
Security Analysis and Extensions of the PCB
Algorithm for Distributed Key Generation

Radha Poovendran1 and Brian Matt2

1 University of Washington, Seattle, WA 98195-2500 radha@ee.washington.edu
2 McAffee Research, Rockville, MD 20850-4601 brian matt@mcafee.com

Dedicated to Professor Carlos Berenstein on his 60th birthday.

Summary. Poovendran, Corson and Baras presented a distributed cryptographic
key generation algorithm that was suitable for wireless networking environment.
However, the security as well as the computational complexity of their scheme were
never analyzed. In this work, we present information theoretic analysis of their work
and derive the properties of the cryptographic keys that are generated by their
scheme. We also present efficient computational schemes that would require only
logarithmic number of steps in group size to compute the common keys.

1 Introduction

Broadcast is the inherent mode of communication in wireless networks that
deploy omnidirectional antennas. In broadcast mode, all members who are
within the communication range of the transmitting node can receive the
message, thus making it resource-efficient for the sender as well as the net-
work. However, in many applications the set of users that have access to the
communication must be restricted. The use of cryptography is one way to
restrict the set of members who can access the communication. When the
amount of data is high, the use of symmetric keys will help reduce the com-
putational overhead due to the encryption and decryption. However, the use
of symmetric keys require that all members share the same keys for decryp-
tion. Several methods have been proposed to generate and distribute a single
common key to all the members of a communicating group. Among these
methods is the distributed key generation method proposed by Poovendran,
Corson and Baras in [PCB],which we call the PCB scheme in this paper. The
PCB scheme made use of modulo arithmetic and generalized the property of
one-time pad, proposed by Shannon [CS]. However, as of now there is no anal-
ysis on the security properties of the PCB method. In this work we enhance
the original PCB algorithm and present the security analysis based on infor-

2 R. Poovendran and B. Matt

mation theoretic techniques. We also show how to develop a computationally
efficient algorithm for computing the PCB keys.

The organization of the chapter is as follows: we first review the one-time
pad and its properties using probabilistic as well as information theoretic
approaches. We then present the PCB algorithm. We provide detailed analysis
of the PCB algorithm using probabilistic as well as information theoretic
techniques. We also show how to develop computationally efficient techniques
that will enable efficient calculation of the group’s shared key.

2 Properties of the One-time Pad based Encryption

We use the notations in [DS] to define a cryptosystem. A cryptographic system
is a pentuple P, C,K, E ,D, where the following conditions are satisfied:

1. P is a finite set of possible messages or plaintexts.
2. C is a finite set of possible encrypted messages or ciphertexts.
3. K is the finite set of keys or the keyspace.
4. EK is the encryption rule for a given key K. We denote EK : P → C.
5. DK is the decryption rule for a given key K. We denote DK : C → P.

2.1 One-time Pad Cryptosystem

Let p be a large prime. The plaintext and the encryption key are of the same
length and chosen independently and are assumed to be picked uniformly in
the interval [0, p−1]. The encryption rule is the modulo addition w.r.t. p. The
one-time pad scheme is given below:

1. P ∈ {0, 1, · · · , p− 1}.
2. C ∈ {0, 1, · · · , p− 1}.
3. K ∈ {0, 1, · · · , p− 1}.
4. EK is a rule ∀X ∈ P, EK(X) = X + K mod p.
5. DK is a rule ∀Y ∈ C, DK(Y) = Y −K mod p.

If it can be shown that the ciphertext Y is independent of the encryption
key or plaintext X, then observing the ciphertext Y reveals no information
about the plaintext X, and hence the mutual information ([CT]) is I(X ∧
Y) = EPXY

[log PXY

PXPY
] = 0. The main idea behind the one-time pad based

encryption is stated in the following theorem:
Theorem 1. Let p be a large prime number, A,B be two random variables

that are mutually independent and uniformly distributed over the interval
[0, p − 1]. Let C = A + B mod p. Then the random variable C is uniformly
distributed in the interval [0, p − 1], and the random variables A,B, C are
mutually independent.

