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Abstract— Target detection and field surveillance are among deployed SN, when sensors have heterogeneous sensing ca-
the most prominent applications of Sensor Networks (SN). The pabilities.

quality of detection achieved by a SN can be quantified by . .
evaluating the probability of detecting a mobile target crossing In stochastically deployed networks, the target detection

a Field of Interest (Fol). In this paper, we analytically evaluate 1S achieved only probabilistically. One metric that quantifies
the detection probability of mobile targets when N sensors are the detection capability of a SN, is the probability of target
stochastically deployed to monitor aFol. We map the target detection byat least one sensor [3]. This metric provides
detection problem to a line-set intersection problem and derive 5 \yorst-case guarantee on the number of sensors able to
analytical formulas using tools from Integral Geometry and . © :

Geometric Probability. We show that the detection probability detect a mobile target. For applications that reqw.re enhanced
depends on the length of the perimeters of the sensing areas offault tolerance and reduced false alarms, detection by more
the sensors and not their shape. Hence, compared to prior work, than one sensors is critical [9], [10], [13]. In such cases,
our formulation allows us to consider a heterogeneous sensing the quality of detection can be quantified by evaluating the
model, where each sensor can have a different and arbitrary probability of detection by at least sensors, wheré is a

sensing area. We also evaluate the mean free path until a target : : - P
is first detected, a measure of timely detection. We verify our design parameter. Furthermore, in several applications it is

theoretic derivations via simulations. critical that the target is detected in a timely fashion. The
relevant metric that quantifies the timeliness of the detection,
. INTRODUCTION is the mean free path until the first detection. Given a target

Target detection is one of the fundamental services provideelocity model, the mean free path can be related to the mean
by most Sensor Networks (SN). For the purposes of targéahe until detection [2], [3].
detection, a number of sensahé are deployed to monitor a  For target detection, we consider two detection models. In
Field of InterestF'ol. The sensor deployment can be eithethe first model called thénstant Detectionmodel (ID), a
stochastic or deterministic depending on the application agénsors detects a targeX when the trajectory of intersects
the Fol. Stochastic deployment is preferred when fel is  the sensing area of A similar model has also been considered
not under the designer's control at the time of deploymefi [2]-[6]. However, in more realistic scenarios, a sensor
(hostile environment), or when it is more cost-effective taeeds to collect multiple samples of the target before it can
randomly deploy the sensors than systematically place thegrform reliable detection [7], [8]. Hence, we also consider the
(large-scale networks) [3], [10], [13]. Sampling Detectiomodel (SD), where a sensemust sample

Once the SN is deployed, targets are detected using on&H¥ targetX for at leastt,;, units of time, befores can reliably
more sensing modalities such as optical, mechanical, acousdi§termine the presence df. Several previous works have
thermal, RF and magnetic sensing. In fact, to ensure robustngssumed théEnergy Detectionmodel (ED), where a target
and enhance performance, oftentimes a sensor fusion appragchetected if the energy level measured by a set of sensors
is required [1]. As an example, a surveillance system can Bgceeds a pre-defined threshold [9]-[12]. The ED model also

realized via fusion of data aggregated from various sens@gquires a threshold number of samples to detect a target [8],
modalities: infrared, CCD, pressure and acoustic sensors. and hence, ED is a special case of the SD model.

Depending on the modality, sensing areas have any arbitrary
shape, a reality significantly different from the widely adopte P
idealized unit disk model [2]-[6]. Moreover, in sensor fusiorg' Our Contributions
scenarios, devices of different modalities have heterogeneoun this paper we make the following contributions. We map
sensing capabilities. To date, the target detection problehe target detection problem to a line-set intersection problem.
under a heterogeneous sensing model has not been studBedied on our mapping, we use tools from Integral Geometry
since prior work assumes identical sensing areas for all sensansl Geometric Probability to analytically evaluate the proba-
[2]-[6], [9]-[12]. In this paper, we address the problem dbility of detecting targets moving at a random direction within
guantifying the target detection capability of stochasticallthe Fol.
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Fig. 1. (a) A convex sensing ared; of size F; and perimeterL;, (b) a non-convex sensing area with a convex hull boundary ofBQeand area size
Fih, (c) the instant detection model: a targtis detected if its trajectory crosses the sensing ares; 0fd) the sampling detection model: a targ€tis
detected if it is sensed for at leas}, units of time. Given a constant speedf X, the length of the trajectory oK within the sensing area of; must be
greater tharvty, .

