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Abstract. We propose a generic method to construct forward-secure signature
schemes from standard signature schemes. The proposed construction is more
computationally efficient than previously proposed schemes. In particular, the key
updating operation in the proposed scheme is orders of magnitude more compu-
tationally efficient than previous schemes, making it attractive for a variety of
applications, such as electronic checkbooks. Another advantage of our proposed
scheme is the ability to be easily extended to proxy signature schemes. We de-
fine two notions of forward-security in the proxy signature setup, namely, strong
forward-secure proxy signatures and weak forward-secure proxy signatures. We
then describe a construction of a scheme that satisfies the strong forward-secure
proxy signature property.
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1 Introduction

1.1 Background

One of the biggest threats to the security of standard digital signatures is from the expo-
sure of the secret (signing) keys. If the secret key of an authorized user is exposed, an
adversary with access to the exposed key can forge signatures that are indistinguishable
from the signatures of the authorized user. Furthermore, all the signatures of the autho-
rized user become repudiable, even if they have been generated before the key exposure.
In order to minimize the damage caused by key exposure, the notion of forward-security
in digital signatures was put forth by Anderson in [2] and formalized by Bellare and
Miner in [3]. In forward-secure signature schemes (FSS), although an adversary with
access to exposed keys can generate valid signatures, the validity of signatures gener-
ated prior to the key exposure will remain intact. Consequently, forged signatures with
past dates are distinguishable from valid signatures.

A forward-secure signature scheme is a key evolving scheme [3]. In previously pro-
posed schemes [3,1,13,11,5,14,18], time is divided into disjoint intervals, say T periods
t1, t2, ..., tT ; each period ti has a secret key, while the public key remains the same. At
the end of each interval, a new secret key is generated and the secret key correspond-
ing to the previous interval is deleted [3]. Hence, FSS are time dependent; that is, FSS
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must be correlated in some way to the time when the signature is generated. On the
other hand, a verifier of an FSS must also have a mechanism to verify that the signature
generated during interval ti is uniquely related to the secret key that is valid at ti. To
ensure forward-secrecy, however, it is required that old secret keys cannot be computed
by unauthorized users based on the knowledge of present or future keys.

As pointed out in [3], it is trivial to design FSS if we allow the size of the registered1

secret and/or public keys, or the size of the signatures to grow proportionally with the
number of intervals T . It is impractical, however, to assume users’ ability to register
an arbitrary number of keys from the Certificate Authority (CA) [3]. Except for [2], all
proposed schemes avoid such an impractical assumption [3,1,13,11,5,14,18].

In the existing literature, there are two major classes of approaches to design FSS.
The first approach is to design schemes based on specific number theoretic assump-
tions [3,1,13,11,5]. The second approach is to apply a generic construction to stan-
dard signature schemes [2,3,14,18]. Generic schemes have the advantage of provable-
security assuming secure standard signature schemes exist [7]. On the other hand, spe-
cific schemes can only be proven secure in the random-oracle model[7]. Another ad-
vantage of generic schemes is that they exhibit the added flexibility to be instantiated
from different standard signature schemes. This gives generic schemes the room for
trading off computational and storage efficiencies by using base schemes with different
performance characteristics, rather than being bound to the properties of a specific base
scheme [7].

An unsolved problem in previously proposed schemes [3,1,13,11,5,14,18] is the va-
lidity of signatures generated within the key exposure interval. Obviously, all signatures
generated before the key exposure but within the same interval will be repudiable, since
the same key is used throughout the entire interval. Therefore, the design of interval
lengths can be a nontrivial task. The longer the interval, the more the signatures gen-
erated with the same key, hence, violating the whole idea behind forward-security in
digital signatures. On the other hand, shorter intervals will result in a more frequent key
updates, even if no signature has been generated during the intervals.

In this paper, we propose a generic construction, that can be applied to any standard
signature scheme based on the discrete logarithm problem (DLP)2, to compose an FSS
scheme. Our treatment of forward-security is different; instead of corresponding keys
with time intervals, our keys are tied with signatures. That is, each key is used for one
and only one signature; after every signature generation, the key is updated independent
of time. In our scheme, the key update algorithm is orders of magnitude more compu-
tationally efficient than previously proposed schemes. Furthermore, computational and
storage efficiencies are very competitive in all parts of the scheme, compared to other
generic schemes in [14,18] and achieves better performance overall (Tables 2 and 3).