Proof:: We compute the distribution of C using

Analysis of PCB Scheme 3

P (C = k) =
p−1∑

i=0

P (C = k|a = i)P (A = i) (1)

=
p−1∑

i=0

P (A + B = k|A = i)P (A = i) (2)

=
1
p

p−1∑

i=0

P (B = k − i|A = i) (3)

=
1
p

p−1∑

i=0

P (B = k − i) (4)

=
1
p
. (5)

Hence, C is uniformly distributed over the range [0, p− 1]. We now show
that C is independent of A,B.

P (C = k|A = i) = P (A + B = k|A = i) (6)
= P (B = k − i|A = i) (7)
= P (B = k − i) (8)

=
1
p

(9)

= P (C = k). (10)

Hence, C is not only uniformly distributed in the interval [0, p − 1], but
also independent of A (as well as B).

A direct consequence of these derivations is the fact that the random vari-
able C is uncorrelated to random variable A or B. Hence, observing random
variable C provides no information ([CT]) about random variables A or B.
This idea can be expressed in terms of the mutual information between ran-
dom variables C and A as:

I(C ∧A) = EPAC [log
PAC

PAPC
]. (11)

Noting that PAC = PAPC , since A is independent of C, we find that
log PAC

PAPC
= log(1) = 0. Hence, the mutual information between the random

variables A and C is zero. Substituting A = X, B = K, and C = Y in the
proof above shows that the one-time pad encryption leads to ciphertext that
is uniformly distributed in the interval [0, p− 1] and satisfies I(Y ∧X) = 0 as
well as I(Y ∧K) = 0.

4 R. Poovendran and B. Matt

3 Review of the PCB Scheme

The PCB scheme presented in [PCB] can be viewed as a generalized version of
one-time pad encryption. The PCB scheme consists of a Trusted Third Party
based initialization step followed by distributed key generation step. We first
define relevant notations. Let EKi(m) denote the encryption of message m
with key Ki, and A → B : m to denote a message m sent from entity A to
entity B. The PCB scheme is described below.

3.1 Initialization

In the initializaiton step, a Trusted Third Party (TTP) selects n participants
of the distributed key generation scheme labeled {Mi}n

i=1. It is assumed that
the TTP shares a pairwise key Ki with member Mi of the group. The TTP
chooses a large prime p, generates n uniformly distributed and independent
random variables denoted αi,0, with i = 1, · · · , n. The TTP computes

θ0 =
n∑

i=1

αi,0. (12)

The TTP initializes each entity Mi using the following message transfer

TTP → Mi : EKi(αi,0, θ0). (13)

3.2 Broadcast Enhanced Distributed Key Generation

The distributed key generation consists of two stages. In the first stage each
node generates its contribution, and secures and transmits it. In the second
stage, each node collects contributions of all other nodes and combines them
to generate the group key and its future onetime pad. The original PCB
scheme in [PCB] assumed pairwise links between nodes. This procedure is
computationally intensive and can be avoided in wireless broadcast environ-
ments. We also note that in the original PCB scheme there was no mechanism
to make the participants commit to the shares they would contribute to the
group key generation. Lack of comittment makes the original PCB scheme
vulnerable to attacks by participants who can bias the final outcome. While
we do not elaborate on the key space bias in this work, we eliminate it using
a committment. These two changes are reflected in steps 4 and 5 of the algo-
rithm presented below. At the iteration step j, a participant Mi performs the
following operations to generate its share of the distributed key:

1. Mi generates a Fractional Key FKi,j .
2. Mi generates a Hidden Fractional Key HFKi,j = FKi,j + αi,j−1.
3. Mi generates a commitment comi,j = gHFKi,j .
4. Mi → ∗ : comi,j .

