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Abstract— In this paper we provide the initial framework for
the study of center-oriented broadcast routing problems using
omnidirectional antennas. From the intuition that the best place to
take advantage of the wireless broadcast advantage is at the center
of a network deploy region, we concretize this idea into a currently
best performing power-efficient broadcast routing algorithm for
wireless adhoc networks. We support this statement with extensive
simulation studies.

I. INTRODUCTION

The broadcast routing problem over wireless ad hoc networks
can be well modeled with a geometric (or proximity) graph the-
ory [1], [2]. Especially, the most distinguishing property of the
wireless medium called wireless broadcast advantage [3] is in
fact very close to rephrasing the definition of a geometric graph,
i.e., there exist edges for all node pairs if the distance between
a pair is smaller than a given range constant (determined by
the transmit power of each node). In other words, the wireless
broadcast advantage property is indeed a geometric property.
Therefore, finding a power-efficient broadcast routing tree for a
given topology is almost tantamount to how fully exploited the
underlying wireless broadcast advantage or geometric property
of the specific node distribution.

Since broadcast with minimum total transmit power has been
already proven to be NP-complete [4], developing efficient
heuristics becomes even more important. Two of the most
prominent heuristic algorithms called Broadcast Incremental
Power (BIP) [3] and Embedded Wireless Multicast Advantage
(EWMA) [4] represent the current state-of-the-art in terms of
the effectiveness in utilizing the geometric properties. Because
we are interested in enhancing the performance of algorithms
for an ensemble of geometric graphs, some statistical or random
geometric graph theoretic approach [1] may provide better
understanding to the problem.

This paper is based on a very simple observation that the
center of a deploy region is the best place to take advantage of
the broadcast advantage property in a statistical sense, which
was observed in our earlier work [5]. If the sum of the required
power for unicasting from the source to a center and the
transmit power for broadcasting from the center is smaller than
the original broadcast routing tree rooted at the source node,
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this scheme fully makes sense. We will refer any algorithm im-
plementing this scheme as a Center-Oriented Broadcast Routing
Algorithm (COBRA) and the general scheme as a COBRA
scheme. We do not know of any previous literature explicitly
dealing with this scheme. Moreover, we take a further step to
analyze this scheme: (i) From a geometrical point of view, we
investigate how transmit power is wasted and analyze previ-
ously known algorithms. (ii) We present an analytical estimate
of the expected minimum required power from the source to a
center node. The derived expression seems to be robust over a
large range of number of nodes. Anyone attempting to apply the
center-oriented broadcast scheme may benefit from this result.
(iii) Finally, we find an explicit algorithm outperforming all
currently known algorithms to the best of our knowledge in
terms of total transmit power.

The remainder of this paper is organized as follows: In the
next section, by analyzing how power is wasted, we present
some design principles that were the main motivation of this
work. In Section III, we present analytical results that will
be used in the next Section IV, where actual algorithms and
simulation results are provided. Section V presents conclusions
and summarizes our work.

II. GEOMETRIC ANALYSIS ON THE SOURCE OF WASTE OF

TRANSMIT POWER

A waste of power occurs when non-negligible amount of
electromagnetic energy from omnidirectional antenna leaks into
unwanted directions. While this is the fundamental reason, we
further characterize the cause of waste of power in a greater
detail from the geometrical point of view.

A. Out of Boundary Power Loss

Let’s consider two broadcast routing trees over the same
network topology illustrated in Fig. 1. S represents the source
node of a broadcast session. Note that the location of S
is different in each figure. Dashed lines represent the edges
of broadcast routing tree, and the corresponding transmission
ranges by omnidirectional antennas are drawn as circles. In this
paper, we will identify the boundary of a specific topology as
the convex hull of the particular node distribution, which is
drawn with thick solid line in Fig. 1.

It is evident that any leakage of radiation power from an
antenna out of the boundary is a waste of power, since there



Fig. 1. Waste of power due to out of boundary power loss.

is no receiver of the broadcast traffic in that region. We will
refer to this source of power waste as out of boundary power
loss. The shaded region with gray corresponds to this loss.
Clearly, the routing tree in Fig. 1(a) results in larger out of
boundary power loss. Also, any darker colored region should
be counted twice or more. The two scenarios in Fig. 1(a) and
1(b) exhibit different behavior. In Fig. 1(a), the source S lies at
one of the vertices of convex hull. Any transmission with large
transmit power from a node near the boundary is guaranteed
to be a waste of power. On the other hand, in Fig. 1(b), while
S transmits with even larger transmit power than the case in
Fig. 1(a), out of boundary power loss is not much. So how can
we mitigate this loss? We can achieve this only by assigning a
small or no transmit power to the boundary nodes. This implies
that power-efficient algorithms should be designed to satisfy,
what we call, Conservative Outside Aggressive Inside (COAI)
principle.

