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Abstract— Target detection and field surveillance are among
the most prominent applications of Sensor Networks (SN). The
quality of detection achieved by a SN can be quantified by
evaluating the probability of detecting a mobile target crossing
a Field of Interest (FoI). In this paper, we analytically evaluate
the detection probability of mobile targets whenN sensors are
stochastically deployed to monitor aFoI. We map the target
detection problem to a line-set intersection problem and derive
analytical formulas using tools from Integral Geometry and
Geometric Probability. We show that the detection probability
depends on the length of the perimeters of the sensing areas of
the sensors and not their shape. Hence, compared to prior work,
our formulation allows us to consider a heterogeneous sensing
model, where each sensor can have a different and arbitrary
sensing area. We also evaluate the mean free path until a target
is first detected, a measure of timely detection. We verify our
theoretic derivations via simulations.

I. I NTRODUCTION

Target detection is one of the fundamental services provided
by most Sensor Networks (SN). For the purposes of target
detection, a number of sensorsN are deployed to monitor a
Field of InterestFoI. The sensor deployment can be either
stochastic or deterministic depending on the application and
the FoI. Stochastic deployment is preferred when theFoI is
not under the designer’s control at the time of deployment
(hostile environment), or when it is more cost-effective to
randomly deploy the sensors than systematically place them
(large-scale networks) [3], [10], [13].

Once the SN is deployed, targets are detected using one or
more sensing modalities such as optical, mechanical, acoustic,
thermal, RF and magnetic sensing. In fact, to ensure robustness
and enhance performance, oftentimes a sensor fusion approach
is required [1]. As an example, a surveillance system can be
realized via fusion of data aggregated from various sensor
modalities: infrared, CCD, pressure and acoustic sensors.

Depending on the modality, sensing areas have any arbitrary
shape, a reality significantly different from the widely adopted
idealized unit disk model [2]–[6]. Moreover, in sensor fusion
scenarios, devices of different modalities have heterogeneous
sensing capabilities. To date, the target detection problem
under a heterogeneous sensing model has not been studied,
since prior work assumes identical sensing areas for all sensors
[2]–[6], [9]–[12]. In this paper, we address the problem of
quantifying the target detection capability of stochastically

deployed SN, when sensors have heterogeneous sensing ca-
pabilities.

In stochastically deployed networks, the target detection
is achieved only probabilistically. One metric that quantifies
the detection capability of a SN, is the probability of target
detection byat least one sensor [3]. This metric provides
a worst-case guarantee on the number of sensors able to
detect a mobile target. For applications that require enhanced
fault tolerance and reduced false alarms, detection by more
than one sensors is critical [9], [10], [13]. In such cases,
the quality of detection can be quantified by evaluating the
probability of detection by at leastk sensors, wherek is a
design parameter. Furthermore, in several applications it is
critical that the target is detected in a timely fashion. The
relevant metric that quantifies the timeliness of the detection,
is the mean free path until the first detection. Given a target
velocity model, the mean free path can be related to the mean
time until detection [2], [3].

For target detection, we consider two detection models. In
the first model called theInstant Detectionmodel (ID), a
sensors detects a targetX when the trajectory ofX intersects
the sensing area ofs. A similar model has also been considered
in [2]–[6]. However, in more realistic scenarios, a sensor
needs to collect multiple samples of the target before it can
perform reliable detection [7], [8]. Hence, we also consider the
Sampling Detectionmodel (SD), where a sensors must sample
the targetX for at leasttth units of time, befores can reliably
determine the presence ofX. Several previous works have
assumed theEnergy Detectionmodel (ED), where a target
is detected if the energy level measured by a set of sensors
exceeds a pre-defined threshold [9]–[12]. The ED model also
requires a threshold number of samples to detect a target [8],
and hence, ED is a special case of the SD model.

A. Our Contributions

In this paper we make the following contributions. We map
the target detection problem to a line-set intersection problem.
Based on our mapping, we use tools from Integral Geometry
and Geometric Probability to analytically evaluate the proba-
bility of detecting targets moving at a random direction within
the FoI.
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Fig. 1. (a) A convex sensing areaAi of size Fi and perimeterLi, (b) a non-convex sensing area with a convex hull boundary of sizeLh
i and area size

F h
i , (c) the instant detection model: a targetX is detected if its trajectory crosses the sensing area ofsi, (d) the sampling detection model: a targetX is

detected if it is sensed for at leasttth units of time. Given a constant speedv of X, the length of the trajectory ofX within the sensing area ofsi must be
greater thanvtth.

