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Abstract— In this paper we study the problem of coveragein
heterogeneous planar sensor networks. Coverage as a perfor-
mance metric, quantifies the quality of monitoring provided by
the sensor network. We formulate the problem of coverage as a
set intersection problem arising in Integral Geometry, and derive
analytical expressions for stochastic coverage. Our formulation
allows us to consider a heterogeneous sensing model, where
sensors need not have an identical sensing capability. In addition,
our approach is applicable to scenarios where the sensing area
of each sensor has arbitrary shape and sensors are deployed
according to any distribution. We present analytical expressions
only for convex sensing areas, however, our results can be
generalized to non-convex areas. The validity of our expressions
is verified by extensive simulations.

I. I NTRODUCTION

Sensor networks are projected to have a significant impact
into our everyday lives, with applications to environmental
monitoring, home health care, disaster relief operations, and
ambient monitoring [1]. One of the primary tasks of sensor
networks is the collective monitoring of a field of interest.
Sensors may monitor physical properties such as temperature,
humidity, air quality, or track the motion of objects moving
within the field of interest. In order for the sensor network
to sufficiently monitor the entire field of interest, one needs
to ensure that every point of the field is covered by at least
one sensor. Furthermore, to provide the desired accuracy and
robustness against node failures, many applications require
that each point of the field of interest is sensed by more
than one sensor. Hence, the problem of node deployment for
the purpose of sensing can be viewed as acoverage problem,
defined below.

The coverage problem is to quantify how well is the field of
interest sensed by the deployment of the sensor network. The
coverage problem can be studied under different objectives and
constraints imposed by the applications such as, worst-case
coverage [10], deterministic coverage [10], [12] or stochastic
coverage [8], [10], [12], [15], [20]. The worst-case coverage
problem quantifies coverage based on the parts of the field of
interest that exhibit the lowest observability from the sensors
[10], and is relevant in applications where a desired threshold
number of sensors need to observe the field of interest.
The deterministic coverage problem [10], [12] quantifies the
coverage achieved by deploying sensors in a deterministic
way, and is relevant in applications where one can select
the positions where the sensors are placed. The stochastic
coverage problem [8], [10], [12], [15], [20], on the other hand,
quantifies the coverage achieved when sensors are deployed

according to a distribution, and is relevant in applications
where the sensors’ positions cannot be selected a priori.

In this paper, we analyze the following stochastic coverage
problem. Given a planar field of interest andN sensors
deployed according to a known distribution, compute the
fraction of the field of interest that is covered by at least
k sensors (k ≥ 1). The problem can also be rephrased as,
given a field of interest and a sensor distribution, how many
sensors must be deployed in order for every point in the field
of interest to be covered by at leastk sensors with a probability
p (k-coverage problem) [20].

In this paper we make the following contributions. We
formulate the problem of coverage in sensor networks as
a set intersection problem. We use results from integral
geometry to derive analytical expressions quantifying the
coverage achieved by stochastic deployment of sensors into
a planar field of interest. Compared to previous analytical
results [8], [12], [20], our formulation allows us to consider
a heterogeneous sensing model, where sensors need not have
an identical sensing capability. In addition, our approach is
applicable to scenarios where the sensing area of a sensor
is not an ideal circle, but has any arbitrary shape. To the
best of our knowledge, only [15] considers a heterogeneous
sensing model, though only incorporating the mean value of
the sensing range in the coverage computation. In addition, the
formulation in [15] considers only uniformly deployed sensors.
In our approach, sensors can be deployed according to any
distribution. We provide formulas for k-coverage in the case
of heterogeneous sensing areas, as well as the simplified forms
in the case of identical sensing areas, and give an example for
the computation of the number of sensors required to cover
a field of interest with a pre-specified probability. Finally, we
validate our theoretical expressions via simulations and show
an exact match between simulation and theory.

The rest of the paper is organized as follows. In Section
III we formulate the coverage problem as a set intersection
problem. In Section IV we derive analytical expressions for
coverage. In Section V, we validate our theoretical results via
simulation. Section VI presents our conclusions.

II. RELATED WORK

In this section we describe related work to the coverage
problem in wireless sensor networks. The coverage problem
can be classified under different objectives and metrics. The
different approaches to the coverage problem are, deterministic



or stochastic sensor deployment, homogeneous or hetero-
geneous sensing area, additional design constraints such as
energy efficiency, minimum number of sensors that need to
be deployed, or network connectivity. Based on the objective,
the coverage problem formulation varies to reflect the different
assumptions and objectives.