Analysis of PCB Scheme 5

5. Mi → ∗ : Eθj−1(HFKi,j).

A participant Mi then combines the shares to compute the group key and
the fresh one-time pad for its computations. A participant Mi performs the
following operations:

1. ∀l ∈ {1, · · · , n}, obtain HFKl,j , compute and verify that gHFKl,j =
coml,j . If true, proceed to the next steps, else, terminate.

2. Compute the sum of all the Hidden Fractional Keys
∑n

l=1 HFKl,j =∑n
l=1 FKl,j +

∑n
l=1 αl,j−1.

3. Compute the new group key as

θj =
n∑

l=1

HFKl,j + (p− 1)αl,j−1 =
n∑

l=1

FKl,j mod p. (14)

4. Compute αi,j = θj + (p− 1)FKi,jmod p.

The PCB scheme is represented in a schematic diagram given below:

j

ji , jiFK
,

ji,

jiHFK
,

j

jSK

jiFK
,

1

1,

j

ji

iteration j

0 1 2 3 4

Fig. 1. Iteration and Mappings of the Key Generation Algorithm

4 Security Analysis of the PCB Scheme

As noted earlier, the PCB paper did not provide analysis of the scheme. We
provide the security analysis of the PCB scheme in this section. We make the
following claims about the security of the PCB scheme:

Theorem 2. If random variables αi,0 are mutually independent and uni-
formly distributed in the interval [0, p − 1], then the group key θ0, defined
by:

6 R. Poovendran and B. Matt

θ0 =
n∑

i=1

αi,0 (15)

is uniform in the interval [0, p− 1] and is mutually independent with respect
to any subset consisting of (n− 1) of the random variables αi,0; i = 1, · · · , n.

Proof: We first show that θ0 is uniformly distributed and then show that
θ0 is mutually independent of any set of (n-1) αi,0. We prove that θ0 is uni-
formly distributed using induction. Let Ui = Ui−1 + αi,0 with U0 = 0. Then
U1 = α1,0; U2 = α1,0 + α2,0; · · ·Un = θ0. We now show that Ui; i = 0, 1, · · ·n
are uniformly distributed. Note that for i = 1, U1 = α1,0 is by definition of
α1,0 is uniform over the interval [0, p− 1]. For i = 2, we have

P (U2 = k) =
p−1∑
s1=0

P (U2 = k|α1,0 = s1)P (α1,0 = s1) (16)

(i)
=

1
p

p−1∑
s1=0

P (α1,0 = s1 + α2,0 = k|α1,0 = s1) (17)

=
1
p

p−1∑
s1=0

P (α2,0 = k − s1|α1 = s1) (18)

(ii)
=

1
p

p−1∑
s1=0

P (α2,0 = k − s1) (19)

=
1
p

(20)

The step (i) follows from the definition of U2 and the step (ii) follows from
the observation that under modulo arithmetic as the summation includes all
the p terms, even if there is an index shift. Hence, U2 is uniformly distributed.
Now we show that U2 is independent of α1,2.

P (U2 = k|α1,0 = s1) = P (α1,0 = s1 + α2,0 = k|α1,0 = s1) (21)
= P (α2,0 = k − s1|α1,0 = s1) (22)
(i)
= P (α2,0 = k − s1) (23)

=
1
p

(24)

= P (U2 = k). (25)

The step (i) follows from the fact that α2,0 is independent of α1,0. Hence, U2

is independent of U1; however U2 = α2,0 + α1,0 and U1 = α1,0. Since α1,0

and α2,0 are mutually independent, interchanging them does not change the
result; hence,

∑2
l=1 αl,0 is independent of α1,0 as well as α2,0.

Having illustrated the proof for two variables, lets prove the result for the
case that i = n, when θ0 = Un. We first prove that θ0 is uniformly distributed

Analysis of PCB Scheme 7

and then show it is independent of any subset of (n − 1) α′s. For simplicity,
we define the notation that {Y = y} = {αi1,0 = si1 , · · · , αin−1,0 = sin−1}.