Our formulation shows that the target detection probability
is independent of the shape of the sensing areas of the devices,
and depends only on the length of the perimeters of the
sensing areas (length of the perimeters of the convex hulls of
the sensing areas, for non-convex shapes). Hence, compared
to prior work, [2]–[6], [9]–[12], our mapping allows us to
consider a heterogeneous sensing model where, even sensors
with the same sensor modality need not have identical sensing
capabilities. Using our formulation, we analytically evaluate
the target detection probability for heterogeneous SN, and
derive the results for homogeneous SN, as a special case.

We study the problem of target detection under both the ID
and SD models, and show that the target detection problem
under the SD model can be reduced to the target detection
problem under the ID model, by introducing the concept
of the effective sensing area. We also evaluate the mean
free path until the target is first detected, a critical measure
for timely detection. Our derivations provide an analytic
tool for network designers to select parameters such as the
number of sensors, and type of sensing areas (perimeter
lengths) that guarantee a minimum target detection probability.

The rest of the paper is organized as follows. In Section II
we present related work. In Section III, we state our model as-
sumptions, formulate the target detection problem, and provide
relevant background. In Section IV, we analytically evaluate
the target detection probability and the mean free path until the
first detection. In Section V, we verify our theoretical results
via simulations. In Section VI, we present our conclusions.

II. RELATED WORK

The target detection problem in SN has been a topic of
study under different metrics and assumptions [2]–[6], [9],
[11]–[13]. In [2], the authors investigate the tradeoff between
detection quality and power conservation. In [3], analytic
formulae for the mean delay until a target is detected are
provided, when targets move on a straight line at a constant
speed. In [9], [11], [12], the authors proposed a collabora-
tive detection model, where sensors collectively arrive at a
consensus about the presence of a target. Their formulation
assumes that the detection capability of each sensor decays as
a function of distance. In [21], the authors provided algorithms

for optimum k-coverage of the boundary of aFoI that yields
target detection with certainty. All prior work mentioned above
[2], [3], [9], [11]–[13], assume that sensors have homogeneous
sensing capabilities conforming to the idealized unit disk
model.

III. M ODEL ASSUMPTIONS, PROBLEM FORMULATION AND

BACKGROUND

A. Network and Target Model Assumptions

In this section we state our assumptions about the network
deployment, as well as the sensor and target models we adopt.

Sensor Deployment: We assume thatN sensors are
identically and independently distributed within a planarFoI,
A0, according to a random (uniform) distribution. TheFoI is
a connected and closed set of perimeterL0 of arbitrary shape.
In the case where theFoI is not convex, we assume that the
perimeter, denoted asLh

0 , of the convex hull ofFoI is known.

Target Model: We assume that the trajectories of the mobile
targets are straight lines, with all trajectories crossing theFoI
being equiprobable. Although such an assumption constraints
the space of all possible trajectories, we adopt it for two
reasons.

(a) Given any arbitrary entry and exit point in theFoI,
moving on a straight line minimizes the length of the
trajectory of the target within theFoI (minimizes the
time that the target can be detected). Hence, the target de-
tection probability assuming line trajectories is the worst
case probability compared to the detection of any other
possible trajectory. The worst case analysis allows us to
compute network parameters such as sensor density and
length of the perimeters of the sensing areas, so that target
detection is guaranteed with a minimum probability.

(b) If an arbitrary trajectory is considered, the parameters
of the trajectory (length, curvature, multiple self-crossing
points) need to be specified in the model, in order to
analytically evaluate the probability of target detection.
On the other hand, line trajectories have a simple para-
meterization that facilitates the analytical calculation and
physical interpretation.



Though we do not present it in this paper, our formulation
can be extended to include trajectories of arbitrary shapes
with known parameters, as well as three dimensionalFoI.
Furthermore, straight line motion models have also been
assumed in previous works addressing the target detection
problem [2], [3].

Sensing Model:We assume that each sensorsi, i = 1 . . . N
has a sensing areaAi that is a closed and connected set of
perimeterLi. In the case where the sensing area is not convex,
we assume that the perimeter, denoted asLh

i of the convex
hull of Ai is known. Based on our assumptions, sensors need
not have an identical sensing areaAi. Figure 1(a) illustrates a
sensing areaAi of convex shape. Figure 1(b) illustrates a non-
convex sensing area and the equivalent convex hull boundary.
For detecting a mobile targetX we consider the following two
cases:
(a) ID model: A targetX is detected by a sensorsi if the

trajectory ofX crosses the sensing area ofsi.
(b) SD model: A targetX is detected by a sensorsi if X is

sensed (sampled) for at leastt ≥ tth units of time, where
tth is a design parameter.