Our formulation shows that the target detection probabilifipr optimum k-coverage of the boundary off&I that yields
is independent of the shape of the sensing areas of the devitaget detection with certainty. All prior work mentioned above
and depends only on the length of the perimeters of thi2], [3], [9], [11]-[13], assume that sensors have homogeneous
sensing areas (length of the perimeters of the convex hullssainsing capabilities conforming to the idealized unit disk
the sensing areas, for non-convex shapes). Hence, companediel.
to prior work, [2]-[6], [9]-[12], our mapping allows us to
consider a heterogeneous sensing model where, even sendbrdV! ODEL ASSUMPTIONS PROBLEM FORMULATION AND
with the same sensor modality need not have identical sensing BACKGROUND
capabilities. Using our formulation, we analytically evaluat@. Network and Target Model Assumptions
the target detection probability for heterogeneous SN, and
derive the results for homogeneous SN, as a special case.
We study the problem of target detection under both the |
and SD models, and show that the target detection probl i
under the SD model can be reduced to the target detect(iéigr]lnsor Deployment: We assume thath sensors are

In this section we state our assumptions about the network
%eployment, as well as the sensor and target models we adopt.

) . entically and independently distributed within a pla#ar,
problem under the ID model, by introducing the concepH acco)r/ding to arpandom ()t/miform) distribution.gﬁel is

of the eﬁ‘chy € sensing area. We also eV"""*'."’?te the me connected and closed set of perimdigrof arbitrary shape.
free path until the target is first detected, a critical measufe. . _<e where thEol is not convex. we assume that the

for timely detect|on._ Our derivations provide an analyt'@erimeter, denoted &, of the convex hull ofFo] is known.
tool for network designers to select parameters such as the

number of sensors, and type of sensing areas (perimef.e

2 ) : aFget Model: We assume that the trajectories of the mobile
lengths) that guarantee a minimum target detection pmbab'“{g'rgets are straight lines, with all trajectories crossingibé

The rest of the paper is organized as follows. In Section F'ng equiprobable. AI'Fhough .SUCh an assumption ponstramts
the space of all possible trajectories, we adopt it for two

we present related work. In Section Ill, we state our model as-
. ; reasons.

sumptions, formulate the target detection problem, and provmee ) ) ) o

relevant background. In Section IV, we analytically evaluaté®) Given any arbitrary entry and exit point in theol,

the target detection probability and the mean free path until the MOVing on a straight line minimizes the length of the

first detection. In Section V, we verify our theoretical results ~ rajectory of the target within thé'ol (minimizes the

via simulations. In Section VI, we present our conclusions. ~ time that the target can be detected). Hence, the target de-
tection probability assuming line trajectories is the worst
Il. RELATED WORK case probability compared to the detection of any other

The target detection problem in SN has been a topic of possible trajectory. The worst case analysis allows us to
study under different metrics and assumptions [2]-[6], [9], compute network parameters such as sensor density and
[11]-[13]. In [2], the authors investigate the tradeoff between length of the perimeters of the sensing areas, so that target
detection quality and power conservation. In [3], analytic detection is guaranteed with a minimum probability.
formulae for the mean delay until a target is detected aig) If an arbitrary trajectory is considered, the parameters
provided, when targets move on a straight line at a constant of the trajectory (length, curvature, multiple self-crossing
speed. In [9], [11], [12], the authors proposed a collabora- points) need to be specified in the model, in order to
tive detection model, where sensors collectively arrive at a analytically evaluate the probability of target detection.
consensus about the presence of a target. Their formulation On the other hand, line trajectories have a simple para-
assumes that the detection capability of each sensor decays as meterization that facilitates the analytical calculation and
a function of distance. In [21], the authors provided algorithms  physical interpretation.