In [9], the authors study the problem of deterministic node
placement in order to achieve connected coverage, that is,
sense the field of interest with the minimum number of sen-
sors, while keeping the sensor network connected. The authors
assume that the sensing area of each sensor follows the unit
disk model and consider sensors with identical sensing areas.
The problem of connected coverage has also been recently
studied in [20]. The authors provide a geometric analysis
that relates coverage to connectivity and define the necessary
conditions for a network covering a field of interest to be
connected. The conditions for coverage and connectivity are
derived based on the assumptions that the sensing area of each
node is identical and circular, and the location of the nodes
is known. The authors extend their algorithms for the case of
probabilistic deployment, and also relax their assumptions to
non-unit disk sensing areas, by approximating the real sensing
area with the biggest possible circular area included in the real
sensing area.

In [16] the authors study the problem of deterministic
coverage under the additional constraint that each sensor must
have at leastk neighbors. They propose a deployment strategy
that would maximize the coverage while the degree of each
node is guaranteed to be at leastk, under the assumption that
the sensing range of the sensors is isotropic.

In [13], the authors study the problem of coverage, as a
path exposure problem. Using a generic sensing model and
an arbitrary sensor distribution, they propose a systematic
method for discovering the minimum exposure path, that is the
path along which the network exhibits the minimumintegral
observability1. Authors in [10], investigate the problem of
best- and worst-case coverage. In their formulation of the
coverage problem, given the location of the sensors and a
generic sensing model where the sensing ability of each
sensor diminishes with distance, the authors use Voronoi
diagrams and Delaunay triangulation to compute the path that
maximizes the smallest observability (best coverage) and the
path that minimizes the observability by all sensors (worst
coverage). In [11], the authors provide a decentralized and
localized algorithm for calculating the best coverage.

Authors in [12], study the problem of stochastic coverage
in large scale sensor networks. For a randomly distributed
sensor network, the authors provide the fraction of the field
of interest covered byk sensors, the fraction of nodes that
can be removed without reducing the covered area as well
as the ability of the network to detect moving objects. The
results presented in [12] hold only for randomly (uniformly)
deployed networks and under the assumption that the sensing

1The integral observability is defined as the aggregate of the time that a
target was observable by sensors while traversing a sensor network.

area of each sensor is identical. Furthermore, the analysis in
[12] suffers from the border effects problem, illustrated in [2],
[3]. The results hold asymptotically under the assumption that
the field of interest expands infinitely in the plane, while the
density of the sensor deployment remains constant.

In [15], the authors study the stochastic coverage problem
in ad hoc networks in the presence of channel randomness. For
a randomly deployed sensor network, the authors analyze the
effects of shadowing and fading to the connectivity and cov-
erage. They show that the in the case of channel randomness,
the coverage problem can still be modeled after the Spatial
Poisson distribution, by usingexpectedsize of the sensing
area of sensors. While the results in [15] are applicable to
heterogeneous sensor networks, they hold only for randomly
deployed networks, and are impacted from the border effects
problem [2], [3], as noted by the authors [15].

Compared to previous work that derives analytical coverage
expressions [12], [15], [16], our formulation allows us to
consider a network model where, (a) sensors can be deployed
according toany distribution, (b) sensors can have a sensing
area ofanyarbitrary shape, (c) sensors can have heterogeneous
sensing areas.

III. PROBLEM FORMULATION & B ACKGROUND

In this section, we formulate the problem of coverage in
heterogeneous sensor networks as a set intersection problem
arising in Integral Geometry [7], [14], [17]–[19] and provide
relevant background for the set intersection problem.

A. Problem Formulation

We formulate the problem of stochastic coverage as follows.
Let A0 denote the planar field of interest we want to monitor,
with areaF0 and perimeterL0. Assume thatN sensors with
sensor si having a sensing areaAi, (i = 1 . . . N), are
deployed according to a distributionK(A0) and in such a way
that they sense some part of the field of interest2. Let Fi, Li

denote the size and the perimeter of the sensing areaAi of
each sensorsi, respectively. We want to calculatethe fraction
ofA0 that is sensed by at leastk sensors, i.e. the fraction that
is k-covered (k ≥ 1). This problem is equivalent to computing
the probability that a randomly selected pointP ∈ A0 is
sensed by at leastk sensors. We map this coverage problem
to the following set intersection problem. In our formulation,
a setS is defined as a collection of points in the plane, and
for the coverage problem the sets are closed regions.