Figure 1(c) illustrates detection based on the ID model
which places no constraint on the length of the line segment of
the trajectory withinAi. Figure 1(d) illustrates detection based
on the SD model , where a targetX moving at a constant speed
v is detected, only if the trajectory insideAi is longer than
vtth. We now provide our formulation for the moving target
detection problem.

B. Problem Formulation

Mobile target detection problem: Given a FoI A0 of
perimeterL0 sensed byN sensors with sensorsi having a
sensing areaAi of perimeterLi, randomly and independently
deployed within theFoI, compute the probabilityPD(k) that
a target X randomly crossingA0 is detected by at leastk
sensors.

Mapping the mobile target detection problem:The problem
of mobile target detection under stochastic deployment can
be mapped to a line-set intersection problem by performing
the following mapping. Let theFoI be mapped to a bounded
set S0, defined as a collection of points in the plane with
perimeter lengthL0. Let the sensing area of sensorsi be
mapped to a bounded setSi with perimeter lengthLi. Let
the trajectory of the targetX be mapped to a straight line
`(ξ, θ) in the plane, with parametersξ and θ be the shortest
distance of̀ to the origin of a coordinate system, andθ be
the angle of the line perpendicular to` with respect to thex
axis. Then, the mobile target detection problem for stochastic
SN is equivalent to the following line-set intersection problem.

Line-set intersection problem: Given a bounded setS0 of
perimeter lengthL0 and N setsSi of perimeter lengthLi,
randomly and independently placed insideS0, compute the
probability PD(k) that a random linè intersectingS0, also

TABLE I

MAPPING THE MOBILE TARGET DETECTION PROBLEM TO THE LINE-SET

INTERSECTION PROBLEM

Mobile Target Detection ↔ Line-Set Intersection
Number of sensorsN ↔ Number of setsN
Field of InterestA0 ↔ SetS0

Sensing areaAi of perimeterLi ↔ SetSi of perimeterLi

Random sensor deployment ↔ Random set placement
Trajectory of target X ↔ Random linè crossingS0

Probability of target detection ↔ Probability of ` intersecting
by at leastk sensorsPD(k) at leastk sets

intersects at leastk out of theN setsSi, i = 1 . . . N.

Table I summarizes the mapping from the mobile tar-
get detection problem to the line-set intersection problem.
Throughout the rest of the paper the terms sensing areaAi

and setSi will be used interchangeably.

C. Relevant Background

To evaluate the detection probabilityPD using the line-set
intersection formulation, we need to quantify the number of
lines that intersect with the any of the setsAi, as well as the
number of lines that intersect with theFoI. However, the set
of lines in the plane intersecting a setA is uncountable. To
bypass our difficulty in counting lines in the plane, we adopt
a measure from Integral Geometry and Geometric Probability
[14], [15]. In geometric probability, the measurem(`) of a set
of lines `(ξ, θ) in the plane is defined as follows [14], [15]:

Definition 1: Measure of set of linesm(`): The measure
m of a set of lines̀ (ξ, θ) is defined as the integral over the
line densityd` = dξ ∧ dθ

m(`) =
∫

dξ ∧ dθ, (1)

where∧ denotes the exterior product used in Exterior Calculus
[17].

In the case whereA is convex, the measure of the set of
lines that intersectA is equal to:

m(` : `
⋂
A 6= ∅) =

∫

`
TA6=∅ dξ ∧ dθ =

∫ 2π

0

ξdθ = L, (2)

whereL is the perimeter ofA. Interested reader is referred to
[14], [15], for the proof of (2). In the case whereA is non-
convex, the measure in (2) can be computed by observing that
any line intersecting the convex hull ofA, also intersectsA.
Hence, the measure of the set of lines that intersect a non-
convex set is equal to the perimeter of the convex hull of that
set, denoted asLh.

A geometric interpretation for (2), can be obtained by
considering the thicknessT (θ) of a bounded setA [15]:

Definition 2: Thickness of a bounded setT (θ) : The
thickness of a bounded setA at directionθ is defined as the
length of the projection ofA to a line of directionθ.