B. Overlap Power Loss

Now we consider another geometric source of power waste
due to overlap of transmission ranges. Fig. 2 shows the sample
examples of broadcast routing trees constructed with Minimum-
weight Spanning Tree (MST) and EWMA algorithm over N =
20 randomly distributed nodes.

(a) MST tree (b) EWMA tree

Fig. 2. Waste of power due to overlap power loss.

For every relay node, this overlap is inevitable because the
messages should arrive from its parent node and the node also
should retransmit the messages. It is a waste of power because

the same region is covered more than once. We will refer to
this source of power waste as overlap power loss. The effect of
overlap power loss is quite evident in Fig. 2. In both Fig. 2(a)
and 2(b), the power waste due to out of boundary power loss
is almost the same—consider convex hulls in each figure—and
is negligible. Nevertheless, the MST tree requires about 31%
more transmit power due to overlap power loss. So how can
we mitigate this effect? Because overlap is inevitable to relay
traffic, the only way to reduce the effect is by reducing the
number of overlaps, i.e., the number of relay nodes. We can
achieve this by covering the whole region with a small number
of large transmission ranges as EWMA and Greedy Perimeter
Broadcast Efficiency (GPBE) [5] algorithms usually do.

The reliance on a small number of large transmit power
has both advantages and disadvantages. First, this scheme is
very effective at interference reduction, since nodes within the
overlap region can receive the same message multiple times.
Also, as shown in Fig. 2(b), nodes near the source S enjoy a
very large signal-to-noise ratio (SNR) and hence small bit error
rate (BER). In addition, the average and maximum number of
hops can be significantly reduced; the number of maximum
hops of MST tree in Fig. 2(a) is 5, on the other hand, EWMA
requires only two. Therefore, both strong SNR and small hop
counts contribute significantly on the reliability of the trees
and require much less retransmissions, which in turn further
enhances energy-efficiency. However, this scheme is not favor-
able in every aspect. Since the scheme relies on a small number
of nodes, unless effective load-balancing is implemented, the
actual network lifetime can be shorter than other schemes.
Hence, power-efficiency does not always translate to energy-
efficiency. For further details, interested readers are referred to
our previous work [5]–[7].

C. Analysis of Previous Algorithms

In [6], [8], we introduced broadcast efficiency as a viable
metric and demonstrated its effectiveness by developing broad-
cast routing algorithms called GPBE and S-GPBE, which is
suitable for omnidirectional and directional (sector) antennas,
respectively. The broadcast efficiency of a node is defined as
the number of newly covered nodes per unit transmit power.

EWMA and GPBE are aggressive algorithms (meaning mul-
tiple nodes are included at the same time) and hence very
effective at reducing overlap power loss. Also they are efficient
at utilizing broadcast efficiency. However, while usually works
well, there is no inherent protection mechanism to reduce the
out of boundary power loss. On the other hand, MST and
BIP are effective at reducing out of boundary power loss,
because very small power is generally assigned to each node
and these are the most conservative algorithms and only one
node is added at each iteration. However, they are inefficient in
terms of overlap power loss. While locally efficient in broadcast
efficiency, their conservativeness causes a limited network view
and the selected covers are not usually globally efficient in
terms of broadcast efficiency.
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Fig. 3. (a) Mean distance to center node C from source node S, (b) Illustration
for approximate estimate of shortest path transmit power, (c) Estimation of
expected transmit power of shortest path from S to C.

Note that overlap power loss and out of boundary power
loss is not always conflicting. In fact, we can achieve both as
evidenced in Fig. 1(b) and Fig. 2(b) following COAI principle.

III. EXPECTED COST OF SHORTEST PATH

A. Mean distance from a source node to center

Let’s consider the illustration in Fig. 3(a). In this paper, we
assume a square deploy region [−δ, δ] × [−δ, δ], since many
man-made structures usually impose rectilinear structures such
as room, conference hall, street, and building walls, etc. We
will use the path loss factor α = 2 throughout the paper. All
nodes are randomly placed within the region following a spatial
Poisson process with i.i.d. uniform distribution [2]. Let the
coordinate of the source node S be (X, Y ), where X and Y are
i.i.d. uniform random variables with |X | ≤ δ and |Y | ≤ δ. Let
the distance from the source S to center C be another random
variable Z =

√
X2 + Y 2, which is a function of X and Y .