Let S0 be a fixed closed set defined as a collection of
points in the plane, and letF0 and L0 denote the area and
perimeter ofS0. Let N closed setsSi (i = 1 . . . N ) of sizeFi

and perimeterLi be dropped in the plane ofS0 according
to a distributionK(S0) and in such a way that every setSi

intersects withS0. Compute the fraction ofS0 where at least

2Note that for sensing, we do not require that sensors are located within
the field of interest. Instead, as shown in Figure 1(a), we require that they
can monitor some part of the field of interest even if they are located outside
of it.
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Fig. 1. (a) A heterogeneous sensor network with sensors covering the deployment regionA0. (b) A convex setA and the corresponding quantities that
define the kinematic density. (c) Two convex setsA0,A1 intersecting, and the common areaA0.

k out of theN setsSi intersect.

In the mapping of the stochastic coverage problem to the
set intersection problem, the fixed closed setS0 corresponds to
the field of intersectA0. TheN closed sets dropped according
to the distributionK(S0) correspond to the sensing areas of
the N sensors deployed according to the distributionK(A0).
By computing the fraction of the setS0, where at leastk out
of N setsSi intersect, we equivalently compute the fraction
of the field of interest that is k-covered3.

The set intersection problem has been a topic of research of
Integral Geometry and Geometric Probability [7], [14], [17]–
[19]. Before we provide analytical coverage expressions based
on our formulation, we present relevant background.

B. Background on Integral Geometry

In this section, we present relevant background on Integral
Geometry that we use in Section IV for deriving analytical
coverage expressions based on our formulation. Interested
reader is referred to [7], [14], [17]–[19], as reference to
Integral Geometry.

We first define the notion of thekinematic densityfor the
group of motions of a setA in the plane, that is used to define
a measure that quantifies the possible positions ofA, such that
a specific event occurs [17]. The kinematic density expresses
the differential element of motion of a set in the plane and is
defined as follows.

Definition 1: Kinematic Density–LetM denote the group
of motions of a setA in the plane. The kinematic densitydA
for the group of motionsM in the plane for the setA, is
defined as the differential form:

dA = dx ∧ dy ∧ dφ, (1)

where∧ denotes the exterior product used in exterior calculus
[5], [6], (x, y) denote the Cartesian coordinates, andφ denotes
the rotation angle ofA with respect to thex axis of the
coordinate system4 [17].

3Due to their equivalence,A0 andS0 as well as the terms sensing area
and set are used interchangeably in the rest of the paper.

4For every setA, one can randomly choose a reference pointO, based on
which all translations and rotation motions ofA are defined.

In figure 1(b), we show a setS, a randomly selected
reference pointO ∈ S, and the axis of a coordinate system.
All rotations and translations for the setS are defined with
respect to the reference pointO. Integrating the kinematic
density of a setA over a group of motionsM in the plane,
yields a measure for the set of motionsM, which is called
the kinematic measure [17], defined below.

Definition 2: Kinematic measure–The kinematic measure
m of a set of motionsM in the plane is defined by the integral
of the kinematic densitydA overM :

m =
∫

M
dA. (2)

By measuring the motions of a set in the plane, we quantify
the space of all possible positions of the set that correspond
to that motion. The quotient of the measure of any random
motion pathZ over the measure of all possible motionsM in
the plane, yields the probabilityp(Z) for that random motion
pathZ to occur:

p(Z) =
m(Z)
m(M)

. (3)

The kinematic measure allows us to compute the geometric
probability for a specific set configuration to occur, as depicted
in (3). Equation (3), is used in our formulation to derive the
fraction of the field of interest covered by a sensor deployment,
as it is illustrated in the following section.

IV. COVERAGE IN HETEROGENEOUS SENSOR NETWORKS

In this section, we derive analytical expressions for coverage
by analyzing the coverage problem as a set intersection prob-
lem. We first illustrate the coverage computation when a single
sensor is randomly deployed to monitor the field of interest,
by studying the intersection of two sets in the plane. We then
compute coverage when the sensor is deployed according to a
distributionK(A0). We extend our expressions to the general
case whereN sensors are deployed at random. We compute
the fraction of the field of interest covered by exactlyk sensors
in the case of heterogeneous sensing areas and simplify the
formula when the sensors have identical sensing areas. Finally,
we compute the fraction of the field of interest covered by at
leastk sensors.



