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Abstract— We study the problem of energy-efficient key distri-
bution for securing multicast communications in wireless ad hoc
networks. Recently, we showed that a cross-layer design approach
for key distribution, incorporating network layer (routing) as well
as physical layer (energy) parameters, leads to energy savings. We
also showed that heuristics are needed to reduce the computational
complexity. In this paper we show that further reduction in energy
expenditure is achieved by assigning common keys to nodes the
receive messages from a sender via a common path. We develop a
computationally viable heuristic called VP3 that uses codewords
to represent paths and groups nodes based on the length of
the common path, derived by the Hamming distance between
codewords. We also present simulation results to illustrate the
improvements achieved by VP3.

I. INTRODUCTION

Many network operations such as routing, neighbor discovery
or topology control, require identical data to be delivered from
a single sender to multiple receivers. In such operations, the
multicast communication model reduces the network traffic,
thus saving energy resources. In addition, due to the nature
of the wireless medium, if several receivers are within the
communication range of the sender, a single transmission to
the furthest receiver is sufficient to deliver the message to all
of them. This property, known as the broadcast advantage (BA)
[2], leads to significant energy conservation. However, anyone
within the communication range has access to transmitted
information. In many critical applications such as military
networks, information privacy needs to be preserved.

Session encryption can be used to secure the wireless mul-
ticast communication. If the session contains large volumes of
data, symmetric key cryptography is energy-efficient compared
to asymmetric key cryptography even in wired networks. How-
ever, the use of symmetric key requires that every valid member
of the multicast group has access to the shared symmetric key
for decryption, known as Session Encryption Key (SEK).

In dynamic multicast groups where members may join or
leave the group, the SEK needs to be updated when a member-
ship change occurs, in order to preserve the secrecy of future
and past communication and ensure that only the valid members
have access to multicast communication at any given time.
Hence, the sender must have secure channel(s) to communicate
with the valid members of the group at any time. To securely
update the SEK, each member needs to possess additional Key
Encrypting Keys (KEK), that are used to encrypt the SEK. Since

the sender must be able to reach all valid members, the SEK
update problem reduces to the key distribution problem, i.e.
finding efficient algorithm(s) to distribute the KEKs in order to
efficiently update the SEK under membership changes.

The multicast key distribution problem in the context of
wired networks has been extensively studied [5]–[7]. The key
distribution trees, independently proposed in [5], [6] have been
adopted as a scalable solution in terms of key update mes-
sages sent by the sender, also known as the Group Controller
(GC), while also maintaining a low storage requirement at the
receiver. However, the key tree solutions developed for wired
networks were shown to be energy inefficient for wireless ad
hoc networks [1], [3], [4]. In [1], we showed that a cross-layer
design approach jointly considering the routing layer and the
physical layer is important to design energy-efficient key distri-
bution schemes. In [1], we also showed that the computational
complexity of the optimal energy-efficient solution is at least
O(N4), and proposed a heuristic key distribution scheme with
complexity O log(N). In doing so, we made use of the power
proximity of the network nodes with respect to the GC.

Our contributions: In this paper we propose a novel key
distribution scheme that achieves energy efficiency by assigning
common KEKs to nodes that share the longest common path to
the GC. Energy savings occur since any key update encrypted
with a KEK known to members sharing a common path will
traverse the common path only once and then be dispersed
to the intended group members. To identify common paths
between nodes we adopt an algebraic approach where paths
are represented as codewords, and the length of the common
path is derived by computing the Hamming distance between
two codewords [8].

The remainder of the paper is organized as follows. In
Section II, we present relevant background and prior work. In
Section III, we describe the network model assumed. In Section
IV, we analyse how the “network direction” impacts the energy
efficiency of the key distribution. In Section V we present our
key distribution algorithm. In Section VI, we provide simulation
results and show the improvements achieved by our algorithms.
Section VII presents conclusions.

II. BACKGROUND & PRIOR WORK

In this section we present background on logical key trees
used as a building block to our algorithm, and describe our



prior work on cross-layer design on key distribution [1].