Considering boundary conditions, the cdf of Z is given by

FZ (z) = Pr{Z ≤ z} = Pr
{√

X2 + Y 2 ≤ z
}

=




πz2/ (2δ)2 0 ≤ z < δ(
πδ2 + I1 (z)

)
/ (2δ)2 δ ≤ z <

√
2δ

1 z ≥ √
2δ

where

I1 (z) = 4
∫ z

δ

∫ π/2−cos−1(δ/r)

cos−1(δ/r)

r dθ dr

= π
(
z2 − δ2

)
+ 4δ

√
z2 − δ2 − 4z2 cos−1

(
δ

z

)
.

Since Z is a non-negative random variable, the mean distance
E {Z} from source S to center C is

E {Z} =
∫ ∞

0

[1 − FZ (z)] dz

=
∫ δ

0

(
1 − πz2

(2δ)2
)
dz +

∫ √
2δ

δ

(
1 − πδ2 + I1 (z)

(2δ)2
)
dz

=

√
2 + ln

(
1 +

√
2
)

3
δ ≈ 0.7652 δ. (1)

Fig. 3(a) shows the corresponding circle of radius 0.7652 δ.

B. Approximate Estimation of Shortest Path Transmit Power

Now let’s consider the illustration in Fig. 3(b) which cor-
responds to the shaded square region in Fig. 3(a). Between
S and C, n nodes are uniformly distributed within a ε × ε
square region, where S and C lie at the center of each opposite
edge. The square region is divided into m equal strips. The
more region (in terms of the number of strips) there exists
in between the nodes, the better shortest path can be chosen,
because there are more candidate paths to consider. For any
randomly generated topology, we consider only the type of
paths that pass through every node in a strip by increasing order
of x coordinates. We denote the required transmit power of the
paths of this type as PU and that of the shortest path from S to
C as PSPT

S→C , where SPT denotes the shortest path tree. Because
of the restriction of the path, P SPT

S→C ≤ PU , and this holds re-
gardless of specific instances. Hence, E

{
PSPT

S→C

} ≤ E {PU} .
We try to find the approximate expected value E

{
PSPT

S→C

}
by

minimizing the upper bound E {PU} .
In the following, we only consider the strip containing S

and C, because the paths in other strips require more power on
average. Since nodes are uniformly distributed, or produced by
a spatial Poisson process, we assume n/m nodes are inside the
strip. For the following derivation, see Appendix for details.

For any m, we can minimize E {PU} so that

E {PU} ≈
( n

m
+ 1

)[( ε

3m

)2

+
(

ε

n/m + 1

)2
]

(2)

≈
( n

9m3
+

m

n

)
ε2, (3)

where we assume n/m � 1 at the second step. (See Appendix
for proof.) To find the minimum value of E {PU}, we calculate

d

dm
E {PU} =

(
− n

3m4
+

1
n

)
ε2 = 0.

Therefore the minimum value is attained when 3m4 = n2, i.e.,
m = 1

4√3

√
n and the minimum value is

E
{
PSPT

S→C

} ≈ 4
3 4
√

3
ε2

√
n

= η
ε2

√
n

, η = 1.013. (4)

The most notable thing is that the upper bound of the transmit
power of the shortest path from S to C is proportional to 1/

√
n

of the area ε2. Hence, the more nodes are inside the square
region, the less transmit power is required.



To verify how well this equation (4) fits with actual situa-
tions, we performed a simulation study. For each network size
N , we generated 1000 random topologies and calculated the
required transmit power of the shortest path from S to C.
We found the proportionality constant η = 1.013 in (4) is
somewhat optimistic leading to smaller average values. This is
partially due to the two approximation steps in our derivation.
Nevertheless, we could confirm the dependence of on ε 2/

√
n as

shown in Fig. 3(b). Using least square regression, the constant
η = 1.168 with 95% confidence bounds (1.156, 1.179) matches
better for actual simulation runs. We suggest using this value
instead of (4), as it gives more conservative bounds.