A. Coverage Achieved by Random Deployment of a Single
Sensor

Let us consider the simple case where a single sensors1

is randomly deployed in such a way that it monitors some
part of the field of interest. The achieved coverage can be
computed by considering the intersection of two sets in the
plane. LetA0,A1 denote two sets in a plane withA0 being
fixed, whileA1 can move freely.A0 represents the field of
interest, whileA1 represents the sensing area of nodes1. The
average size of the common areaA01 between setsA0,A1,
whenA1 is randomly dropped in the plane, defines the area
of A0, covered byA1. NormalizingA01 overA0 we obtain
the fractionfr(A0) of A0 covered byA1. In figure 1)(c), we
show two setsA′,A1 and the common area between them.

To computefr(A0), we randomly select a pointP of A0,
and find the set of all positions ofA1 that includeP. Dividing
the measure of all the positions ofA1 that includeP over the
measure of all the positions ofA1 such thatA0

⋂A1 6= ∅
yields the probabilityp(P ∈ A1) that the randomly selected
point P is covered byA1 [17], [18]. Integratingp(P ∈ A1)
over all P ∈ A0 and normalizing over the size ofA0 yields
fr(A0). The following theorem holds only for convex sets,
though it can be extended in the case of non-convex sets by
appropriate computation of the kinematic measures [17], [18].

Theorem 1:Let A0 be a fixed convex set of areaF0 and
perimeterL0, and letA1 be a convex set of areaF1 and
perimeterL1, randomly dropped in the plane in such a way
that it intersects withA0. The probability that a randomly
selected pointP ∈ A0 is covered byA1 is given by:

p(P ∈ A1) =
2πF1

2π(F0 + F1) + L0L1
. (4)

Proof: The probability thatP is covered byA1 is equal
to the measure of the set of motions ofA1 such thatP ∈ A1

divided by the measure of the set of motions ofA1 such that
A0

⋂A1 6= ∅. We now compute the two measures.

m(A1 : P ∈ A0

⋂
A1)

(i)=
∫

P∈A0
TA1

dA1

(ii)=
∫

P∈A1

dA1

=
∫

P∈A1

dx ∧ dy

∫ 2π

0

dφ

= 2πF1, (5)

where in 5(i) we integratedA1 over all motions ofA1 such
that P ∈ A0

⋂A1. Since by assumptionP ∈ A0 andA0 is
fixed, in 5(ii) we integratedA1 over all motions ofA1 such
that P ∈ A1. The measure of all motions ofA1 such that

A0

⋂A1 6= 0 is:

m(A1 : A0

⋂
A1 6= ∅) =

∫

A0
TA1 6=∅

dA1

=
∫

A0
TA1 6=∅

dx ∧ dy ∧ dφ

= 2π(F0 + F1) + L0L1. (6)

Due to the length and complexity, the proof of (6) is omitted.
Interested reader is referred to [17], [18] for details.

By combining (5) and (6) we can compute the probability
p(P ∈ A1) as:

p(P ∈ A1) =
m(A1 : P ∈ A0

⋂A1)
m(A1 : A0

⋂A1 6= ∅)
=

2πF1

2π(F0 + F1) + L0L1
. (7)

Note thatp(P ∈ A1) is only dependent on the area and the
perimeter of the convex sets that intersect and not on the shape
of those sets.

Lemma 1:The fractionfr(A0) of a fixed convex setA0 of
areaF0 and perimeterL0 that is covered by a convex setA1

of areaF1 and perimeterL1, whenA1 is randomly dropped
in the plane in such a way that it intersects withA0 is given
by:

fr(A0) =
2πF1

2π(F0 + F1) + L0L1
. (8)

Proof: Equation (7) expresses the probability that a
randomly selected pointP ∈ A0 is covered byA1. Integrating
(7) over all pointsP ∈ A0 provides the sizeF01 of the
common areaA01 betweenA′ andA1 :

F01 =
∫

P∈A0

p(P ∈ A1)dP

= p(P ∈ A1)
∫

P∈A0

dP

= p(P ∈ A1)F0

=
2πF0F1

2π(F0 + F1) + L0L1
. (9)

NormalizingF01 by F0 yields:

fr(A0) =
F01

F0

=
2πF0F1

2π(F0 + F1) + L0L1

1
F0

=
2πF1

2π(F0 + F1) + L0L1

= p(P ∈ A1). (10)



B. Coverage Achieved by Deployment of a Single Sensor
According to an Arbitrary Distribution

In the case where theA1 is not randomly deployed in
the plane, but it follows an arbitrary distributionK(A0), the
measures in (5), (6) are calculated as weighted functions of
the probability density functionk(x, y, φ) of A1.

m(A1 : A0

⋂
A1 6= ∅) =

∫

Z

kdx ∧ dy ∧ dφ, (11)

m(A1 : P ∈ A0

⋂
A1) =

∫

P∈A1

kdx ∧ dy ∧ dφ,(12)

where Z = A0

⋂A1 6= ∅. Depending on the distribution
K(A0), the measures in (11), (12) may have a closed form.
WhenA∞ is deployed according to the distributionK(A0),
we can calculate the probabilityp(P ∈ A1), by substituting
the measures in (11), (12) into (7). Thep(P ∈ A1), is the
basic building block for deriving expressions for coverage in
the general case whereN sensors are deployed, as we show
in the following section.