The thickness of a setA measures the set of lines along
the direction perpendicular toθ, that intersectA. Figure 2(a),
illustrates the thickness of a setAi at directionθ. Figure 2(b)
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Fig. 2. (a) The thicknessT (θ) of a setAi is equal to the length of the
projection ofAi on a line with directionθ. T (θ) measures the set of lines
of direction perpendicular toθ that intersectAi. (b) For the case of a disk,
T (θ) = 2r, ∀θ, wherer is the radius of the diskAi.

illustrates the thickness of a circular sensing areaAi, of radius
r. Independent of the direction of projection, the thickness of
a disk is always equal to the diameter of the sensing area, that
is T (θ) = 2r, ∀θ. Thickness is related tom(`) via:

m(`) =
∫

`
TA6=∅ dξ ∧ dθ

(i)=
∫ π

0
T (θ)dθ

(ii)= πE(T ) = L. (3)

Step (i) holds due to the fact that for a fixedθ, the integral
of dξ (set of positions) of the lines that intersectA is equal
to T (θ). Step (ii) holds due to the uniform distribution of the
lines:

E(T ) =
∫ π

0

1
π

T (θ)dθ. (4)

The relation betweenm(`) andL as expressed in (3) can be
interpreted as follows. The measurem(`) of the set of lines
`(ξ, θ) intersecting a bounded setA is equal to the average
lengthE(T ) of the projection ofA over all possible directions,
times the measure of all the possible directions.

IV. TARGET DETECTION PROBABILITY

In this section, we analytically evaluate the detection prob-
ability PD(k), that a target crossing theFoI is detected by at
leastk sensors. We then evaluatePD(k) under the SD model.
Finally, we compute the mean time until a targetX crossing
the FoI is first detected.

A. Instant Detection

Under the ID model, the probability that targetX is
detected by at leastk sensors is given by the following
theorem.

Theorem 1: LetA0 be a boundedFoI of perimeter length
L0 monitored byN sensors randomly deployed withinA0,
with sensorsi, i = 1 . . . N having a sensing area of perimeter
lengthLi. The probabilityPD(k) that at leastk ≥ 1 sensors
detect a targetX crossing theFoI and moving on a straight
line is given by:

PD(k) = 1−
k−1∑
w=0

|ZN,w|∑

j=1

|zj |∏

i=1

qzj(i)

|z̄j|∏
v=1

(
1− qz̄j(v)

)
, (5)

whereZN,w denotes the
(
N
w

)
w-tupleszj of vector[1, . . . , N ].

That is, ZN,w = {zj : zj(1), . . . , zj(i), . . . , zj(w) | j(i) ∈

[1, N ], j(i) 6= j(g), ∀i 6= g}. The z̄j denotes the complement
(N −w)-tuple of zj with respect to vector[1, . . . , N ], andqi

is given byqi = Li

L0
.

Proof: Let us first compute the probability that a target
is detected by a single sensorsi. Based on our mapping
in Section III-B, this event is equivalent to the conditional
probability qi that a line intersectingA0, also intersectsAi.
This probability is equal to the quotient of the measure of the
set of lines that intersect bothA0,Ai over the measure of the
set of lines that intersectA0.

qi =
m(`

⋂A0

⋂Ai 6= ∅)
m(`

⋂A0 6= ∅)
(i)=

m(`
⋂Ai 6= ∅)

m(`
⋂A0 6= ∅)

(ii)=
Li

L0
. (6)

Step (i) holds due to the fact thatAi is within A0 and hence,
any line intersectingAi also intersectsA0. Step (ii) follows
due to (2). The probabilityqi in (6) is computed for the case
where bothA0,Ai are convex sets. In the case where any
of the sets are not convex, the length of the perimeter of the
convex hull, denoted asLh, is used to computeqi.

Using (6), we now compute the probability that a line
` intersects exactlyk sets. Let ZN,k denote the

(
N
k

)
k-

tuples zj of vector [1, . . . , N ]. That is, ZN,k = {zj :
zj(1), . . . , zj(i), . . . , zj(k) | j(i) ∈ [1, N ], j(i) 6= j(g), ∀i 6= g}.
Let also z̄j denote the complement ofzj with respect to the
vector [1, . . . , N ]. The probability that a linè intersects all
sets indicated by thek-tuple zj is given by:

P (zj)
(i)= P

(
`
⋂
Azj(1) 6= ∅, . . . , `

⋂
Azj(k) 6= ∅,

`
⋂
Az̄j(1) = ∅, . . . , `

⋂
Az̄j(N−k) = ∅

)

(ii)= P
(
`
⋂
Azj(1) 6= ∅

)
. . . P

(
`
⋂
Azj(k) 6= ∅

)

P
(
`
⋂
Az̄j(1) = ∅

)
P

(
. . . `

⋂
Az̄j(N−k) = ∅

)

=
|zj |∏

i=1

qzj(i)

|z̄j|∏
v=1

(
1− qz̄j(v)

)
, (7)

In step (i), we expressP (zj) as the probability that a random
line intersects exactly thek sets denoted by thek-tuple zj .
Since the setsAi are randomly and independently deployed
within the FoI, in step (ii) the probability of the intersection
of events becomes equal to the product of the probabilities of
the individual events. To compute the probability of a random
line intersectingany k sets,P (zj) must be summed over all
possiblek-tupleszj .