Another advantage of our scheme is that its extension to proxy signatures is straight-
forward and intuitive. We define two levels of forward-security in proxy signatures, and
propose a generic construction of forward-secure proxy signature schemes that achieves
the stronger level of security. To the best of our knowledge, the construction of forward-
secure proxy signature schemes has not been addressed in the literature.

1 Registered keys are the ones authenticated by the Certificate Authority.
2 In fact, the construction can be extended to non-DLP based signature by slight modifications.
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1.2 Related Work

In [2], Anderson extended the idea of forward-security in session key exchange proto-
cols introduced in [10,8] to the context of digital signatures. Since then, many schemes
have been proposed to design FSS where the parameters sizes (registered private/public
keys and signatures) do not depend on the total number of intervals T . These proposals
can be divided into two categories: schemes based on specific number theoretic assump-
tions, and generic schemes constructed from a standard signature scheme as a building
block.

Number theoretic schemes. Bellare and Miner [3] formalized the problem introduced
by Anderson [2] and suggested the first solution. Their proposed scheme was based on
the hardness of factoring the Blum-Williams integers. Although their scheme does not
require the number of secret or public keys, nor the length of the signature to grow with
the number of intervals T , it does, however, have rather long keys. Other number the-
oretic schemes appeared later including [1,13,11,5]. Abdalla and Reyzin [1] improved
on the scheme of [3] by shortening the length of the keys. Kozlov and Reyzin [13]
proposed an FSS with fast key update. Their proposed scheme requires only one mod-
ular exponentiation to update the keys; hence, allowing for shorter intervals. Itkis and
Reyzin [11] proposed an FSS that requires only two modular exponentiations with short
exponents for signing and verifying. Boyen et al. [5] proposed a scheme where the up-
date can be performed on encrypted keys as a second layer of security.

Generic approach schemes. A different approach to designing FSS is to use existing
standard digital signature schemes as building blocks. Anderson [2] proposed the first
scheme, where the signer is required to have a registered secret key for each interval,
thus having a secret key size linear in T . Bellare and Miner [3] introduced the binary
tree scheme to reduce the required number of registered secret keys to O(log T ). Their
improvement came with the cost of longer signatures and longer verification time (both
are increased by a factor O(log T )). As argued by Bellare and Miner [3], however, sig-
nature schemes with one of the parameters (registered secret/public keys, or signature
sizes) growing proportionally with T are considered impractical.

The first practical generic construction was proposed by Krawczyk [14]. In the ini-
tialization phase of [14], the signer, using a single pair of registered secret/public keys,
generates a total of T certificates, one for each period. The certificate chain of length
T need not be secret. However, it must be available for the signer to generate valid
signatures. If the certificate corresponding to time interval ti is lost, no signature can
be generated during that interval. The other generic scheme was the one proposed by
Malkin et al., usually referred to as the MMM scheme [18]. The MMM scheme makes
use of Merkle tree-type certification chains combined with ideas from the binary tree
scheme of [3]. In the MMM scheme, instead of generating T certificates in the initial-
ization phase, the scheme is divided into subtrees. At the end of each subtree, log ti
secrets are generated, where ti denotes the time period. Hence, reducing the secret
key storage from O(T ) to O(log T ).3 This reduction, however, is paid for in the key

3 In the worst case scenario, i = T .
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update algorithm as their update time is increased by a factor of log ti compared to [14].
Moreover, unlike the certificate chain [14], their keys must remain secret.

In a different but related work, Ma and Tsudik [17] proposed the forward secure
sequential aggregate (fssagg) authentication schemes.

1.3 Our Results

Compared to previously proposed generic FSS [2,14,18] and the tree based scheme of
Bellare and Miner [3], our generic construction method exhibits desirable properties,
such as:

Time independence. All previously proposed schemes, including number theoretic
based schemes, assign keys to time intervals. Except for the MMM scheme [18], all
other schemes require the total number of intervals T to be predefined. Thus, the de-
sign of short intervals will exhaust the set of private keys rather quickly. On the other
hand, the design of longer intervals leads to signing more messages with the same key,
violating the principle of FSS.

Although, the MMM scheme [18] does not require the total number of time intervals
to be predefined, the efficiency of some of its operations4 is dependent upon the interval
when the signature is generated. That is, the scheme will become less efficient with
time. Therefore, the choice of shorter intervals will drive the scheme to be less efficient
relatively rapidly.