C. Coverage in the Case of Multiple Sensors

In this section, we compute the probabilityp(S = k) that
a randomly selected pointP ∈ A0 is covered byk sensors
whenN sensors are randomly deployed. Usingp(S = k), we
compute the probability thatP is covered by at leastk sensors,
as well as the fraction ofA0 covered by at leastk sensors.

Theorem 2:Let A0 be the field of interest of sizeF0 and
perimeterL0, and letN sensors with sensing areaAi of size
Fi and perimeterLi be deployed overA0. The probability
p(S = k) that a randomly chosen pointP of A0 is covered
by exactlyk sensors whenk ≥ 1 is given by:

p(S = k) =

∑(N
k)

i=1

(∏k
j=1(2πFTi,j )

∏N−k
z=1 J (i, z)

)

∏N
r=1(2π(F0 + Fr) + L0Lr)

, (13)

whereJ (i, j) = (2πF0 + L0LGi,z ), T is a matrix in which
each rowj is a k-permutation of[1 . . . N ], andG is a matrix
in which each rowj contains the elements of[1 . . . N ], that
do not appear in thejth row of T.

Proof: In order to prove Theorem 2, we map the problem
of coverage to the set intersection problem, as illustrated in our
problem formulation in Section III-A. When a single sensorsi

is deployed, the probability that it covers a randomly selected
point P ∈ A0 is given by Theorem 1. Hence, the probability
p(P /∈ Ai) can be computed as:

p(P /∈ Ai) = 1− p(P ∈ Ai)

= 1− 2πFi

2π(F0 + Fi) + L0Li

=
2πF0 + L0Li

2π(F0 + Fi) + L0Li
. (14)

Given that fact that theN sensors areindependentlydeployed
in the plane so that they cover some part ofA0, the probability
p(S = k) that a randomly selected pointP ∈ A0 is covered by

exactlyk sensors is equal to the probability thatP is covered
by exactlyk specific sets. LetT denote akx

(
N
k

)
matrix where

each rowj is a k-permutation of the vector[1 . . . N ], and let
G denote a(N−k+1)x

(
N
k

)
matrix where each rowj contains

the elements of[1 . . . N ], that do not appear in thejth row
of T. Consider for example,T (1) = [1 . . . k] and G(1) =
[k + 1 . . . N ]. The probabilityp(T (1)) that P is covered by
exactly the sets with indexes in the first row ofT is given by:

p(T (1)) (i)= p(P ∈ A1, . . . , P /∈ Ak+1, . . . , P /∈ AN )
(ii)= p(P ∈ A1), . . . , (P ∈ Ak)

p(P /∈ Ak+1), . . . , p(P /∈ AN )
(iii)=

2πF1

2π(F0 + F1) + L0L1

. . .
2πFk

2π(F0 + Fk) + L0Lk

2πF0 + L0Lk+1

2π(F0 + Fk+1) + L0Lk+1

. . .
2πF0 + L0LN

2π(F0 + FN ) + L0LN

=

∏k
j=1(2πFj)

∏N
z=k+1(2πF0 + L0Lz)∏N

r=1 (2π(F0 + Fr) + L0Lr)

=

∏k
j=1

(
2πFT1,j

)∏N−k
z=1

(
2πF0 + L0LG1,z

)
∏N

r=1 (2π(F0 + Fr) + L0Lr)
.