P (θ0 = k) = P (Un = k) (26)

=
p−1∑
s1=0

· · ·
p−1∑

sn−1=0

P (Un = k|Y = y)P (Y = y)

=
p−1∑
s1=0

· · ·
p−1∑

sn−1=0

P (Y = y)
n−1∏

l=1

P (αl,0 = sl) (27)

=
p−1∑
s1=0

· · ·
p−1∑

sn−1=0

{
p−1∑

sn−1=0

P (αin,0 = k −
n−1∑

i=1

si)}/pn−1 (28)

=
1
p

(29)

Hence, we note that θ0 is uniformly distributed in the interval [0, p− 1]. We
now show that θ0 is independent of any subset of (n− 1) α′s.

P (θ0 = k|Y = y) = P (Un = k|αi1,0 = si1 , · · · , αin−1,0 = sin−1) (30)

= P (
n∑

i=1

αi,0 = k|Y = y) (31)

= P (αin,0 = k −
n−1∑

j=1

sij |Y = y)

(i)
= P (αin,0 = k −

n−1∑

j=1

sij) (32)

=
1
p

(33)

= P (θ0 = k). (34)

The step (i) uses the mutual independent property of the α′s. Note that the
order of picking the α′s was random. Hence, θ0 is independent of any arbitrary
subset consisting (n−1) α′s. We now state the following property of the PCB
scheme as a theorem.

Theorem 3. If random variables FKi,j are mutually independent and
uniformly distributed in the interval [0, p− 1], θj+1, defined by

θj =
n∑

i=1

FKi,j (35)

is uniform in the interval [0, p− 1] and is mutually independent with respect
to any subset consisting of (n−1) of the random variables FKi,0; i = 1, · · · , n.

8 R. Poovendran and B. Matt

Proof: Follows the similar inductive argument as above with αi,0 replaced
with FKi,j and θ0 replaced with θj .

The above theorems show that observing any (n− 1) fractional keys does
not reveal any information about the group key. Hence, an adversary needs
to know all n fractional keys to compute the group key θ at any iteration. In
terms of the mutual information, we can write

I(θj ∧ FKi1,j , · · · , FKin−1,j) = 0, (36)

where the subset of (n− 1) fractional keys are chosen arbitrarily.
Theorem 4. The intermediate pads αi,j , computed using the formula

αi,j = θj + (p− 1)FKi,jmod p (37)

satisfy the property I(αi,j ∧ FKi,j) = 0, i ∈ {1, 2, · · · , n}.
Proof:

I(αi,j ∧ FKi,j) = H(FKi,j)−H(FKi,j |αi,j) (38)
(i)
= H(FKi,j)−H(FKi,j) (39)
= 0. (40)

The step (i) follows from the fact that all FK ′
i,js are mutually independent,

and hence FKl,j is independent of the sum of αi,j =
∑n

l=1;l 6=i FKl,j .
Theorem 5. If the initial parameters α′i,0s as well as the Fractional Keys

FK ′
i,js at every computational round j are mutually independent and are

uniformly distributed in the interval [0, p − 1], then ∀j θ′js then the θ′js are
uncorrelated.

Proof: We first show that I(θj ∧ θm) = 0 for any arbitrary j, m.

I(θj ∧ θm) = H(θj)−H(θj |θm) (41)

= H(
n∑

i=1

FKi,j)−H(
n∑

i=1

FKi,j |
n∑

i=1

FKi,m) (42)

(i)
= H(

n∑

i=1

FKi,j)−H(
n∑

i=1

FKi,j) (43)

= 0. (44)

The step (i) follows from the fact that given random variables FK1,j , · · · , FKn,j

as well as FK1,m, · · · , FKn,m that are mutually independent, any function
f(FK1,j , · · · , FKn,j) of random variables FK1,j , · · ·FKn,j is independent of
any function g(FK1,m, · · · , FKn,m) of random variables. For clarity, we use
the following notations: {Z} = {∑n

i=1 FKi,i1 , · · ·
∑n

i=1 FKi,im}.
In order to prove the general case considering the mutual information

between a given θj and a set S = {θi1 , θi2 , · · · , θim} where θj ∈ S. We claim
that

Analysis of PCB Scheme 9

I(θj ∧ θi1 , θi2 , · · · , θim
) = 0. (45)

Proof: The proof is similar to the case above but will be presented for
completeness.