This problem is overcome in our scheme by demanding that key update is performed
immediately after every signature generation, rather than the end of the time interval.

Flexibility. In addition to the flexibility granted by the ability to use different standard
schemes as building blocks, our scheme provides a flexibility of its own. It provides
options to trade-off between space and computational efficiencies. For example, some
parameters evaluated in the key generation stage can be stored in the system to make
key updating and signing more computationally efficient. Moreover, some parameters
are unrestricted and can be generated in either one of two operations. For example, a
modular exponentiation operation can be performed either in the key update operation
or the signature generation operation, trading off computational efficiencies in the two
operations, depending on application.

Computational efficiency. As a direct consequence of the requirement that key update
is performed immediately after signature generation, the key update operation must be
performed efficiently. For that, we propose a key update algorithm that is orders of
magnitude more efficient than the previous generic schemes [14,18], as can be found in
Tables 2 and 3. Furthermore, the proposed scheme achieves excellent overall perfor-
mance. In [18], Malkin et al. provide a comparison of number theoretic approaches
[3,1,13,11] with their MMM scheme, showing how the MMM scheme outperforms
these number theoretic approach schemes. Since the MMM scheme is arguably the
most efficient generic scheme [7,16], we quantify, in Tables 2 and 3, the performances

4 See Table 2.
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of our proposed scheme against other generic construction based schemes, including the
MMM scheme, showing how our proposed scheme outperforms those earlier schemes.

Applicability to proxy signature schemes. Our proposed scheme can be easily applied
to proxy signature schemes. In fact, as discussed in Section 4, the implementation of
forward-secure proxy signature schemes based on our proposed scheme is straightfor-
ward. The extension of generic construction to proxy signature schemes has not been
addressed in any of the previous proposals for FSS.

The rest of the paper is organized as follows. In Section 2 we review some preliminaries
and basic concepts that will be used in the subsequent sections. We present our generic
construction in Section 3. In Section 4 we describe the construction of forward-secure
proxy signature scheme. We conclude our paper in Section 5.

2 Preliminaries

Throughout the rest of the paper we assume the existence of public key infrastructure,
where users have registered private and public key pair (x, y), where x represents the
private key and y represents the public key. Depending on context, the term signing key
is used interchangeably with the terms private or secret key. Similarly, the terms public
and verifying key are used synonymously.

2.1 Definitions

A DLP-based standard signature scheme is defined as follows:

Definition 1 (Standard Digital Signature Scheme). A standard digital signature
scheme SS= (P,K ,S,V), with P,K ,S, andV being polynomial-time algorithms with
the following functionalities.

1. P is a randomized parameter-generating algorithm that, on input 1k, where k is a
security parameter, outputs a description of a multiplicative group G, a generator
g, and a description of a one-way hash function. These parameters are assumed to
be publicly known.

2. K is a randomized key-generating algorithm that takes the output of P as input
and outputs a pair of keys (x, y), where x is a secret key and y is the corresponding
public key.

3. S is a possibly randomized signing algorithm that takes as input a message M ∈
{0, 1}∗, a secret key x, and possibly a set of parameters λ. Depending on application,
no set of parameters might be needed, in which case λ is taken to be the empty set.
The algorithm outputs a signature σ on the message M.

4. V is a deterministic verification algorithm that takes as input (M, y, σ), such that:

V(M, y, σ) =

{
1, i f σ = S(M, x, λ)
0, otherwise

. (1)

Equation (1) demands that the verification algorithmV outputs 1 only if the signa-
tureσ on message M is generated using the secret key x corresponding to the public
key y. Otherwise put, the verification algorithmV outputs 1 only if the signature is
valid.
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2.2 Security Parameters

To be able to provide fair comparison for different schemes we need to quantify the cost
of performing different operations in each scheme. Time and space complexity is used
here to provide such a basis for comparison. For that, as in [18], we define two different
security parameters.

l : a security parameter such that performing an exhaustive search over l-bit se-
quences is infeasible. This is the security parameter of conventional symmetric
cryptography. We assume the output of cryptographic hash function and the size of
secret keys in signature schemes are of size l.
k : a security parameter such that the k-bit composite integers are hard to factor
and such that the discrete logarithm problem modulo a k-bit prime is believed to be
hard. We assume that the size of public keys in signature schemes are of size k.