(15)

In (i), we show whichk sets include pointP. Due to the
independence in the set deployment, in (ii), the intersection of
the events in (i) becomes a product of the individual events. In
(iii), we substitute the individual probabilities from (7), (14).
In the general case, the probability that the sets with indexes
of the ith row of T cover pointP is given by:

p(T (i)) =

∏k
j=1

(
2πFTi,j

)∏N−k
z=1 J (i, z)

∏N
r=1 (2π(F0 + Fr) + L0Lr)

. (16)

Since we are not interested in a specific set permutation to
cover pointP, the probability thatp(S = k) is a summation
of p(T (i)) for all possiblek-permutations. Summingp(T (i))
over all i yields (13):

p(S = k) =
(N

k)∑

i=1

p(T (i))

=
(N

k)∑

i=1

(∏k
j=1

(
2πFTi,j

) ∏N−k
z=1 J (i, z)

∏N
r=1 (2π(F0 + Fr) + L0Lr)

)

According to Lemma 1, (13) also expresses the fraction ofA0

that is covered by exactlyk sensors. Equation (13) is valid for
k ≥ 1. The fraction of theA0 that is not covered by any
sensor, is given by the following corollary.
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Fig. 2. Fractionfr(A0) of A0, that remains non-covered as a function of the number of sensorsN that are deployed to monitor the field of interest.

Corollary 1: The fraction ofA0 that is not covered by any
sensor whenN sensors are randomly deployed is given by,

p(S = 0) =
N∏

i=1

2πF0 + L0Li

2π(F0 + Fi) + L0Li
. (17)

Proof: Given that fact that theN sensors areindepen-
dently deployed in the plane so that they cover some part of
A0, the probabilityp(S = 0) that none of theAi, i = 1 . . . N
covers pointP is:

p(S = 0) = p(P /∈ A1, . . . , P /∈ AN )

(i)=
N∏

i=1

p(P /∈ Ai)

(ii)=
N∏

i=1

(
2πF0 + L0Li

2π(F0 + Fi) + L0Li

)
. (18)

Equality in (i) holds due to the independence in the deploy-
ment of the sensorssi. In (ii), we substitutep(P /∈ Ai) from
(14).

In the case where the sensors have identical sensing area, that
is, Fi = F andLi = L then the following corollary holds.

Corollary 2: Let Fi = F and Li = L. The probability
that a randomly selected point ofA0 is covered by exactlyk
sensors is given by

p(S = k) =

(
N
k

)
(2πF )k(2πF0 + L0L)N−k

(2π(F0 + F ) + L0L)N
. (19)

Proof: Corollary 2 holds by substitutingFi = F and
Li = L, into (13).

Once we have computed the probability for a randomly
selected pointP of A0 to be covered by exactlyk sensors,
we can also compute the probability that a randomly selected
point P is covered byat leastk sensors.

Theorem 3:Let A0 be the field of interest of sizeF0 and
perimeterL0, and letN sensors with sensing areaAi of size
Fi and perimeterLi be deployed overA0. The probability
that a randomly selected point ofA0 is covered byat leastk
sensors is given by:

p(S ≥ k) = 1−
k−1∑

h=1

p(S = h) (20)

where

p(S = h) =

∑(N
h)

i=1

(∏h
j=1(2πFTi,j )

∏N−h
z=1 J (i, z)

)

∏N
r=1(2π(F0 + Fr) + L0Lr)

.

Proof: Theorem 3, holds by observing:

p(S ≥ k) = 1− p(S < k) = 1−
k−1∑

h=1

p(S = h), (21)

and substituting (13) into (21).

V. VALIDATION OF THE THEORETICAL RESULTS

In this section, we validate our theoretical results derived in
Section IV via simulation. We perform experiments for both
homogeneous and heterogeneous sensor networks and show
that the theoretical formulas match the simulations. We also
provide an example for analytically computing the number of
sensors that need to be deployed in order to achieve the desired
degree of coverage.

A. Coverage in Homogeneous Sensor Networks

In our first experiment, we randomly deployed a variable
number of sensors with identical sensing area in a disk of
radiusR = 100m. All sensors had a circular sensing area of
radiusr = 10m. We repeated the experiments 100 times and
averaged the results. We first compute the fractionfr(A0) of
A0, that remains non-covered as a function of the number of
sensorsN that are deployed to monitor the field of interest.



0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

Probability density function p(S=k) for N=200

k (sensors)

F
ra

ct
io

n 
fr

(A
0)

Theoretical
Simulated

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

Fraction of A
0
 covered by at least k sensors for N=200

k (sensors)

F
ra

ct
io

n 
fr

(A
0)

Theoretical
Simulated

(a) (b)

0 5 10

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Probability density function p(S=k) for N=600

k (sensors)

F
ra

ct
io

n 
fr

(A
0)

Theoretical
Simulated

0 2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

Fraction of A
0
 covered by at least k sensors for N=600

k (sensors)

F
ra

ct
io

n 
fr

(A
0)

Theoretical
Simulated

(c) (d)

(e) (f)

Fig. 3. (a) The pdf of the fractionfr(A0) covered by exactlyk sensors whenN = 300 sensors with identical sensing area are randomly deployed. (b)
The fractionfr(A0) covered by at leastk sensors whenN = 300 sensors with identical sensing area are randomly deployed. (c) The pdf of the fraction
fr(A0) covered by exactlyk sensors whenN = 500 sensors with identical sensing area are randomly deployed. (d) The fractionfr(A0) covered by at
leastk sensors whenN = 500 sensors with identical sensing area are randomly deployed. (a) The pdf of the fractionfr(A0) covered by exactlyk sensors
whenN = 1000 sensors with identical sensing area are randomly deployed. (f) The fractionfr(A0) covered by at leastk sensors whenN = 1000 sensors
with identical sensing area are randomly deployed.