A. Logical key hierarchical trees

While adding a new member, SEK is updated to protect
the past traffic. When a member is revoked the SEK and
possibly all KEKs known to the deleted member are updated to
protect future communication from being exposed to the deleted
member. Key tree hierarchies were independently proposed for
key distribution in wired networks, in [5], [6], in order to
reduce the cost of member deletion. Key trees require O log(N)
communication overhead and O log(N) storage at the member
and hence, scale with the group size N .
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Fig. 1. A binary logical key tree. Members are placed at the leaf nodes. Each
member holds the keys traced along the path from the leaf to the root. If M1

leaves the multicast group keys (K0, K1.1) need to be updated.

In figure 1(a), we present a binary key distribution tree for
a multicast group of N = 8 members plus the GC. Such a
tree is a visual representation of the key assignment to each
member of the multicast group. Referring to figure 1(a), each
member is associated with a single leaf node of the tree. Each
member is assigned keys that are traced along the path from
the leaf node to the root [5]. For example, M1 is assigned keys
{K0, K1.1, K2.1, K3.1}. K0 is used as the SEK, while the rest
of the keys are KEKs. If M1 leaves the multicast group, keys
{K0, K1.1} need to be updated, while key K2.1 need not be
updated, since it is not shared by multiple members.

B. Cross-layer design for key distribution

In [1], we showed that logical key hierarchical trees proposed
for wired networks are energy inefficient since they do not take
into consideration the network topology. We proposed a new
metric called average update energy EAve to incorporate the
energy parameter in the key tree design. The average update
energy is defined as the energy required to update keys if each
member were to be deleted from the multicast group:

EAve(R, T ) =
1
N

N∑

i=1

EMi(R, T ) (1)

where EMi(R, T ) denotes the energy required to update keys
after the deletion of Mi, according to the key distribution tree
T and routing tree R.

We also showed that finding the key tree T ∗ that minimizes
(1), requires an algorithm of complexity at least O(N 4), and
proposed RAwKey that constructs an energy-efficient key tree

with a complexity of O log(N), based on the power proximity
of members with the GC.

The RAwKey consisted of the following steps: (a) compute
the network energy expenditure E i required to reach each
member from the GC, (b) sort the members according to E i in
ascending order and assign each member to a unique leaf node
of the tree. By grouping members (assigning common KEKs)
that have the smallest energy difference, in many cases, we
group nodes that receive messages through common routing
paths and hence save energy resources. However, as we will
show in section IV this need not be always true. We then show
that we can improve upon the energy efficiency at the expense
of algorithmic complexity. We first present our network model
assumptions.

III. NETWORK MODEL ASSUMPTIONS

Network generation: We assume that the network consists of
N multicast members plus the GC, randomly distributed in
a specific area. We consider a single-sender multiple-receiver
communication model. All users are capable of corroboratively
relaying information between an origin and destination. We also
assume that nodes have the ability to generate and manage
cryptographic keys.
Network initialization: We assume that the network is suc-
cessfully initialized and initial cryptographic quantities (at least
pairwise trust) have been distributed. Several novel approaches
that address the critical problem of secure initialization in ad
hoc networks have been presented in [9], [10].
Layer Interaction: We further assume that information from
the network layer such as routing paths, and information from
the physical layer such as transmission power is available at
the application layer where the key distribution algorithm is
executed.

Since our goal in this paper is to design key management
algorithms and not protocols, we do not address the MAC layer
implementation requirements of our algorithms.

IV. FORMING GROUPS FROM COMMON PATHS

In this section we show how energy savings occur when
common keys are assigned to members that share common
paths. Intuitively, if a message is sent to several members that,
according to the routing tree receive information through the
same path, the message will have to traverse the common path
only once and hence save energy resources.

In figure 2(a) we show the routing tree of an ad hoc network
with {M1 ∼ M4} being the members of the multicast group.
The energy units (E.U.) to maintain each link are also shown.
In figure 2(b) we show key Tree A for the multicast group
of figure 2(a), constructed according to our key distribution
scheme in [1]. The energies Ei required to reach Mi from the
GC are sorted in ascending order {E1 < E3 < E2 < E4} and
the members are placed in the same order in the leafs of the
key tree, from left to right.