IV. ALGORITHM DESCRIPTION

The basic idea of a center-oriented broadcast routing al-
gorithm (COBRA) is that sources having broadcast messages
send the message to a center of deploy region with smallest
possible transmit power and let the center node relay and
broadcast the message. In any COBRA scheme, the following
three components should be well-defined and clearly specified:

1) the definition of a center node C.
2) a unicast path from source S of broadcast to C.
3) the broadcast routing algorithm from the center node.

Further discussion on the elaborate definition of a center will
be presented in Section IV-D. We start from the simplest
schemes in the following section. Depending on the used central
broadcast algorithm, we specify the algorithm as a suffix to
COBRA.

A. Scheme 1: A Naive COBRA-MAX Algorithm

Following the previous argument, the simplest conceivable
scheme is source S transmits messages to center C along the
minimum power shortest path. Recall that in this paper we
exclusively use the square deploy region [−δ, δ] × [−δ, δ]. We
assume the path loss factor α = 2. The following analysis can
be easily extended to other values of α. For now, we assume
that there always exists a center node with coordinate (xC , yC)
located at (0, 0). In the first approach, source S transmits
to C along the minimum power shortest path and node C

transmits with maximum power
(√

2δ
)2

to cover the whole
deploy region. Thus, we refer to this scheme as COBRA-MAX
algorithm. The advantage of this approach is that center C does
not require any location or distance information of other nodes.
Clearly, this is not a power-efficient scheme, because there is
much power waste due to out of boundary power loss. Using
the previous derivation (1) and (4) with η = 1.168, setting
ε = 0.7652 δ and n = Nε2/ (2δ)2, the approximate expected
total transmit power of this tree is:

E {P (TCOBRA)} = 2δ2 + 1.168
ε2√

N ε2

(2δ)2

=
(

2 +
1.788√

N

)
δ2

(5)
As a second approach, we can reduce the transmit power

from center C by transmitting only up to the farthest node.

This requires that the center node collect distance information
from itself to every node in the network. Then, the approximate
expected total transmit power is:

E {P (TCOBRA)} = E

{
max

j∈N\{S→C}
d2

Cj

}
+

1.788√
N

δ2 (6)

where {S → C} denotes the set of nodes lying on the shortest
path from S to C.

B. Scheme 2: COBRA-EWMA Algorithm

We denote a node closest to the center of deploy region (0, 0)
as a center node C, i.e.,

C = arg min
i∈N

√
x2

i + y2
i .

To choose a right broadcast routing algorithm from the center
node, we rely on simulation results rather than theoretical
analysis. What we want is the best performing algorithm when
the source is located at the center. The data used here were
readily available from our previous work [5], [6]. We tested
the performance of four algorithms including EWMA, GPBE,
BIP, and MST. The ratio of total transmit power from random
source location and from the center was obtained for each given
topology, and the average value for 100 difference topologies
are calculated and listed in Table 1.

TABLE I

THE RATIO OF TOTAL TRANSMIT POWER FROM RANDOM SOURCE

LOCATION AND FROM THE CENTER (α = 2) .

N 20 40 60 100 150 200 300

EWMA 1.2473 1.1991 1.1825 1.1667 1.1610 1.1558 1.1585
GPBE 1.2177 1.1345 1.l375 1.1138 1.1070 1.0906 1.0861
BIP 1.0498 1.0125 1.0003 1.0003 1.0002 1.0004 1.0000
MST 1.0108 1.0062 0.9993 1.0028 1.0011 1.0000 0.9996

Table 1 demonstrates that the choice of source location
greatly impacts the performance of EWMA and GPBE algo-
rithms. Remarkably, about 16∼25% for EWMA and 9∼22%
for GPBE reduction in power (∆P ) is observable. Note that
this is significant savings in power consumption considering
that BIP algorithm, which is the most well-known algorithm
for this purpose, produces about 7% reduction in total transmit
power from MST [3].1 On the other hand, both BIP and MST
are not affected by the source location and hence there is no
point using these algorithms for center-based broadcast scheme.
Thus, the choice of algorithm is obvious, EWMA, because of its
good performance as a central broadcast algorithm. Although
we use EWMA here, the underlying concept is completely
different. Also, note that COBRA scheme is not limited to a
specific algorithm.