The theoretical formula that computesfr(A0) is obtained
from Corollary 1 and is equal to:

fr(A0) = p(S = 0) =
(

2πF0 + L0L

2π(F0 + F ) + L0L

)N

, (22)

whereF0 = πR2, L0 = 2πR,F = πr2, L = 2πr. In figure
2(a), we show the fractionfr(A0) of A0, that remains non-
covered as a function of the number of sensorsN that are
deployed to monitor the field of interest. We observe that

the theoretical formula in (22) conforms with the simulation
results. Since our method does not suffer from the border effect
problem, (22) is accurate despite the bounded size of the field
of interest.

In figure 3(a), we show the pdf of the fractionfr(A0)
covered by exactlyk sensors whenN = 200 sensors with
identical sensing area are randomly deployed. The equivalent
sensor density is equal toρ = 0.0063 sensors/m2. The
same graphs forN = 600, N = 1000 (densitiesρ = 0.019



Fig. 4. Fractionfr(A0) of A0, that remains non-covered as a function of the number of sensorsN that are deployed to monitor the field of interest.

sensors/m2, ρ = 0.032 sensors/m2) are provided in figures
3(c) and 3(e), respectively. The pdf offr(A0) is equal to
the probability that a randomly selected pointP is covered
by exactlyk sensors. Our analytical derivation in Section IV,
yields:

fr(A0) = p(S = k)

=

(
N
k

)
(2πF )k(2πF0 + L0L)N−k

(2π(F0 + F ) + L0L)N
. (23)

In figure 3(b), we show the fraction ofA0 covered by
at least k sensors whenN = 200. The same graphs for
N = 600, N = 1000 are provided in figure 3(d) and
3(f), respectively. For both values ofN we observe that our
theoretic formulas conform with the simulation results. For all
graphs in figure 2, 3 we show the theoretical result according
to our expressions, and the simulation values.

B. Coverage in Heterogeneous Sensor Networks

In our second experiment, we considered a hierarchical
(heterogeneous) sensor network, where two types of sensors
are deployed. TypeA has a sensing area of disk shape with a
sensing rangerA = 10m, while typeB has a sensing area of
disk shape with a sensing range ofrB = 15m. We randomly
deployed an equal numberNA = NB = N

2 of sensors of
each type over a circular field of interest of sizeF0 = πR2

whereR = 100m. In figure 4, we show the fractionfr(A0)
of A0, that remains non-covered as a function of the number
of sensorsN that are deployed to monitor the field of interest.
The theoretical formula that compute that is equal to:

fr(A0) = p(S = 0)

=
N∏

i=1

2πF0 + L0Li

2π(F0 + Fi) + L0Li
, (24)

whereF0 = πR2, L0 = 2πR, Fi = πr2
i , L = 2πri.

We observe that the simulation results verify the validity
of our theoretical expression. In figure 5(a), we show the pdf
of the fractionfr(A0) covered by exactlyk sensors when
N = 300 sensors are randomly deployed. The equivalent

sensor density is equal toρ = 0.0095 sensors/m2. The
same graph forN = 500, N = 1000 (densitiesρ = 0.019
sensors/m2, ρ = 0.032 sensors/m2) are provided in figures
5(c) and 5(e), respectively. Thefr(A0) covered by exactlyK
sensors is equal to the pdfp(S = k) of the probability that
a randomly selected pointP is covered by exactlyk sensors.
Our analytical derivation in Section IV, yields:

fr(A0) = p(S = k)

For k = 0 :

fr(A0) =
N∏

i=1

(
2πF0 + L0Li

2π(F0 + Fi) + L0Li

)
,

while for k ≥ 1 :

fr(A0) =

∑(N
k)

i=1

(∏k
j=1(2πFTi,j )

∏N−k
z=1 J (i, z)

)

∏N
r=1(2π(F0 + Fr) + L0Lr)

.

