogeneous SN: Target detection probability by exactly
k sensors. (d) Target detection probability by at least k sensors. (e) Probability of missing a target as a
function of the network size. (f) Probability of target detection by at least one sensor as a function of the
network size, and comparison with the fraction of the Fol covered by at least one sensor.

firming that the probability of a random line intersecting For large N according to Theorem 2, PD(1) tends to
a set of perimeter Li given that it intersects the overset of N Li
perimeter Lo is equal to the quotient of the two perimeters. PD(1) = 1-e- i=1 LO (28)
We also repeated our experiment when the deployed sen-

sor had a square sensing area of perimeter 4 * a, where a In figure 7(a), we show the theoretical value of PD(1), the
denotes the length of the side of the square and was varied value according to Theorem 2, and the simulated value, as
from lOm to 80m. In figure 6(b) we show the probability a function of N. We observe that when the conditions of
of detection PD for varying a for the case of square sensing Theorem 2 are satisfied, one can compute PD (k) without
area. We observe that regardless of the shape of the sensing incurring the high computational cost of the exact formula
area, our theoretical formula agrees with the simulation. (as k increases the number of terms in the exact formula of

PD (k) increase exponentially).
In figure 7(b), we show PD(1) when the radius of the

5.2 Probability of Detection in Heterogeneous sensors is uniformly distributed in [0, 0.1]. We observe that
SN the target detection probability grows almost linearly with

In our second experiment we deployed sensors with het- the number of sensors is deployed when the length of the
erogeneous sensing capabilities and evaluated the detection perimeters of the sensing areas of the devices deployed are
performance of the SN. Each sensor deployed had circular significantly smaller than the perimeter of the Fol. We also
sensing area of a radius uniformly distributed in [0,1]. We observe that the Poisson approximation is very close to the
selected a small sensing area in order to satisfy the condi- exact theoretical value as well as the simulated value.
tion maxi qi -) 0 while Ei qi -) -y, so that the probability 5.3 Probability of Detection in Homogeneous
of detection of a target by exactly k sensors can be approx- c
imated by (13). We varied the number of sensors deployed SN
from N = 100 to N = 1000, and computed PD(1). The exact In our third experiment, we evaluated the detection per-
formula for PD(1) is given by formance of a SN when all deployed sensors have identical

sensing areas. We initially deployed 30 sensors with a circu-
N ~~~~~~~~larsensing area of radius r =lOin and measured the prob-

PD(1) ft(.1- (27) ability of detection P(ZNk ) that a target randomly crossing
=_V_ o the FoI is detected by exactly k sensors. The probability
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