The final remaining choice is the unicast routing algorithm
from the original source of broadcast to the center node defined

1This statement is based on our simulation studies. This value corresponds
to the case when |N | ≥ 150. The reason for choosing this value is that we
believe the transient behavior due to the effect of node density seems to be
filtered out after this range and this value represents a reasonable estimate of
a steady state behavior.
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Fig. 4. Comparison of various algorithms in terms of (a) total transmit power,
and (b) normalized total transmit power. (α = 2)

above. While it may be possible to choose any unicast routing
algorithm to satisfy certain other requirements such as load-
balancing, throughput or delay, we simply use the shortest path
tree (SPT) algorithms such as Dijkstra or distributed Bellman-
Ford algorithm [9] using the transmit power as the cost of each
link between the nodes.

Combining all these factors, what remains to be seen is
whether the power from S to C is smaller than the savings
presented in Table 1, i.e., ∆P > E

{
PSPT

S→C

} ≈ η ε2√
n
. Before

we proceed to a simulation study, we first confirmed that this
relation really holds at least on average.

C. Simulation Results

We compared several algorithms including EWMA, GPBE,
BIP, MST, COBRA-EWMA, and COBRA-GPBE, where we
used both EWMA and GPBE as central broadcast algorithms,
since large gains are exhibited in Table 1. Path loss factor α =
2 is used. Fig. 4 is the summary of our simulation results.
Each point in Fig. 4 corresponds to an average value over 100
different randomly generated topologies.

Fig. 4(a) presents the performance comparison in terms of
total transmit power as a function of network size N per square
deploy region with δ = 500m. The curve corresponding to
COBRA-MAX (see eqn. (5)) is drawn with a thick solid line
for comparison. In general, as N becomes larger, the required
total transmit power of all algorithms reduces. We can observe
that COBRA-EWMA algorithm outperforms EWMA, except at
N = 20, and all other algorithms for every network size. This
is because the cost of the shortest path exceeds the benefit of
COBRA scheme for small N . The separation between curves
of COBRA-EWMA and EWMA gets even larger as N grows.
Consequently, COBRA-EWMA provides the best performance
in terms of total transmit power.

To facilitate easy comparison with previous work [3]–[5], we
also present in Fig. 4(b) the results in terms of the normalized
total transmit power as a metric:

Pnorm
TX (Talgorithm) =

PTX (Talgorithm)
mini∈algorithm {PTX (Ti)} .

In contrast to Fig. 5 in [5] where the curves were relatively
flat, the curves in Fig. 4(b) tend to increase leading to even

larger separation between COBRA-EWMA and the rest of the
algorithms as N grows. This figure reconfirms the superior
performance of COBRA-EWMA algorithm. It is left as our
future work to verify this tendency in much larger network
sizes than N = 300.

In summary, up to now, BIP [3] has contributed about 7%
reduction in total transmit power over MST, and EWMA [4] has
contributed about 16% reduction over MST. We introduced in
this paper a general scheme based on center-oriented broadcast
and presented another algorithm giving up to 23% reduction
over MST and hence currently the best performing algorithm
as of now. If the difference in power shown in Table 1 persists
for large N , the separation over EWMA will be larger (say 15%
as in the last column of Table 1), because shortest path cost
becomes negligible as N → ∞ without considering processing
and reception costs.

D. Other Considerations and Future Work

Note that in previous section even with a simple definition of
the center node, we still got very favorable performance results.
For a fixed deploy region imposed by physical surroundings
such as walls or room structure, this definition is not an
unreasonable choice at all. However, we believe that, for each
specific topology, a more elaborate definition of the center node
can provide further reduction in transmit power. For example, a
center of mass or the smallest bounding circle centered at node
C = mini∈N{maxj∈N{dij}} may give better results. Further
refinement on the definition of center and the analysis of its
effect on overall performance are reserved as our future work.

Alternatively, as an extreme case, we can try every node
as a center of broadcast with complexity multiplied by N .
This approach is guaranteed to provide better performance
than the current one. The time complexity of EWMA is given
by O

(
d4

)
m2, where d denotes the maximum node degree

and m denotes the total number of transmitting nodes [4].
Thus using the exhaustive scheme, the complexity becomes
O

(
Nd4

)
m2 + O (N log N + E) where E denote the number

of edges, because we need to run SPT algorithm only once to
get the shortest path tree from S to all nodes.

We can think of other strategies to improve the performance.
For instance, the center node need not broadcast to the nodes
lying on the unicast path from the source. Merging this effect
into the algorithm will give better performance especially for
small network sizes. In addition, whether an algorithm is
distributable is an important scalability issue. Since distributed
versions of SPT [9] and EWMA [4] are known, if we can dis-
tribute the center election algorithm, the full process becomes
distributable. We intend to study the center election algorithm
to make COBRA fully distributed.