In figure 5(b), we show the fraction ofA0 covered by
at least k sensors whenN = 300. The same graphs for
N = 500, N = 1000 are provided in figures 5(d), and
5(f), respectively. We again verify that our theoretical formula
agrees with the simulation results.

In the case of heterogeneous sensor networks where each
sensor has a different sensing area, the formula in (25)
has an exponentially increasing computational cost, since an
exponentially increasing summation of terms must be com-
puted in order to derive the exact coverage achieved. Such a
computation may not be feasible for large networks. In such
a case, an approximation can be used for our formulas by
employing the expressions derived for a homogeneous sensor
network and substituting the sizeF and perimeterL of the
sensing area of the sensors with the expected sizeE[F ] and
expected perimeterE[L]. The theoretical approximation for
such a case is:

fr(A0) = p(S = k)

=

(
N
k

)
(2πE[F ])k(2πF0 + L0E[L])N−k

(2π(F0 + E[F ]) + L0E[L])N
.(25)
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Fig. 5. Heterogeneous sensor network, with the field of interest being a disk of radiusR = 100m. An equal number of two types of sensors are deployed;
Type A has a sensing area of a disk shape with radiusrA = 10m, while type B has a sensing area of a disk shape withrB = 15m. (a) The pdf of the
fraction fr(A0) covered by exactlyk sensors whenN = 300 sensors. (b) The fractionfr(A0) covered by at leastk sensors whenN = 300 sensors. (c)
The pdf of the fractionfr(A0) covered by exactlyk sensors whenN = 500 sensors. (d) The fractionfr(A0) covered by at leastk sensors whenN = 500
sensors. (e) The pdf of the fractionfr(A0) covered by exactlyk sensors whenN = 1000 sensors. (f) The fractionfr(A0) covered by at leastk sensors
whenN = 1000 sensors.

In figure 6(a) we show the pdf obtained via simulation for
our heterogeneous sensor network experiment, forN = 500
sensors, the theoretical values based on the exact formula in
(25), and the approximation in (25). In figure 6(b), we show
the fraction ofA0 covered by at leastk sensors. We observe
that for the case of heterogeneous sensor networks where
each sensor has a different sensing area, (25) provides a good
approximation of the coverage achieved, without incurring the
computational cost of (25).

C. An Example of Computing the Coverage in a Sample
Network

In this section, we provide an example of applying our
results to a sample sensor network. Consider anFoI of size
F0 = 106m2 and perimeterL0 = 4, 000m where sensors of
identical sensing areaF = 100π and perimeterL = 20π
are randomly deployed. We want to compute the number of
sensors needed in order for a randomly selected point of the
FoI to be covered by at least one sensor with a probability
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Fig. 6. Heterogeneous sensor network, with the field of interest being a disk of radiusR = 100m. An equal number of two types of sensors are deployed;
Type A has a sensing area of a disk shape with radiusrA = 10m, while type B has a sensing area of a disk shape withrB = 15m. (a) The pdf of the
fraction fr(A0) covered by exactlyk sensors whenN = 500 sensors. (b) The fractionfr(A0) covered by at leastk sensors whenN = 500 sensors.

pC = 95%. Or alternatively, the number of sensorsN needed,
so that a fractionpC = 0.95 of the field of interest is covered
by at least one sensor. Corollary 1 yields:

p(S ≥ 1) = 1− p(S = 0)

= 1−
N∏

i=1

(
2πF0 + L0L

2π(F0 + F ) + L0L

)

= 1−
(

2πF0 + L0L

2π(F0 + F ) + L0L

)N

.

We want to the probability of 1-coverage to be at leastp(S ≥
1) ≥ p. Hence,

P (S ≥ 1) = 1−
(

2πF0 + L0L

2π(F0 + F ) + L0L

)N

≥ pC ⇒

N ≥ log (1− pC)

log
(

2πF0+L0L
2π(F0+F )+L0L

) .

Substituting the values forpC , F0, L0, F, L yieldsN ≥ 9, 728
sensors.

VI. CONCLUSION

We studied the problem of stochastic coverage in planar
heterogeneous sensor networks. We formulated the coverage
problem as a set intersection problem and used results from
Integral Geometry to obtain analytical expressions for the
coverage achieved by the deployment ofN sensors. Our
formulation generalizes to a heterogeneous sensing model
where each sensor has a different sensing area, while it
does not suffer from the border effects problem. Furthermore,
our approach applies to sensor deployment according to any
distribution. To verify our results, we performed extensive
simulation and showed that the simulation conforms with our
theoretic formulas.
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