Though we do not present it in this paper, our formulatio TABLE |
g p p p ! I”‘VIAPPING THE MOBILE TARGET DETECTION PROBLEM TO THE LINESET

can be extended to include trajectories of arbitrary shapes
with known parameters, as well as three dimensiaofial.
Furthermore, straight line motion models have also be€n  Mobile Target Detection

INTERSECTION PROBLEM

Line-Set Intersection

assumed in previous works addressing the target detection =~ Number of sensorsy « Number of setsV
blem [2], [3] _F|eld of InterestAo — SetSo
pro ’ ' Sensing aread; of perimeterL; «— SetS; of perimeterL;
Random sensor deployment «— Random set placement
Sensing Model:We assume that each sensgri =1... N 5 bTrs_JIt_ecto?y of target X - PRarl;d%T Ilne;ezc_rossmg&_‘o
- - robability of target detection robability of ¢ intersecting
has a sensing ared; that is a closed and connected set of by at leastk sensorsPp (k) at leastk sets

perimeterL;. In the case where the sensing area is not convex,
we assume that the perimeter, denotedLésof the convex
hull of A; is known. Based on our assumptions, sensors neigtersects at leask out of theN setsS;,i =1...N.

not have an identical sensing arda Figure 1(a) illustrates a

sensing areal; of convex shape. Figure 1(b) illustrates a non- Table | summarizes the mapping from the mobile tar-
convex sensing area and the equivalent convex hull boundaygt detection problem to the line-set intersection problem.
For detecting a mobile targef we consider the following two Throughout the rest of the paper the terms sensing aiea
cases: and setS; will be used interchangeably.

(&) ID model: A targetX is detected by a senses if the
trajectory of X crosses the sensing areaspf ) - ) )
(b) SD model: A targefX is detected by a sensey if X is To evaluate the detection probabilifyp using the line-set

sensed (sampled) for at least t,, units of time, where intersection formulation, we need to quantify the number of
t:, is a design parameter. lines that intersect with the any of the sets, as well as the

Figure 1(c) illustrates detection based on the ID modgpmber _Of lines that |_ntersect _W'th tHéOI_' However, the set
lines in the plane intersecting a sdtis uncountable. To

which places no constraint on the length of the line segment(gf

the trajectory withind,. Figure 1(d) illustrates detection based@®YPass our difficulty in counting lines in the plane, we adopt
on the SD model , where a targ&tmoving at a constant speeda measure from Integral Geometry and Geometric Probability

v is detected, only if the trajectory insidd; is longer than LL4]: [15]. In geometric probability, the measure(() of a set

vty We now provide our formulation for the moving targep1E Iine_s_f_(f,e).in the plane is defingd as foII.ows [14], [15]:
detection problem. Definition 1: Measure of set of linesm(¢): The measure

m of a set of lines/(¢, 0) is defined as the integral over the

C. Relevant Background

B. Problem Formulation line densitydl/ = d¢ A do
Mobile target detection problem: Given a Fol A, of
perimeter L, sensed byN sensors with sensos; having a m(l) = /dﬁ/\d& 1)

sensing aread; of perimeterL;, randomly and independently ) ) .
deployed within the”oI, compute the probabilityp (k) that WhereA denotes the exterior product used in Exterior Calculus

a target X randomly crossingA, is detected by at least )
sensors. In the case whered is convex, the measure of the set of

lines that intersec# is equal to:

Mapping the mobile target detection problem: The problem om

of mobile target detection under stochastic deployment cam(¢ : fﬂA #0) =/ dé A db z/ o =1L, (2)

be mapped to a line-set intersection problem by performing fNA#0 0

the following mapping. Let thé"ol be mapped to a boundedwhereL is the perimeter ofd. Interested reader is referred to

set Sy, defined as a collection of points in the plane witlil4], [15], for the proof of (2). In the case wheré is non-

perimeter lengthL,. Let the sensing area of sensey be convex, the measure in (2) can be computed by observing that

mapped to a bounded st with perimeter lengthL;. Let any line intersecting the convex hull of, also intersectsA.

the trajectory of the targeK be mapped to a straight lineHence, the measure of the set of lines that intersect a non-

2(&,0) in the plane, with parametetsand 6 be the shortest convex set is equal to the perimeter of the convex hull of that

distance of? to the origin of a coordinate system, aficbe set, denoted ag".

the angle of the line perpendicular fowith respect to the: A geometric interpretation for (2), can be obtained by

axis. Then, the mobile target detection problem for stochastionsidering the thicknesB(#) of a bounded se# [15]:

SN is equivalent to the following line-set intersection problem. Definition 2: Thickness of a bounded setT'(d) : The
thickness of a bounded set at directiond is defined as the

Line-set intersection problem: Given a bounded sef; of length of the projection of4 to a line of directiond.

perimeter lengthL, and N sets.S; of perimeter lengthL;, The thickness of a setl measures the set of lines along

randomly and independently placed insidg, compute the the direction perpendicular #, that intersectA. Figure 2(a),

probability Pp (k) that a random line/ intersectingSy, also illustrates the thickness of a sdf, at directiond. Figure 2(b)



[1,N],7(3) # j(g),Vi # g}. The z; denotes the complement
(N —w)-tuple of z; with respect to vectofl, ..., N], andg;
is given byg; = £-.