I(θj ∧ θi1 , · · · , θim
) = H(θj)−H(θj |θi1 , · · · , θim

) (46)

= H(
n∑

i=1

FKi,j)−H(
n∑

i=1

FKi,j |Z) (47)

(i)
= H(

n∑

i=1

FKi,j)−H(
n∑

i=1

FKi,j) (48)

= 0. (49)

Again, the step (i) follows from the fact that given random variables
FK1,j , · · ·FKn,j as well as S = {FK1,ih

, · · · , FKn,ih
}m

h=1 that are mu-
tually independent, any function f(FK1,j , · · · , FKn,j) of random variables
FK1,j , · · · , FKn,j is independent of any function g(FK1,ih

, · · · , FKn,im) of
random variables.

5 Extensions and Complexity

Not all wireless can be represented by a pure broadcast model. Many networks
use multi-hop communications as well as directional antennas. The impact of
directional antennas and multi-hop communications changes the communica-
tion complexity of distributed key generation for some algorithms more than
others.

In this section we describe alternative PCB algorithms better tailored for
some non-broadcast wireless networks. These alternative algorithms are moti-
vated by point-to-point communications in wireless network. A point-to-point
model corresponds to scenarios such as a group of widely distributed members
communicating using cell phones, or a localized group communicating using
pencil beam directional antennas.

We explore three alternative algorithms for distributed key generation
based on hypercube, octopus, and tree structures. We then analyze the com-
munication complexity of the original PCB algorithm, broadcast-enhanced
PCB and the alternative algorithms. Our analysis has shown that for the
point-to-point network, these alternative algorithms have lower communica-
tion complexity than either the original or broadcast-enhanced versions of the
PCB algorithm. The broadcast-enhanced PCB algorithm has lower complex-
ity than any other algorithm in a pure broadcast network while the original
PCB algorithm has the highest complexity.

Each of the alternative algorithms uses the same initialization phase as
the original and broadcast PCB algorithms.

10 R. Poovendran and B. Matt

5.1 Hypercube

For simplicity we assume that the group has size n = 2r. Each group member
has an identifier i in the range 0, . . . , n − 1. In a hypercube, two nodes are
connected if their identifiers, represented as binary strings, differ in precisely
one position. In the hypercube algorithm, during phase k = 0, . . . , r− 1, each
group member communicates with the group member whose identifier differs
only in the kth position. After all r phases, each node will have sent and
received a message from those group members with which it shares an edge
of the hypercube. See Fig. 2.

Hypercube Algorithm — At the iteration step j, a participant Mi performs
the following operations to generate its share of the distributed key:

1. Mi generates a Fractional Key FKi,j .
2. Mi generates a Hidden Fractional Key HFKi,j = FKi,j + αi,j−1.
3. For the first set of exchanges in step j, which we call phase k = 0,

Mi −→ M(̂i=bin(i)⊗bin(2k=0)) : Eθj−1(KKî,j,0 = HFKi,j)

where bin(t) is the r-bit binary representation of t and⊗ is the exclusive-or
operation. Member Mi then computes TKi,j,1 = KKi,j,0 + HFKi,j .
For phases k = 1, . . . , r − 1, of step j,

Mi −→ M(̂i=bin(i)⊗bin(2k=0)) : Eθj−1(KKî,j,k = TKi,j,k−1)

Member Mi then computes TKi,j,k = KKi,j,k−1 + TKi,j,k−1.
Phase 2 of the hypercube algorithm is shown in Fig. 2.