Distinguishing between the two parameters is important, because symmetric key
cryptography is much more efficient than asymmetric. The factoring problem can be
solved in sub-exponential time exp(k

1
3 log

2
3 k), thus, asymptotically one might need

k ≈ O(l3) [18].
Although more efficient multiplication algorithms exist, for simplicity we will as-

sume that multiplying two integers a and b is performed in O(size(a) size(b)) time and
modular exponentiation is performed in O(size(exponent) size(modulos)2) time [6].
Throughout the rest of the paper, we will ignore the cost of integer addition and integer
comparison.

3 Proposed Generic Construction of Forward Secure Signature
Schemes

3.1 The Proposed Scheme

In this section we describe our generic construction method to design FSS. The key
point for the forward-security of our scheme is allowing the signer to possess two pairs
of registered keys. Allowing the signer to possess two pairs of registered keys results in
a simple design of FSS that is computationally more efficient than previously proposed
schemes. Instead of generating T certificates as in [14], or a secret for every tree leave
as in [18], our scheme is based on the generation of a forward-security chain R. The
forward-security chain is not required to generate signature, as opposed to [14], nor is it
required to be kept secret, as opposed to [18]. In fact, it need not be stored in the system
and signatures can still be generated and verified. Another advantage of our scheme and
the scheme of [14], over the MMM scheme, is that the chain R and the T certificates
are generated off-line in the key generation phase.

To describe our construction method, let SS=(P,K , S,V) be a standard digital sig-
nature scheme as in Definition 1. Based on SS, the constructed forward-secure signa-
ture scheme is FSS=(P,K ,FKG,FS,FV, KU), where P,K ,FGK , FS,FV, and
KU are polynomial-time algorithms. The algorithms P and K are exactly the same as
in the base scheme. We further require that the algorithm K is run twice so the signer
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will possess two pairs of registered private and public keys (x1, y1) and (x2, y2). The
forward-secure key generation algorithm FGK , the forward-secure signing algorithm
FS, the forward-secure verifying algorithm FV, and the forward-secure key update
algorithmKU are described in detail below.

Key Generation. On input of a security parameter l, the user generates a prime p and a
prime q that divides p−1, such that q ≥ 2l. The user picks an element g ∈ Z∗p of order
q, and selects a hash function h : {0, 1}∗ → Z∗q. The parameters p, q, g, and h are as-
sumed to be publicly known.5 With the above public parameters and the total number of
signatures for the forward-secure scheme T in hand, the signer generates the forward-
security chain R = (r(1), r(2), ..., r(T )), where each r(i) corresponds to ith signature. To
start, the signer generates a integer k(1) picked randomly from the multiplicative group
Z
∗
q. The value of r(1) is then computed from k(1) as:

r(1) = gk(1)
mod p. (2)

Using the one-way hash function h, the signer continues to construct a chain of k(i)’s:

k(i) = h(k(i−1)), (3)

of length T . For each k(i) the corresponding r(i) is computed as in equation (2) and
the forward-security chain R is constructed as an ordered tuple of the r(i)’s. Figure 1
illustrates an implementation of the key generation phase.

The function h in equation (3) must be a one-way function so that evaluating k(i−1)

from k(i) can be assumed infeasible. Moreover, by the discrete logarithm assumption,
computing k(i) using the knowledge of r(i) is infeasible.

Algorithm FKG(T )

k(1) R←− Z∗q;

r(1) ← gk(1)
mod p;

For i = 2, ..., T do
k(i) ← h(k(i−1));
r(i) ← gk(i)

(mod p);
Delete k(i−1);

EndFor

R← (r(1), r(2), r(3), ..., r(T ));
Return R

After the forward-security chain R has been generated, the signer uses its first secret
key x1 to sign the chain (using any secure standard signature scheme.) The secret key
x1 is only needed to sign the chain R in the key generation phase and should not be
stored in the system to ensure forward-secrecy. Otherwise, an adversary breaking into
the system can forge a signature for any R. Note that the only parameter that the signer

5 This setup is the same as in the Schnorr signature scheme [23]. For different standard signature
schemes, setup varies according to the used standard scheme.
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Fig. 1. The forward-security chain generation: Secret key for a given signature is a hash of the
secret key for the previous signature

is required to store after the completion of the key generating phase is the value of the
random number k(1) and the private key x2. The chain R is used to provide forward-
security and it is not required for signatures generation. Observe that the key generation
is performed only once during the lifetime of the FSS, and it is performed off-line.