P (ZN,k) =
∑

ZN,k

|zj |∏

i=1

qzj(i)

|z̄j|∏
v=1

(
1− qz̄j(v)

)
. (8)

Theorem 1 holds by noting that

PD(k) = 1−
k−1∑
w=0

P (ZN,w). (9)

From Theorem 1, note thatPD(k) depends only on
the ratios Li

L0
of Ai and not the specific shape, or size of



the sensing areas. Hence, Theorem 1 allows the analytic
computation of the detection probability in the case of sensors
with heterogeneous sensing areas. However, the complexity
of computing (5) grows exponentially with the heterogeneity
of the sensing areas. For large-scale networks,PD(k) can be
efficiently computed with the use of the following result.

Theorem 2: Let the probabilityqi that a targetX is de-
tected by sensorsi be small, while the sum of the probabilities∑

i qi is nearly a constantγ, as i → ∞. The probability
P (ZN,k) converges to a Poisson distribution of rateγ.

P (ZN,k) =
γk

k!
e−γ ,

∑

i

qi → γ, max
i

qi → 0. (10)

Proof: The proof of Theorem 2 is a special case of
Lindeberg’s Central Limit Theoremand is provided in [18].

Substituting (10) to (9) yieldsPD(k), for the case of large-
scale heterogeneous SN. If sensors have sensing areas with
perimeters of equal length (not necessarily identical shapes),
(5) can be simplified to the following form.

Corollary 1: The probabilityPD(k) that a target crossing
theFoI will be detected by at leastk sensors, when all sensors
have sensing areas with equal perimetersL is equal to:

PD(k) = 1−
k−1∑

i=0

(
N

i

)
Li(L0 − L)N−i

LN
0

. (11)

Proof: Corollary 1 follows by settingqi = L
L0

in (5).
Using Theorem1, we can also evaluate the probability that

a targetX remains undetected by any sensor. Corollary 2,
computes the probabilityPM of missing a target.

Corollary 2: The probabilityPM that a target crossing the
FoI is not detected by any sensor is equal to:

PM =
N∏

i=1

(
1− Li

L0

)
. (12)

Proof: The proof of Corollary 2 follows, by observing
that PM = P (ZN,0), andzj = ∅, z̄j = {1, . . . , N}.

Depending on the application, (12) allows us to selectLi, N
so thatPM remains below any desired threshold value.

B. Sampling Detection

Under the SD model, a targetX must remain within the
sensing area of a sensorsi for at leasttth units of time, before
si can detectX. Given a velocity model forX, SD occurs
if the length of the intersection of the trajectory ofX with
the sensing areaAi is at leastlth(v). Assuming the simplest
velocity model of constant speed1 for X, SD occurs when the
length of the intersection is longer thanvtth. To measure the
set of lines that intersect a setA and have a cord withinA
of length longer thanvtth we define the notion of effective
thicknessT ′(θ).

Definition 3: Effective Thickness T ′(θ) : The effective
thicknessT ′(θ) for a setA is defined as the measure of the

1Any other velocity model can be assumed to map the sampling time
thresholdtth into a trajectory lengthlth(v).

set of linesm(`) perpendicular to the directionθ, for which
the length of the cord withinA is greater or equalvtth. That
is,

T ′(θ) =
∫

|`(ξ,θ)
TA|≥vtth

dξ. (13)

The probability of moving target detection under the SD
model is given by the following theorem.

Theorem 3: Let a targetX cross theFoI moving on a
straight line at a constant speedv. The probabilityPD(k) that
at leastk sensors detectX when the target must be sensed
for at least timetth is given by:

PD(k) = 1−
k−1∑
w=0

∑

ZN,w

|zj |∏

i=1

q′zj(i)

|z̄j|∏
v=1

(
1− q′z̄j(v)

)
, (14)

whereq′i = E(T ′i )
E(T0)

.
Proof: The proof of Theorem 3, follows the same steps

of the proof of Theorem 1 in the case of the ID model. The
only difference between the two proofs is the computation of
the probability qi for a single sensor to detect a targetX.
Based on our mapping in Section III-B, in the case of the
SD model, target detection is equivalent to the conditional
probability q′i that a line that intersectsA0, also intersects
Ai, with the length of the cord being|` ⋂Ai| ≥ vtth. This
probability is equal to the quotient of the measure of the lines
that intersect bothA0,Ai and have a cord length|` ⋂Ai| ≥
vtth, over the measure of the set of lines that intersectA0.