In figure 2(b), the assignment of a common key K 1.1 to
{M1, M3} leads to energy savings since for example updating
K0 with K1.1 requires the transmission of just one message to
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Fig. 2. (a) A multicast network with four members and a GC. Each link
energies are indicated. (b) A binary, power-proximity key tree. Members are
placed at the leaf nodes from left to right in ascending order of energies to
reach them from the GC. (c) A binary, routing-aware tree that combines the
power proximity and the maximal common routing path to group nodes.

member M3. However, the assignment of a common key K1.2

to {M2, M4} is not efficient since {M2, M4} are in opposite
“network directions.” Hence power proximity is not sufficient
to group members together.

In figure 2(c), we present key Tree B for the multicast
group in figure 2(a) that takes into account the routing paths.
Members are placed adjacently at the leaves of the key tree
if the share the longest common path to GC. Hence, M1

is grouped with M2 and M3 with M4. By computing the
EA

Ave(R, T ) and EB
Ave(R, T ), for trees A, B respectively, we

get EA
Ave(R, T ) = 26 E.U., while EB

Ave(R, T ) = 24 E.U.
The difference in the energy consumption comes for the fact

that in Tree B, key updates destined to a group of members
are routed only through members of that group. On the other
hand, in key Tree A a key update destined to {M2, M4} is
routed through nodes M1 and M3 thus wasting energy.

Based on our observation that grouping members in the key
distribution tree according to the length of the common path
to the GC leads to energy conservation, we propose a key
distribution scheme called VP3.

V. VP3: VERTEX-PATH POWER PROXIMITY ALGORITHM

A. Idea of VP3

Our vertex-path power proximity algorithm uses a metric
proposed for network tomography in [8]. The author suggests
the representation of each path as a binary codeword of length
equal to the network size, with “ones” corresponding to the
nodes traversed by the path and zero otherwise. The measure
of difference between any two paths is equal to the hamming
distance Hd between the two codewords corresponding to those
paths [8].

By representing the paths from the GC to every member of
the multicast group as codewords and computing the hamming
distances between the codewords, we can compute the length
of the common path form the GC to any group of members.
Then we group members that share the longest common paths.
A detailed description of our algorithm is given below:

B. Detailed description of VP3

Our algorithm assumes two sets of parameters as inputs:
(a) the NxN connectivity matrix C, where each row C i is
a codeword that represents the node path from the GC to node
i, such that the entry Ci,j = 1 if node j is traversed on the
path from GC to i and i �= j, and Ci,j = 0 otherwise and, (b)
a vector E of length N , where the ith entry Ei, indicates the
energy expenditure required to transmit a message from GC to
node i, following the path indicated by the connectivity matrix
C. The steps we need to follow in order to construct an α-ary
key distribution tree where α is the degree of the tree, are:

Step 1: Calculate the hamming weight Hw(i) for each row
in C, corresponding to the path from the GC to node i. The
Hw(i) of row Ci is equal to the number of nodes traversed on
the path from GC to node i, not counting i, given by:

Hw(i) =
N∑

j=1;j �=i

Ci,j (2)

Step 2:Choose the node i∗ with the largest hamming weight
Hw(i∗) = max(Hw(i)). If there is more than one node with the
largest Hw, then pick i∗ to be the one requiring the maximum
energy Ei∗ to be reached from GC, out of all the nodes with
the largest hamming weight. If more that (α − 1) nodes have
the smallest Hd(i, j) and maximum Ei, pick (α−1) randomly.

Step 3: Pick the (α − 1) nodes with the smallest hamming
distances Hd from i∗. The hamming distance Hd(i, j) between
two nodes i, j is calculated by executing a bitwise exclusive
OR operation (XOR) between the codewords corresponding to
the nodes i, j and adding the bits of the resulting codeword.