Once the r phases of the exchange are complete, a participant Mi has its
combined shares,

∑n
l=1 HFKl,j = TKi,j,r−1. Mi then computes the group key

and the fresh one-time pad for its computations. Mi performs the following
operations:

1. Compute the new group key as

θj =
n∑

l=1

HFKl,j + (p− 1)αl,j−1 =
n∑

l=1

FKl,j mod p.

2. Compute αi,j = θj + (p− 1)FKi,j mod p.

5.2 Octopus-d

The hypercube algorithm provides substantially lower communication com-
plexity than either the original PCB or the broadcast-enhanced PCB al-
gorithms. Further improvement can be achieved by using an octopus net-
work [BW]. An octopus consists of a d-dimension hypercube connecting a core
subset of the group with each core member directly connected to a (2r−2d)/2d

Analysis of PCB Scheme 11

Node 0

Node 5
Node 4

Node 3
Node 2

Node 1

Node 10

Node 9
Node 8

Node 7

Node 6

Node 15

Node 14

Node 13

Node 12

Node 11

Fig. 2. The Hypercube Key Generation Algorithm with Point-to-Point Communi-
cations

size subset of the non-core group members. In Fig. 3 a d-dimension hypercube
(d = 2) is used interconnect 2d core group members of a group of size 2r = 16.
Note that if d = 0 the octopus network collapses into a star network with a
single group member connected to the other 2r − 1 members.

In the octopus-d algorithm each iteration has three passes. During the first
pass each non-core group member transmits its key share to its corresponding
core node. In the second pass the core members perform the exchanges of the
hypercube algorithm. During the third pass each core node passes the sum of
the HFKi,j to its corresponding non-core nodes. See Fig. 3.

Octopus-d Algorithm — In the algorithm each core node is numbered ac-
cording to the hypercube algorithm. Each non-code node is numbered by
multiplying the identifier of its corresponding core node by the number of
core nodes, 2d, and adding an index value which runs from 1 to 2d − 1.

At the iteration step j, a participant Mi performs the following operations
to generate its share of the distributed key:

1. Mi generates a Fractional Key FKi,j .
2. Mi generates a Hidden Fractional Key HFKi,j = FKi,j + αi,j−1.
3. Exchanges

Pass One — If 2d ≤ i ≤ 2r − 1,

Mi −→ Mcore(i) : Eθj−1(HFKi,j)

where core(i) is the core group member of i. Pass one communications
are shown in Fig. 3. At the end of pass one each core node computes the

12 R. Poovendran and B. Matt

sum of its HFKi,j and those of its dependent non-core group members.
Core member i computes

KKi,j,0 = HFKi,j +
i·2d+2d−1∑

l=i·2d+1

HFKl,j .

Pass Two — Use a modified version of the exchanges of the hypercube
algorithm on the core group members of the octopus. In the octopus the
values KKi,j,0 are distributed in the first set of exchanges, instead of
HFKi,j used by the standard hypercube algorithm.
Pass Three — If member i is a core member, then depending on the
communication model Mi broadcasts:

Mi −→ ∗ : Eθj−1(TKi,j,d−1)

or Mi uses point-to-point messages to exchange Eθj−1(TKi,j,d−1)

Mi −→ M(dependentk(i)) : Eθj−1(TKi,j,d−1)

where dependentk(i) is the kth dependent of member i. This phase is
shown in Fig. 3.

Once the exchanges of this iteration are complete, a participant Mi has its
combined shares,

∑n
l=1 HFKl,j = TKi,j,r−1. Mi then computes the group key

and the fresh one-time pad for its computations. Mi performs the following
operations:

1. Compute the new group key as

θj =
n∑

l=1

HFKl,j + (p− 1)αl,j−1 =
n∑

l=1

FKl,j mod p.