Proof: Let us first compute the probability that a target
is detected by a single sensey. Based on our mapping
in Section IlI-B, this event is equivalent to the conditional
probability ¢; that a line intersectingd,, also intersects4;.
This probability is equal to the quotient of the measure of the
(b) set of lines that intersect botiy, A; over the measure of the

set of lines that intersect,.

Fig. 2. (a) The thicknes§’(0) of a setA; is equal to the length of the

projection of A; on a line with directiond. T'(§) measures the set of lines 4 = m({ Ao Ai #0) [0] m((A; #0) Gy Li (6)
of direction perpendicular té that intersect4,. (b) For the case of a disk, v m(l “ m f

T(0) = 2r, V0, wherer is the radius of the disk4;. ( ﬂAO a (Z)) ( ﬂ Ao 7 @) 0

=

Step (i) holds due to the fact that; is within 4, and hence,
illustrates the thickness of a circular sensing aflgaof radius any line intersecting4; also intersectsd,. Step (ii) follows
r. Independent of the direction of projection, the thickness diue to (2). The probability; in (6) is computed for the case
a disk is always equal to the diameter of the sensing area, tidiere both.Ay, A; are convex sets. In the case where any
is T'(9) = 2r, V0. Thickness is related teu(¢) via: of the sets are not convex, the length of the perimeter of the
0 o (i convex hull, denoted ag", is used to compute;.

m(¢) :/ d¢ndO = [ T(0)d0 =7E(T)=L.(3)  Using (6), we now compute the probability that a line

cNA#0 ¢ intersects exactlyk sets. LetZy, denote the(?) k-
Step (i) holds due to the fact that for a fixéd the integral tuples z; of vector [1,...,N]. That is, Zy; = {z :
of d¢ (set of positions) of the lines that intersedtis equal Zi(1)s s Zi(i)s - - -5 20y | 3(0) € [L N, 5 (3) # §(g), Vi # g}
to T'(¢). Step (i) holds due to the uniform distribution of the| et alsoz; denote the complement af; with respect to the

lines: " vector [1,..., N]. The probability that a lin¢ intersects all
E(T) :/ =T(0)d6. (4) sets indicated by thé-tuple z; is given by:
o T i
The relation betweem(¢) and L as expressed in (3) can beP (z;) L p (EﬂAzm 0, [ )Az, #0,
interpreted as follows. The measure(¢) of the set of lines
¢(&,0) intersecting a bounded set is equal to the average EﬂAfm - Qv""gmAfjw—m - @)
length E(T) of the projection of4 over all possible directions, (ii)
times the measure of all the possible directions. - r (fﬂAz““ 7 @) P (zﬂAZ“"‘) 7 (D)
V. TARGET DETECTION PROBABILITY i (ﬁﬂ«“m = ®> P ( : -fﬂ«“zm_m = @)
In this section, we analytically evaluate the detection prob- |21 1271
ability Pp(k), that a target crossing thEo is detected by at = Jleo [T 0= a50), (7)
i=1 v=1

leastk sensors. We then evaluak®, (k) under the SD model.

Finally, we compute the mean time until a targétcrossing |n step (i), we expres#(z;) as the probability that a random
the Fol is first detected. line intersects exactly thé sets denoted by thé-tuple z;.
Since the sets4; are randomly and independently deployed
within the Fol, in step (ii) the probability of the intersection
of events becomes equal to the product of the probabilities of
the individual events. To compute the probability of a random
line intersectingany k sets,P(z;) must be summed over all

A. Instant Detection

Under the ID model, the probability that targef is
detected by at leask sensors is given by the following
theorem.