Hd(i, j) =
∑

Ci ⊗ Cj (3)

If there are more than (α−1) nodes with equal Hd to i∗ always
pick, if any, the node found in the path from the GC to i ∗. For
the remaining (α − 2) nodes, pick the ones with the largest
Ei. If more that (α − 2) nodes have the smallest Hd(i, j) and
maximum Ei, pick (α−2) randomly. Assign a unique common
key to all members corresponding to the α nodes chosen in this
step.

Step 4: Repeat Steps 2,3 until all nodes belong in clusters
of at most α nodes and are assigned a unique common key.

Step 5: Generate a matrix C ′ with rows corresponding to
the clusters generated in Step 4 and columns corresponding to
the network nodes. An entry C ′

i,j = 1 if node j is traversed
in the path from the GC to any of the members of cluster i,
and C ′

i,j = 0 otherwise. Compute the vector E ′ where the ith

entry indicates the energy expenditure required to transmit a
message from GC to all members of cluster i, following the
paths indicated by the connectivity matrix C ′. Execute Steps
1 ∼ 4 with inputs C ′, E′, instead of C and E.

Step 6:Repeat Steps 1 ∼ 5 until all nodes belong to a single
cluster.

In figure 4 we present the pseudo-code for VP3. The
ConnectivityMatrix() function computes the connectivity
matrix for its argument set. The EnergyMatrix() function
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Fig. 3. (a) The broadcast routing tree for an ad hoc network of eight nodes plus the GC. Nodes {1 ∼ 8} are multicast group members. The numbers on
the links indicate the energy expenditure to transmit a message through that link. The circles indicate the grouping of the members into the key tree after the
execution of VP3. (b) The key distribution tree constructed with VP3.

VP3: Vertex-Path Power Proximity Algorithm

MG = Multicast group
C = ConnectivityMatrix(MG)
E = EnergyMatrix(MG)
for l = 1 : �logα(N)�

Hw(i) =
∑N

j=1;j �=i Ci,j , ∀ rows Ci

for k = 1 : � N
αl �

i∗ = argmaxi∈MG Hw(i)
if |i∗| > 1
i∗ = argmaxi∈i∗ Ei, MG = MG\{i∗}
j′ = {j ∈ MG � argminj∈MG Hd(i∗, j)}
If |j′| > (α − 1) pick j ′ path GC → i∗

and (α − 2) ∈ j ′ � arg maxi∈j′ Ei

MG = MG\{j′}, G = G ∪ j′

AssignKey(j′)
endfor
MG = G
C = ConnectivityMatrix(MG)
E = EnergyMatrix(MG)

endfor

Fig. 4. Pseudo-code for VP3. The ConnectivityMatrix() function com-
putes the connectivity matrix for its argument set. The EnergyMatrix()
function computes the energy required to reach a group of vertices from the
GC, where the groups are elements of the vector argument. The AssignKey
function assigns a common key to every element of the argument set.

computes the energy required to reach a set of nodes sharing
a common key from the GC, where each set is an element
of the argument. Initially, the argument to both functions is
the set of all members of the multicast group MG. With the
construction of every subsequent level l of the key tree, the
argument will be the set of groups generated in the previous
level. The AssignKey function assigns a common key to every
element of the argument set.

C. Algorithmic complexity of VP3

In the worst case of a binary key tree construction, the
algorithmic complexity of VP3 is O(N 2), which is higher than
the O(log(N)) complexity of heuristics in [1]. However, as we

will show in section VI, VP3 achieves significant reduction in
the EAve(R, T ) over the best known algorithm in [1].

D. A walk through VP3

In this section we present an application of VP3 on a sample
network. Consider figure 3(a), where we show an ad hoc
network and its broadcast routing topology. The numbers on
the links indicate the energy link cost. Nodes 1 ∼ 8 correspond
to members M1 ∼ M8 of the multicast group MG. Table
I shows the connectivity matrix C for MG, the hamming
weights Hw(i) for each row Ci, and the energy expenditure
Ei necessary to reach member Mi from the GC.