Signature Generation. To sign the ith message, the signer uses its second secret key
x2 and the value of k(i) to run the signing algorithm FS. The signer calls the base sign-
ing algorithm with k(i) passed as a parameter.

s = S(M, x2, λ = k(i)), (4)

where S represents the signing algorithm corresponding to the standard signature
scheme used as a building block. The tuple σ = (i, s, r(i)) comprises the signature on
message M.

Algorithm FS(M, x2, i, k(i))
s← S(M, x2, λ = k(i));
Return σ = (i, s, r(i))

Note that, instead of generating a random k for every signature as in DLP-based sig-
natures, such as El-Gamal [9] or Schnorr [23], the value k(i) is passed as a parameter
in our scheme. Thus, our forward-secure signature generation is more computationally
efficient than its base scheme. No previous generic FSS can be more efficient then its
base scheme. Further improvement can be made, depending on the resources available
for the signer. If computational efficiency is more important than storage, the signer can
store R in the system. Storing R in the system will save the signer one modular expo-
nentiation by passing r(i) as a parameter; an operation that requires O(lk2) time to be
performed. This efficiency improvement, however, comes with a cost of O(Tk) bits in
storage.

Signature Verification. The verification algorithm FV is shown below. The verifier
uses the signer’s public key y2 to verify the validity of the signature, using the standard
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verification algorithm V. Then, the verifier runs the standard signature verification to
verify the validity of the forward-security chain R using the signer’s public key y1.

Algorithm FV(M, y2, σ,R, y1, σR)
If V(M, y2, σ) = 1
IfV(R, y1, σR) = 1 and r(i)

σ = r(i)
R

Return 1
Else

Return 0
EndIf

Else

Return 0
EndIf

Observe that, without the second check, which is to check the validity of the chain
R and if the value r(i) in the signature σ is equal to the authenticated r(i) in R, the ver-
ification algorithm is just the verification algorithm of the base scheme. That is, the
scheme can be used as a standard scheme and, if needed (e.g., in case of a dispute), R
can be used to ensure forward-security.

Key Update. After the (i-1)th signature has been generated, the signer updates the secret
key k(i−1) by applying the one-way hash function, to get k(i). As soon as the value of k(i)

has been computed, the value of k(i−1) must be deleted to ensure forward-security, as
can be seen in algorithmKU below.

AlgorithmKU(k(i−1))
k(i) ← h(k(i−1));
Delete k(i−1)

Return k(i)

The key update operation uses one application of the hash function, an operation that
requires O(l2) in time. No previous FSS [3,1,13,11,5,14,18] can achieve the same per-
formance, except for Anderson’s proposal [2] which has been argued to be impractical.
Even better, by storing the chain of k(i)’s in the system, the key update can be performed
in O(1) time with the expense of O(Tl) bits in storage, giving the system designer a
choice to trade-off storage and computational efficiencies. Note that if the chain of k(i)’s
is stored, k( j) must be deleted immediately after the generation of the jth signature to
ensure forward security.

Table 1 illustrates our construction of an FSS based on the Schnorr signature [23].

Theorem 1. If an adversary can break the forward-security of our scheme, she can
solve the discrete logarithm problem or invert a one-way function.

Proof. Compared to the underlying signature scheme, our scheme introduces the pre-
computation of the k(i)’s and the forward-security chain R. Given the security of the
underlying scheme, the adversary needs to know the k(i) corresponding to the ith sig-
nature to forge a valid signature. If k(i) has already been deleted from the system, the
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Table 1. Applying the proposed construction method to design an FSS based on the Schnorr
signature scheme [23]. The key generation FKG, signature generation FS, signature verification
FV, and the key updating KU algorithms are summarized.

Algorithm FKG(T ) Algorithm FS(M, x2, i, k(i))

k(1) R←− Z∗q r(i) ← gk(i)
mod p;

r(1) ← gk(1)
mod p; s← h(M, i, r(i))x2 + k(i) mod q;

For i = 2, ...,T do Return σ = (i, s, r(i))
k(i) ← h(k(i−1));
r(i) ← gk(i)

(mod p);
Delete k(i−1)

EndFor

R← (r(1), r(2), r(3), ..., r(T ));
Return R

Algorithm FV(M, y2, σ,R, y1, σR) Algorithm KU(k(i−1))

If r(i) ≡ yh(M,i,r(i) )
2 gs mod p k(i) ← h(k(i−1));

IfV(R, y1, σR) = 1 and r(i)
σ = r(i)

R Delete k(i−1)

Return 1 Return k(i)

Else

Return 0
EndIf

Else

Return 0
EndIf

adversary can compute k(i) either from r(i) by solving the DLP or from present k( j), j > i,
by inverting the one-way hash function. 
�

3.2 Performance Analysis

In this section we analyze the performance of our scheme.