2. Compute αi,j = θj + (p− 1)FKi,j mod p.

5.3 Binary Tree

For simplicity we assume that the group has n = 2r − 1 group members.
Each group member has an identifier i in the range 0, . . . , n− 1 and is a node
(interior node or leaf node) of a binary tree. The group members are numbered
in order of a preorder tree traversal. Group member 0 is the root of the tree,
group member 1 is the left sibling of the root, member 2 is the right sibling
of the root, and so on.

Binary Tree Algorithm — In the tree algorithm each iteration has two
passes. During the first pass each node of the tree (working from the leaf
nodes up toward the root) communicates the sum of the Hidden Fraction Key

Analysis of PCB Scheme 13

Pass One

Node

0

Node

5

Node

3

Node

2

Node

1

Node

10

Node

9

Node

8

Node

7

Node

6

Node

15

Node

14

Node

13

Node

12

Node

11

Node

4

Pass Three

Node

0

Node

5

Node

3

Node

2

Node

1

Node

10

Node

9

Node

8

Node

7

Node

6

Node

15

Node

14

Node

13

Node

12

Node

11

Node

4

Fig. 3. The Octopus-d Key Generation Algorithm with Point-to-Point Communi-
cations, (r = 4, d = 2)

14 R. Poovendran and B. Matt

of all of the node’s decedents to its parent. During the second pass the sum
of the Hidden Fractional Keys for the group is distributed by the root. In the
point-to-point model each node of the tree communicates with its children,
working from the root down toward the leaf nodes. In the broadcast model
the root distributes the sum directly to each member using a single broadcast.
See Fig. 4.

At the iteration step j, a participant Mi performs the following operations
to generate its share of the distributed key:

1. Mi generates a Fractional Key FKi,j .
2. Mi generates a Hidden Fractional Key HFKi,j = FKi,j + αi,j−1.
3. Exchanges

Pass One — Pass one propagates Hidden Fractional Keys to the root of
the tree. If Mi is a leaf node, i.e., MI is represented by a level 0 node then

i −→ parent(i) : Eθj−1(HFKi,j)

where parent(i) the group member who is represented by the parent node
of node i. Group member Mparent(i) then computes KKparent(i),j,1 =
HFKi,j + HFKsibling(i),j + HFKparent(i),j .
If Mi is represented by an level k interior node, it must wait until it can
compute KKi,j,k = KKleft decendent(i),j,k−1 +KKright decendent(i),j,k−1 +
HFKparent(i),j . If Mi is not represented by the root of the tree then it
sends KKi,j,k to its parent, i.e.,

i −→ parent(i) : Eθj−1(KKi,j,k)

Group member Mparent(i) then computes KKparent(i),j,k+1 = KKi,j,k +
KKsibling(i),j,k + HFKparent(i),j . Pass one is shown in Fig. 4.
Pass Two — In the broadcast communication model the root of the tree
broadcasts:

M0 −→ ∗ : Eθj−1(KK0,j,r−1)

In the point to point model the root can distribute KK0,j,r−1 to the group
using the tree. Each non-leaf, non-root node Mi receives KK0,j,r−1 from
its parent and then distributes to its decedents by

i −→ left child(i) : Eθj−1(KKi,j,r−1)

i −→ right child(i) : Eθj−1(KKi,j,r−1)

Once the exchanges of this iteration are complete, a participant Mi has its
combined shares,

∑n
l=1 HFKl,j = KKi,j,r−1. Mi then computes the group key

and the fresh one-time pad for its computations. Mi performs the following
operations:

Analysis of PCB Scheme 15

1. Compute the new group key as

θj =
n∑

l=1

HFKl,j + (p− 1)αl,j−1 =
n∑

l=1

FKl,j mod p.