q′i =
m(|` ⋂A0

⋂Ai| ≥ vtth)
m(`

⋂A0 6= ∅) (15)

The measure of the set of lines that intersectA0 is given
by (2) and is equal toE(T0) = L0. The measure of the set
of lines that intersect bothA0,Ai and have a cord length
|` ⋂Ai| ≥ vtth, is computed as follows:

m(|l
⋂
A0

⋂
Ai| ≥ vtth) (i)= m(|`

⋂
Ai| ≥ vtth)

(ii)=
∫

|`TAi|≥vtth

dξ ∧ dθ

(iii)=
∫ π

0

T ′i (θ)dθ
(iv)= πE(T ′).

In step (i),Ai is a subset ofA0 and, hence, the length of the
line that is common to bothA0 andAi is equal to the length
of the cord inAi. In step (ii), we integrate the line density
dl = dξ ∧dθ over all lines that intersectAi and have a length
of at leastvtth. In step (iii), for a fixed directionθ the integral
of dξ over all lines for which|` ⋂Ai ≥ vtth| is equal to the
effective thicknessT ′(θ). The average effective thickness for
random lines is given by:

E(T ′) =
∫ π

0

1
π

T ′(θ)dθ. (16)

Hence, step (iv) follows. The combination of (15), (16), (2)
and (3) yields:

q′i =
πE(T ′i )

L0
=

πE(T ′i )
πE(T0)

=
E(T ′i )
E(T0)

(17)
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Fig. 3. (a) The effective thickness of a rectangle on directionθ = 0, (b) the effective thickness of a rectangle on a random directionθ, (c) the effective
sensing area of a disk.

Fig. 4. The equivalent effective area for a sensorsi.

Following the same steps as in the proof of Theorem 1,
yields Theorem 3.

C. Mapping the SD Model to the ID Model

The ID model facilitates a geometric interpretation of the
target detection problem. Any target crossing the sensing
area of a sensor is detected. However, no such geometric
interpretation exists for the SD model. We now provide a
reduction from the SD model to the ID model that allows
us to map any results for the simpler ID model to the SD one.
Our goal is to define for each sensorsi, an effective sensing
areaA′i with the following property. If a targetX crosses the
boundary ofA′i (ID model), thenX is detected under the SD
model.

For sensing areas of arbitrary shape, the average effective
thickness ofAi, does not correspond to the average thickness
of a subset ofAi. As an example, in figure 3(a), all lines of
direction π

2 intersecting the rectangular sensing areaAi, have
a line segment withinA longer thanvtth (assumingvtth ≤ b.).
However, for a directionθ 6= {0, π

2 , π} there is a set of lines
with a line segment withinAi shorter thanvtth. The subset
of Ai that does not result in detection for lines in direction
θ is depicted by the shaded areas in figure 3(b). Hence, one
cannot define a subset ofAi with average thickness equal to
the average effective thickness ofAi.

However, from (14), the probability of detectionPD(k) only
depends onE(T ′i ), and not the shape of the sensing area.
Hence, we can define an effective sensing areaA′ for each
sensorsi, that is not necessarily a subset ofA.

Definition 4: Effective Sensing AreaA′ : Let the average
effective thickness of a setA be equal toE(T ′). The effective
sensing areaA′ is defined as a disk of radiusr′ = E(T ′)/2.

Using the notion of the effective sensing area, we can map
the target detection probability under the SD model, to a target
detection problem under the ID model using the following
corollary.

Corollary 3: The target detection probability under the SD
model is equal to the target detection probability under the ID
model, when the sensing areas of the sensors are replaced by
the effective sensing areas.

Proof: The proof follows by settingLi = 2πr′ in (5).
In figure 4, we show the equivalence between the sensing area
of a sensorsi under the SD model. Note that in the case of
the unit disk model, the effective sensing area is a subset of
the original sensing area. As an example, in figure 3(c) the
effective sensing area of a disk of radiusr, is a concentric disk

of radiusr′ =
√

r2 − ( vtth

2 )2. Through the rest of the paper
we focus on the ID model, with equivalent results holding for
the SD model.

D. Mean Free Path until the First Detection

In several applications, the distance that the targetX travels
within the FoI undetected is an important metric of the quality
of detection. In this section, we analytically compute the
mean free pathE(σ) until the first detection of a targetX.
To facilitate the computation we assume that sensors have
identical sensing areas. Note that computing the mean free
pathE(σ) traveled byX, is sufficient to determine the mean
time E(t) until X is first detected, given a velocity model for
X. The mean free path problem can be stated as follows.
Mean Free Path Problem: Let N sensors with identical
sensing areas be randomly and independently deployed within
a FoI of areaF0. Assuming that a targetX is moving on a
straight line, compute the mean free path before the targetX
is detected.