Key generation. The key generation requires the user to generate a total of T k(i)’s,
one for each signature. Each k(i) is obtained from k(i−1) by one application of the hash
function. Each application of the hash function is performed in O(l2) time. For each k(i),
the corresponding r(i) is computed using one modular exponentiation. Each computa-
tion of r(i) is performed in O(lk2) time. Therefore, the entire key generation operation is
performed in O(T (l2 + lk2)) time.

Signature generation. Our forward-secure signature generation is the signature gen-
eration of the standard scheme with k(i) passed as a parameter. If the Schnorr signature
scheme is used, the signature generation of our scheme is performed in O(lk2+2l2) time.
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Table 2. Comparing the asymptotic performances of the generic constructions of Krawczyk [14],
MMM [18], and our scheme, when the Schnorr signature scheme [23] is used as a building block

Krawczyk MMM Our Scheme
Key update time 2l2 + lk2 T k2l l2

Signature time 3l2 + lk2 3l2 + lk2 2l2 + lk2

Verifying time 2(2lk2 + l2) 2(2lk2 + l2) + (log l + log T )l2 2(2lk2 + l2)
Signature size log T + 2l + 4k (log l + log T + 2)l + 4k log T + l + k
Key gen time (5l2 + 2lk2)T k2l2 (l2 + lk2)T + lk2 + 3l2

Secret key size l k + l(log l + log T ) 2l
Public key size k l 2k

Signature verification. The verification of our scheme is the same as in the standard
scheme with the added verification of the forward-security chain R and the check that
r(i) in the signature is equal to r(i) in R. If Schnorr signature scheme is used, the verifi-
cation operation can be performed in O(4lk2 + 2l2). Observe, however, the verification
of more than one signature requires only a single verification of the forward-security
chain R.

Key update. After the generation of every signature, the key k(i−1) is updated to get
k(i) and the old key is deleted. The hashing operation can be performed in O(l2) time.
Although this key update operation outperforms all previous schemes, it can be made
even more efficient. If the user can store the chain of k(i)’s generated during the key
generation phase, the key update can be performed in O(1) time.

Key sizes. Since the signer possesses two pairs of registered keys, the size of the se-
cret key is 2l bits, while the size of the public key is 2k bits.

Signature size. The only extra parameter in the signature of our scheme, compared
to the standard scheme, is the inclusion of the signature’s number i. Resulting in an
extra log i bits in the size of the signature. If Schnorr signature is used, the resulting
signature size will be O(l + k + log i) bits.

3.3 Applicability

The properties and performances of all parts of our scheme make it attractive for a
variety of applications. Our focus will be electronic checkbooks (e-checkbooks) which
was our primary motivation. Just like a regular checkbook, an e-checkbook usually
contains multiple checks. Each e-check is meant to be signed by the checkbook holder
and verified by the bank issuing the e-checkbook.

The signature number in our scheme is mapped to the check serial number in the
e-checkbook application. When a scheme with inefficient key update algorithm is used
and the user’s e-checkbook is stolen, an unauthorized user with access to the
e-checkbook can forge a signature on the last signed e-check that is indistinguishable
from the authorized signature, making the last check signed by the authorized user repu-
diable. Therefore, a scheme with very efficient key update algorithm, like our scheme,
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Table 3. Comparing the performances of the generic constructions of Krawczyk [14], MMM
[18], and our scheme, when the Schnorr signature scheme [23] is used as a building block and
for k = 1024, l = 160, and T = 1000. (∗) this operation is done only once for the lifetime of the
forward secure scheme and is performed offline.