V. CONCLUSIONS

In this paper, we presented a center-oriented broadcast
routing (COBRA) scheme. While it is a simple conceptual
extension, we demonstrated that this leads to the currently best
performing broadcast routing algorithm. Of course, its superior



performance is largely indebted to the effectiveness of EWMA
for use as a central broadcast algorithm. However, we can
eventually use any algorithm that will be developed in the future
specifically targeted at enhancing the performance from the
center node, because broadcast only from the center can greatly
simplify the complexity of design principles we considered. We
consider there are still further room for improvement and the
breakthrough should come from the better understanding of the
underlying geometric and statistical properties.
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APPENDIX

A. Proof of Equation (2)

Fig. 5. Mean distance to center node C from source node S

Let’s consider Fig. 5 where n/m nodes are randomly dis-
tributed within a strip of size ε × ε/m. Let α = 2. Node 0
corresponds to S and C is node (n/m + 1) . The coordinate
of node i is defined by a pair of random variables (S i, Yi),
Si =

∑i
k=0 Xk, where we interpret Si and Xi as an epoch

and interarrival variable, respectively [10]. We denote a random
variable corresponding to the total transmit power of the path
which pass through every node in the strip in order by x coor-
dinate as PU . A random variable Di corresponding to distance
between node (i − 1) and i satisfies D2

i = X2
i + (Yi − Yi−1)

2

for all 1 ≤ i ≤ n
m + 1. Then, PU can be expressed as

PU =
n/m+1∑

i=1

D2
i =

n/m+1∑
i=1

(
X2

i + (Yi − Yi−1)
2
)

.

Taking expectation at both sides,

E {PU} = E




n/m+1∑
i=1

(
X2

i + (Yi − Yi−1)
2
)


=
n/m+1∑

i=1

(
E

{
X2

i

}
+ E

{
(Yi − Yi−1)

2
})

(7)

≥
n/m+1∑

i=1

(
E2 {Xi} + E2 {|Yi − Yi−1|}

)
. (8)

where in the third step, we used Jensen’s inequality [10]
because f (x) = x2 is a convex function.

Now we consider x-axis and y-axis separately. We consider
x coordinate first. Because the nodes are distributed according
to spatial Poisson process N (x), Xi, 1 ≤ i ≤ n/m, is
exponentially distributed. From the theory of random process
[10], using order statistics, given that n/m events has occurred
in the interval (0, ε), the unordered random variables are
considered to be distributed independently and uniformly. Note
that we implicitly assumed the condition N (ε) = n/m. Hence,
this results in

E {Xi} = E
{

Xi

∣∣∣N (ε) =
n

m

}
=

ε

(n/m + 1)
. (9)

For y coordinate, we are only interested in mean distance
between two adjacent points Yi and Yi+1 which are uniformly
and independently distributed. Let Y = |Yi − Yi+1| where
− ε

2m ≤ Yi, Yi+1 ≤ ε
2m and 0 ≤ Y ≤ ε

2m . Then the cdf
FY (y) is

FY (y) = Pr {Y ≤ y} = Pr {|Yi − Yi+1| ≤ y}
=

[( ε

m

)2

−
( ε

m
− y

)2
](m

ε

)2

= 2
m

ε
y − m

ε

2
y2

for 0 ≤ y ≤ 1/m, and FY (y) = 1, otherwise. Therefore,

E {Y } =
∫ ∞

0

[1 − FY (y)] dy =
∫ 1

m

0

(
1 − 2

m

ε
y +

m

ε

2
y2

)
dy

= y − m

ε
y2 +

(
m
ε

)2
y3

3

∣∣∣∣∣
ε/m

0

=
ε

3m
(10)

In fact, we can derive the same result using exactly the same
argument as (9) using different parameter values such that

E {Y } = E
{

Y
∣∣∣N ( ε

m

)
= 2

}
=

ε/m

(2 + 1)
=

ε

3m
.

Therefore replacing (9) and (10) into (8), we can minimize
E {PU} as

E {PU} ≥
n/m+1∑

i=1

[(
ε

n/m + 1

)2

+
( ε

3m

)2
]

=
( n

m
+ 1

)[(
ε

n/m + 1

)2

+
( ε

3m

)2
]

which corresponds to (2).