2. Compute αi,j = θj + (p− 1)FKi,j mod p.

Node 0

Node 5
Node 4
Node 3

Node 2
Node 1

Node 10
Node 9
Node 8
Node 7

Node 6

Node

15

Node 14
Node 13
Node 12
Node 11

Node

28

Node

27

Node

26

Node

25

Node

24

Node

23

Node

22

Node

21

Node

20

Node

19

Node

18

Node

17

Node

16

Node

30

Node

29

Pass One

Node 0

Node 5
Node 4
Node 3

Node 2
Node 1

Node 10
Node 9
Node 8
Node 7

Node 6

Node

15

Node 14
Node 13
Node 12
Node 11

Node

28

Node

27

Node

26

Node

25

Node

24

Node

23

Node

22

Node

21

Node

20

Node

19

Node

18

Node

17

Node

16

Node

30

Node

29

Pass Two

Fig. 4. The Tree Key Generation Algorithm with Point-to-Point Communications

5.4 Comparison

The following tables compare the communication complexity of the algorithms
in the pure broadcast and pure point-to-point models. For each combination

16 R. Poovendran and B. Matt

of algorithm and model, we give the average number of messages (ignoring
commitments) that each group member sends and receives as well as the
maximum number of messages sent and received by a group member.

Group Ave. Trans. Ave. Recv. Max. Max.
Algorithm Size per Member per Member Trans. Recv.

Orginal PCB 2r 2r − 1 (2r − 1)2 2r − 1 (2r − 1)2

Bcast. PCB 2r 1 2r − 1 1 2r − 1
Hypercube 2r r r · (2r − 1) r r · (2r − 1)

Octopus-d 2r 1 + d
2r−d 2r + d · 2d − 1− d−1

2r−d d + 1 2d · d + 2r − 1
Tree 2r − 1 1 2r − 2 1 2r − 2

Table 1. Key Generation Communication Costs — Broadcast

Group Ave. Trans. Ave. Recv. Max. Max.
Algorithm Size per Member per Member Trans. Recv.

Orginal PCB 2r 2r − 1 2r − 1 2r − 1 2r − 1
Bcast. PCB 2r 2r − 1 2r − 1 2r − 1 2r − 1
Hypercube 2r r r r r

Octopus-d 2r 2 + d−2
2r−d 2 + d−2

2r−d 2r−d + d− 1 2r−d + d− 1
Tree 2r − 1 2 + 2

2r−1
2 + 2

2r−1
3 3

Table 2. Key Generation Communication Costs — Point-to-Point

Acknowledgements

Authors thank Mingyan Li for useful comments. RP gratefully acknowledges
the support of the NSF under ANI-0093187, ARO under DAAD-19-02-1-0242
and ONR under N00014-04-1-0479. Both authors also acknowledge the sup-
port of ARL under DAAD19-01-2-0011.3

3 This document was prepared through collaborative participation in the Com-
munications and Networks Consortium sponsored by the U. S. Army Research
Laboratory under the Collaborative Technology Alliance Program, DAAD19-01-
2-0011. The U. S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation thereon. The
views and conclusions contained in this document are those of the author and
should not be interpreted as representing the official policies, either expressed or
implied, of the Army Research Laboratory or the U. S. Government.

Analysis of PCB Scheme 17

References

[BW] Becker, K. and Wille, U.: Communication Complexity of Group Key Distribu-
tion, in Proceedings of 5th ACM Conference on Compiuter and Communications
Security, ACM, New York, 1998.

[CT] Cover, T. and Thomas, J.: Elements of Information Theory, Wiley Inter-
science, New York, 1991.

[CS] Shannon, C.: Communication Theory of Secrecy Systems, Bell Systems Tech-
nical Journal, 28(1949), 656-715.

[DS] Stinson, D.: Cryptography: Theory and Practice, CRC Press, New York, 2002.
[PCB] Poovendran, R., Corson, S., and Baras, J.: A Distributed Shared Key Gen-

eration Procedure using Fractional Keys , in Proceedings of IEEE Milcom, IEEE,
New York, 1998.