Krawczyk MMM Our Scheme
Absolute Relative Absolute Relative Absolute

Key update time 1.7 × 108 6800 1.7 × 1011 6800000 2.5 × 104

Signature time 1.7 × 108 1 1.7 × 108 1 1.7 × 108

Verifying time 6.7 × 108 1 6.7 × 108 1 6.7 × 108

Signature size 4.4 × 103 3.67 7.2 × 103 6 1.2 × 103

Key gen time 3.4 × 1011 2 2.7 × 1010 −6.3(∗) 1.7 × 1011

is of most importance to the application of e-checkbook. Furthermore, since signatures
are meant to be verified by the bank, the forward-security chain R can be stored in the
bank’s database; thus, no need to worry about the exchange of the chain R. Moreover,
the verification of the chain R needs to be performed only once.

3.4 Comparison to Other Schemes

In this section, we compare the performance of our scheme with the Krawczyk [14] and
Malkin et al. [18] when the Schnorr signature scheme is used for construction. Table 2
shows the asymptotic performances of the three schemes in the worst case scenario
(when ti = T for the schemes in [14,18], and i = T in our scheme). If k ≈ O(l3), as
suggested in [18], the three schemes are asymptotically comparable, except for the key
update operation where the performances are O(l7), O(Tl7), and O(l2) for the Krawczyk,
MMM, and our scheme respectively. Thus, supporting our claim that our key update
algorithm is orders of magnitude more efficient.

Table 3 compares the performances when k = 1024, l = 160, and T = 1000. The
values of k and l are the typical values in Schnorr signature scheme. The columns cor-
responding to the Krawczyk and the MMM schemes are split into two halves. The first
half shows the performance of the corresponding scheme where the second half shows
the normalized performances when our scheme is used as a reference point. Positive
values represent the relative advantage of our scheme, while negative values represent
the advantage of their schemes over ours. Since storage is cheap in today’s technology,
the non-secret storage of the T certificates in the Krawczyk scheme and the chain R in
our scheme are ignored.

In the next section, we show how to construct forwrad-secure proxy signature
schemes.

4 Forward-Secure Proxy Signature Scheme

4.1 Background

In the previous section, we showed how to construct an FSS with the requirement that
the signer possesses two pairs of registered keys. In this section, we show how the same
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idea can be extended to construct a forward-secure proxy signature scheme (FSPS) from
any secure proxy signature scheme, without the requirement that the signer possesses
two pairs of registered keys. This requirement is avoided because, in the proxy signature
setup, there are two legitimate users, namely, the proxy designator and the proxy signer,
and each one of them is assumed to possess a pair of registered private and public keys,
(xa, ya) and (xb, yb), respectively. For historical reasons the proxy designator and signer
are called Alice and Bob respectively. In proxy signature schemes, Alice delegates her
signing capability to Bob. The idea of digital proxy signatures was first introduced by
Mambo et.al. [20]. Many of the proposed proxy signature schemes appeared in the
literature are based on the following concept: Alice has a pair of keys (xa, ya), where xa

and ya represent the secret and public keys, respectively. To delegate her signing power
to the Bob, Alice generates a warrant describing Bob’s authorities to sign messages on
her behalf. The warrant is then signed by Alice (using a standard signature scheme)
and sent to Bob. After checking the validity of the signature, Bob combines Alice’s
signature with his secret key xb to generate a proxy signing key xp. Bob uses the proxy
signing key xp to sign messages on behalf of Alice using a standard signature scheme.
To validate a proxy signature, the verifier computes the public key yp corresponding to
the proxy secret key xp (usually a function of Alice’s and Bob’s public keys; that is,
yp = f (ya, yb)) and use the corresponding standard signature verification algorithm to
verify the signature.

Many proxy signature schemes have appeared in the literature [21,22,12,15,4]. As
noted by Wang [24], little effort has been made towards the design of FSPS. In most
of the existing proxy signature schemes, Bob generates a proxy key xp, and the same
key will be used for proxy signing throughout the signature delegation period, without
any modifications. Hence, exposure of the proxy key xp will enable a forger to generate
proxy signatures that are indistinguishable from the legitimate signatures. We propose,
to the best of our knowledge, the first design of an FSPS.

4.2 Definitions

It is important to distinguish between two keys, namely, Bob’s secret key xb and the key
generated by Bob to generate signatures on Alice’s behalf xp. Bob’s key xb is the one
distributed by the CA and does not change. The other key xp is generated by Bob and
can be updated whenever Bob wishes.

Before describing the construction, we define two different notions of forward-
security for proxy signatures; weak forward-secure proxy signature (WFSPS) schemes
and strong forward-secure proxy signature (SFSPS) schemes.