The mean free path for which the targetX remains
undetected is given by the following theorem.

Theorem 4: LetN sensors with identical sensing areas be
randomly and independently deployed within aFoI of area
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Fig. 5. (a) Any sensor within a distanceE(T )
2

from the trajectory of the targetX, detects X, (b) Equivalent formulation, for a target of average thickness
E(T ), and sensors with sensing areas reduced to point masses, detection occurs if a sensorsi ”collides” with the target, (c) the mean free path of a target
X and the equivalent free area.

F0. Assuming a targetX moving on a straight line, the mean
free path beforeX is detected equals:

E(σ) ≈ F0

NE(T )
. (18)

Proof: Under the ID model, a targetX travels for a
distanceσX undetected, if it does not cross the sensing area of
any sensor. When the sensors have a sensing area of identical
thickness for allθ, on a given trajectory, any sensor within
distanceE(T )

2 from the trajectory ofX, detectsX. This event
is equivalent to considering that the targetX has an average
thickness ofE(T ) = T (θ), ∀θ, while the sensing area of
all sensors is reduced to point masses. Figure 5(a) illustrates
target X being detected by sensors with sensing areas of
average thicknessE(T ) while it crosses theFoI. Figure 5(b)
illustrates the equivalent scenario, where the targetX has an
average thickness ofE(T ), while the sensing areas of the
sensors are reduced to point masses.

When the targetX moves a distanceσX , it covers an area
of sizeF(σX) = E(T )σX + f, wheref denotes the residual
shaded area in figure 5(c). Hence, the probability that the
targetX is not detected for a distance ofσ ≥ σX is equal to
the probability that no sensor is located withinF(σX). Given
that the sensors are randomly and independently deployed, the
number of sensors withinF(σX) is given by a homogeneous
planar Poisson point process of densityρ = N

F0
[14]:

P (|S| = k) =
(ρF )k

k!
e−ρF (19)

where |S| denotes number of sensors. Equation (19) holds
under the assumption thatF0 →∞, while the sensor density
ρ remains constant. Based on (19), the probability that the free
path of targetX is σ ≥ σX , is equal to the probability that
no sensors exist within an area of sizeF(σX) :

P (σ ≥ σX) = P
(
NF(σ)X) = 0

)

= e−ρF(σ) = e−ρ(E(T )σ+f). (20)

The random variableσ is a non-negative continuous random

value and, hence its expectation is given by:

E(σ) =
∫ Q

0

P (σ ≥ σX)dσX =
e−ρf

ρE(T )

(
1− e−ρE(T )Q

)
,

(21)
where Q denotes the maximum possible length of the tra-
jectory of X within the FoI. When the residual areaf is
small enough so thate−ρf ≈ 1 andQ is long enough so that
e−ρE(T )Q ≈ 0,

E(σ) ≈ 1
ρE(T )

=
F0

NE(T )
(22)

Note that in the present analysis we have assumed sensing
areas of constant thicknessT (θ), ∀θ. This assumption can by
relaxed if one assumes sensing areas of equal thickness on a
given directionθ, but not constant over allθ, and then average
over all θ.

V. VALIDATION OF THE THEORETICAL RESULTS

In this section, we verify the validity of our theoretical
results be performing extensive simulations. We randomly
deployedN sensors in a circularFoI of radiusR = 100m.
We then generated random lines corresponding to random
trajectories of targets and measured the number of sensors
that detect the moving targets. We performed the following
experiments.

A. Probability of Detection by a Single Sensor

In our first experiment,we randomly deployed a single
sensor, with a circular sensing area of radiusr. We varied
r from 10m to 80m and measured the probability that a target
moving at a random trajectory is detected by the sensor. For
each radiusr we repeated the experiment 100 times to ensure
statistical validity. Based on our derivations in Section IV, the
probability that the target is detected is equal to:

PD = qi =
Li

L0
=

r

R
(23)

In figure 6(a) we show the probability of detectionPD for
varyingr for our first experiment. We observe an almost exact
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Fig. 6. Homogeneous SN: (a) Probability of detecting a target by the deployment of a single sensor with circular sensing area, as a function of the radius
r. (b) Probability of detecting a target by the deployment of a single sensor with square sensing area, as a function of the sideα.

match between the theory and the simulation, confirming that
the probability of a random line intersecting a set of perimeter
Li given that it intersects the overset of perimeterL0 is equal
to the quotient of the two perimeters.