1 2 3 4 5 6 7 8 Hw E
1 0 0 0 0 0 1 0 0 1 12
2 0 0 1 0 0 0 0 0 1 4
3 0 0 0 0 0 0 0 0 0 3
4 0 0 1 0 0 0 0 0 1 24
5 0 0 0 0 0 1 0 0 1 13
6 0 0 0 0 0 0 0 0 0 3
7 0 0 0 0 1 1 0 0 2 20
8 0 0 1 0 0 0 0 0 1 29

TABLE I

CONNECTIVITY MATRIX, HAMMING WEIGHTS AND ENERGY EXPENDITURE

FOR THE MULTICAST GROUP IN FIGURE 3(A).

We want to construct a binary key tree (α = 2) using VP3.
Column Hw in Table I shows the result of executing Step 1.
In Step 2, we identify the set of paths with the greatest Hw.
In our example, we select 7, that has the maximum Hw and
withdraw it from the pool.

In Step 3, we find nodes {1, 5} to have the shortest hamming
distance to 7. Since we need to choose only one node (α = 2)
and 5 is on the path from GC to 7, {M5, M7} are assigned a
unique common key, and node 5 is also withdrawn from the
pool.

In Step 4, we repeat Steps 2,3. In Step 2, nodes {1, 2, 4, 8}
have the highest Hamming weight, and 8 is selected since it has
the highest Ei. In Step 3, nodes {4, 2} have the smallest Hd to
8, but none of them is in the path from the GC to 8. Hence, we
pair 8 with 4 since 4 has a greater Ei. Members {M8, M4} are



assigned a unique common key, and nodes {4, 8} are withdrawn
from the pool. Steps 2,3 are repeated with {M2, M3} and
{M1, M6} also being assigned a unique common key.

In Step 5, we recompute the connectivity matrix C ′ and
energy matrix E ′ for the pairs generated in Step 4, and
repeat Steps 1 to 4. Nodes {2, 3, 4, 8}, {1, 5, 6, 7} are grouped
and members {M2, M3, M4, M8}, {M1, M5, M6, M7}, are as-
signed a unique common key respectively. At this point the
SEK is assigned to all members and the key tree construction
is completed. Figure 3(b) shows the resulting key distribution
tree.

VI. SIMULATION COMPARISON

While we already presented a counter example in figure 2
showing that the RAwKey in [1] can be improved, using the
path information, we present the simulations for completion.

We generated random network topologies confined in a
region of size 10x10. Following the network generation, we
use the Broadcast Incremental Power (BIP) algorithm [2] to
construct and acquire the routing paths from the GC to every
group member (Any other suitable routing algorithm can be
applied as well). The routing tree was used as an input to the
VP3 and was also used to calculate EAve(R, T ).
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In figure 5, we compare VP3 with RAwKey in [1] for
different multicast group sizes. We observe that VP3 requires
less average update energy EAve(R, T ) than RAwKey to per-
form key updates, at the expense of increased algorithmic
complexity. Note that the increase in the multicast group size
does not increase the EAve(R, T ), for groups bigger than 32
nodes in our simulation. This is due to the fact that since
the deployment region was kept constant, as the node density
increased more efficient paths were used to deliver key updates
to group members, eliminating the high-power transmission
links. Therefore, in figure 5, EAve(R, T ) decreases as the
network size increases. Also, note that EAve(R, T ) increases as
the group size increases from 8 to 16 to 32, since the increase
in number of key updates is not compensated by more efficient
route discovery. Due to page limit, the analytical evaluation of
the efficiency is left for a future, detailed paper.

In figure 6, we show the reduction in energy expenditure
achieved by VP3 over RAwKey. We observe that VP3 can
yield a reduction in energy expenditure compared to RAwKey
up to 31% while the average reduction achieved is 25%. The
consideration of the “network direction” through the discovery
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Fig. 6. Reduction in EAve(R, T ) achieved by VP3, over RAwkey.

of nodes sharing common paths and the assignment of common
keys to such nodes, led to significant energy conservation for
key update operations.

VII. CONCLUSIONS

In this paper, we presented currently best performing cross-
layer design algorithm for multicast key distribution that uses
routing energies from the sender and Hamming codes repre-
senting the paths from the sender to each node to minimize
the average energy for key updates. Many interesting questions
including the performance evaluation remain open in this new
problem.
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