Definition 2 (Weak Forward Secure Proxy Signatures). A proxy signature scheme is
said to be weak forward-secure if it is resilient to the exposure of the proxy key xp.

Definition 3 (Strong Forward Secure Proxy Signatures). A proxy signature scheme
is said to be strong forward-secure if it is resilient to the exposure of the proxy key xp

and the private key of the proxy signer xb.

The lack of appropriate definitions for forward security in proxy signatures led Malkin
et al. to conclude that proxy signatures are by design forward secure [19]. Given our
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Table 4. A forward-secure proxy signature scheme constructed by applying the proposed con-
struction method to the proxy signature scheme in [12]. Assuming the forward-security chain
has been generated successfully, the proxy key generation PKG, proxy signature generation PS,
proxy signature verification PV, and the proxy key updating PKU algorithms are summarized.
The subscript a indicates parameters generated by the proxy designator and w represents the war-
rant describing the authority given to the proxy, as in the original scheme in [12]. xb represents the
registered secret key of the proxy signer, while xp represents the key generated to sign messages.

Algorithm PKG(w, σa, k(i), i, xb) Algorithm PS(M, xp, k(i))
r(i) ← gk(i)

mod p sp ← h(M)x(i)
p + k(i) mod q;

x(i)
p ← h(i, r(i))xb + h(w, ra)xa + ka mod q Return σM = (i, sp, r(i),w, ra);
Return x(i)

p

Algorithm PV(ya, yb,M, σM,R, σR) Algorithm PKU(k(i−1))

y(i)
p ← yh(i,r(i))

b yh(w,ra )
a r−1

a mod p; k(i) ← h(k(i−1));
If r(i) ≡ (y(i)

p )h(M)gsp mod p Delete k(i−1)

IfV(R, ya, σR) = 1 and r(i)
σ = r(i)

R Return k(i)

Return 1
Else

Return 0
EndIf

Else

Return 0
EndIf

definitions above, under the condition that Bob generates a new xp for every signature,
proxy signatures are only weak forward-secure.

4.3 Our Proposed Strong Forward-Secure Proxy Signature Scheme

The idea here is the same idea for constructing regular FSS. For lack of space, we omit
describing the details of the construction and outline the basic concept. The major dif-
ference between the standard proxy signature scheme and the forward-secure version is
in the proxy and key initialization stage, which we describe below.

Proxy and key Initialization. The proxy key generation is an interactive protocol. To
start the protocol, Alice decides the number of signatures T for the forward-secure
proxy scheme. Upon receiving T , Bob runs the same algorithm FKG used in the
construction of non-proxy forward-secure signature schemes to generate the forward-
security chain R of length T . The forward-security chain R is then sent to Alice who
signs R with her private key xa and publishes the signed R.

For the ith message M to be signed, the pair (k(i), r(i)) is used by Bob to generate
forward-secure proxy signatures with the private key xp. The fact that R is signed by
Alice ensures forward-security, even if Bob’s system has been broken into.
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Table 4 illustrates our construction of a forward-secure proxy signature scheme based
on the provable secure scheme of Kim et al. [12]. The constructed scheme in Table 4
assumes that the proxy and key initialization has been performed successfully and the
forward-security chain R is available for verifiers.

The security analysis of the forward-secure proxy scheme is similar to the non-proxy
one. Assuming the standard proxy scheme is secure6, provided that the forward-security
chain R has been generated successfully, the forward-security is granted by the hardness
of the discrete logarithm problem and the existence of one-way functions.

5 Conclusion

In this paper, we studied the two major design approaches of forward secure signature
schemes, i.e. number-theoretic and generic construction based approaches. The generic
construction schemes can be based on any underlying signature scheme, hence, offer-
ing more flexibility in terms of meeting a wide spectrum application requirements. We
proposed a generic construction method to obtain a forward-secure signature scheme
that is very efficient in parameter size and computation times. A quantitative compar-
ison with related schemes showed that the proposed scheme is more computationally
efficient in terms of signature verification, signature size, and key updating time.

Further, we identified that in the literature there was no explicit design of forward
secure proxy signatures. Therefore, we first defined two notions of forward security
in the context of proxy signatures, i.e. weak forward-secure and strong forward-secure
proxy signatures. We then showed how the proposed generic construction method can
be easily extended to any proxy signature scheme to obtain strong forward secure proxy
signatures.
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