We also repeated our experiment when the deployed sensor
had a square sensing area of perimeter4∗α, whereα denotes
the length of the side of the square and was varied from 10m
to 80m. In figure 6(b) we show the probability of detectionPD

for varyingα for the case of square sensing area. We observe
that regardless of the shape of the sensing area, our theoretical
formula agrees with the simulation.

B. Probability of Detection in Heterogeneous SN

In our second experiment we deployed sensors with het-
erogeneous sensing capabilities and evaluated the detection
performance of the SN. Each sensor deployed had circular
sensing area of a radius uniformly distributed in[0, 1]. We
selected a small sensing area in order to satisfy the condition
maxi qi → 0 while

∑
i qi → γ, so that the probability of

detection of a target by exactlyk sensors can be approximated
by (10). We varied the number of sensors deployed from
N = 100 to N = 1000, and computedPD(1). The exact
formula for PD(1) is given by

PD(1) =
N∏

i=1

(
1− Li

L0

)
(24)

For largeN according to Theorem 2,PD(1) tends to

PD(1) = 1− e−
PN

i=1
Li
L0 . (25)

In figure 7(a), we show the theoretical value ofPD(1), the
value according to Theorem 2, and the simulated value, as
a function of N. We observe that when the conditions of
Theorem 2 are satisfied, one can computePD(k) without
incurring the high computational cost of the exact formula
(as k increases the number of terms in the exact formula of
PD(k) increase exponentially).

In figure 7(b), we showPD(1) when the radius of the
sensors is uniformly distributed in[0, 0.1]. We observe that
the target detection probability grows almost linearly with
the number of sensors is deployed when the length of the
perimeters of the sensing areas of the devices deployed are

significantly smaller than the perimeter of theFoI. We also
observe that the Poisson approximation is very close to the
exact theoretical value as well as the simulated value.

C. Probability of Detection in Homogeneous SN

In our third experiment, we evaluated the detection per-
formance of a SN when all deployed sensors have identical
sensing areas. We initially deployed 30 sensors with a circular
sensing area of radiusr = 10m and measured the probability
of detectionP (ZNk

) that a target randomly crossing theFoI
is detected by exactlyk sensors. The probabilityP (ZN,k) for
the homogeneous case is given by:

P (ZN,k) =
(

N

k

)(
L

L0

)k (
1− L

L0

)N−k

. (26)

In figure 7(c) we showP (ZN,k) for a homogeneous SN as
a function ofk. We also evaluate the probabilityPD(k) that
a target would be detected by at leastk sensors, that in the
homogeneous case is given by (11). In figure 7(d), we show
PD(k) as a function ofk. We observe that our theoretical
formulas match the simulation results.

We also evaluated the probabilityPM of not detecting a
target crossing the sensor field as well as the probability of
detection by at least one sensorPD(1), a function of the
number of sensors deployed. In figure 6(e) we showPM as
a function ofN. In figure 7(f) we showPD(1) as a function
of N. From figures 7(e), 7(f), one can selectN so that the
PD(1) is above a threshold. As an example, ifPD(1) ≥ 95%
more than 30 sensors must be deployed.

Figure 7(f), also shows the fraction of theFoI denoted as
Fr(A0) covered by at least one sensor. From figure 7(f), we
note that it is not necessary to cover the entireFoI to achieve
detection probability close to unity. Thus, target mobility
helps detecting targets with a significantly smaller number of
sensors, compared to the number required for detecting static
targets.

VI. CONCLUSION

We studied the problem of quantifying the target detection
capability of heterogeneous SN. We mapped the mobile target
detection problem to the line-set intersection problem and
derived analytical expressions for the probability of target
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Fig. 7. (a) Heterogeneous SN: Probability of target detection by at least one sensor as a function of the network size, when the radius of the sensing area
is uniformly distributed withinr ∈ [0, 1]. (b) Probability of target detection by at least one sensor as a function of the network size, when the radius of
the sensing area is uniformly distributed withinr ∈ [0, 0.1]. (c) Homogeneous SN: Target detection probability by exactlyk sensors. (d) Target detection
probability by at leastk sensors. (e) Probability of missing a target as a function of the network size. (f) Probability of target detection by at least one sensor
as a function of the network size, and comparison with the fraction of theFoI covered by at least one sensor.

detection in stochastically deployed heterogeneous SN. We
showed that the target detection probability depends only on
the length of the perimeters of the sensing areas of the sensors
and not on their shape or area. We also analytically evaluated
the mean free path until a target is first detected, a critical
measure of timely target detection. We verified our theoretical
results via detailed simulations.
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