. iblek-tuplesz;.
Theorem 1: Letd, be a boundedrol of perimeter length possiblek-tuplesz

Lo monitored byN sensors randomly deployed withidg, |25 |25
with sensors;,i = 1... N having a sensing area of perimeter P(Zyy) = Z quj(y;) H (1—qz0) - (8)
length L;. The probability P (k) that at leastk > 1 sensors Znki=1 v=1

detect a targetX crossing theF'ol and moving on a straight Theorem 1 holds by noting that
line is given by:

k—1
K1 170l 125 Bl Pok)=1—5" P(Zxu). 9)
PD(k):]-_Z Z Hqu(i)H(l_qu(v))a (5) 1;) 7
w=0 j=1 i=1 v=1 ]

whereZy ,, denotes thég) w-tuplesz; of vector([1,..., N]. From Theorem 1, note thafp(k) depends only on
That is, Zn.w = {2 @ 2j1),---» Zj(i)s -+ Zjw) | J(i) € the ratiosf—; of A; and not the specific shape, or size of



the sensing areas. Hence, Theorem 1 allows the anal@t of linesm(¢) perpendicular to the directiof, for which
computation of the detection probability in the case of sensdt® length of the cord withind is greater or equabt,;,. That
with heterogeneous sensing areas. However, the complexgy

of computing (5) grows exponentially with the heterogeneity T'(0) = de. (13)
of the sensing areas. For large-scale netwofks(k) can be - M'(f,e)ﬂA|2thL )
efficiently computed with the use of the following result. The probability of moving target detection under the SD

model is given by the following theorem.

Theorem 2: Let the probability; that a targetX is de- _ .
tected by sensor; be small, while the sum of the probabilities h€orem 3: Let a targeX’ cross the ol moving on a

S g is nearly a constanty, asi — oco. The probability straight line at a constant speed The probabilityPp (k) that
p(ZZN 1) converges to a Poisson distribution of rate at leastk sensors deteck when the target must be sensed

for at least timet,;, is given by:

1 1251

k—1
Po(ky=1=>"> T[]l (1 - q/zj(u)) (14
v=1

w=0 Zn  i=1

k
P(Zny) = %6_77 Z%‘ =7, maxg — 0. (10)

Proof: The proof of Theorem 2 is a special case of
Lindeberg’s Central Limit Theorerand is provided in [18]. )
m whereq, = £
Substituting (10) to (9) yields’p(k), for the case of large- Proof: The proof of Theorem 3, follows the same steps
scale heterogeneous SN. If sensors have sensing areas @fitthe proof of Theorem 1 in the case of the ID model. The
perimeters of equal length (not necessarily identical shapeg))y difference between the two proofs is the computation of
(5) can be simplified to the following form. the probabilityg; for a single sensor to detect a targt
Corollary 1: The probability Py (k) that a target crossing Based on our mapping in Section IlI-B, in the case of the
the FoI will be detected by at leagtsensors, when all sensorsSD model, target detection is equivalent to the conditional

have sensing areas with equal perimeters equal to: probability ¢, that a line that intersectsl,, also intersects
k1 . N A;, with the length of the cord bein () A;| > vty,. This
Po(k)=1— Z <N> L'(Lo — L) . (11) Probability is equal to the quotient of the measure of the lines
o\t LY that intersect both4,, .A; and have a cord lengtif () A;| >
Proof: Corollary 1 follows by setting;; = £ in (5). m vt over the measure of the set of lines that interségt
Using Theoremnl, we can also evaluate the probability that . m([eN Ao N Ail > vt)
a targetX remains undetected by any sensor. Corollary 2, 4; = m(¢ Ao % 0) (15)

computes the probability?,; of missing a target.
Corollary 2: The probability Py, that a target crossing the
Fol is not detected by any sensor is equal to:

The measure of the set of lines that intersglt is given
by (2) and is equal t&#(Ty) = Lo. The measure of the set
of lines that intersect bottd,,.A; and have a cord length

N . () Ai| > vty is computed as follows:
Py = H (1 . 51) (12) | ﬂ | th p 0
i1 0 om(I AV Ail = vt) = m(e[)Ail = vtin)
Proof: The proof of Corollary 2 follows, by observing

thatPM:P(ZN@), ar]de:@7 Ej:{l,...,N}. | | (|:|) / dé‘/\d@
Depending on the application, (12) allows us to selectV [6N Ail>vten

so thatP,, remains below any desired threshold value. (i) /7r /(0)d6 (iv) ~E(T')
0 1

B. Sampling Detection

Under the SD model, a targef must remain within the
sensing area of a sensgrfor at leastt;;, units of time, before
s; can detectX. Given a velocity model forX, SD occurs
if the length of the intersection of the trajectory af with
the sensing areal; is at least;h(v). Assuming the simplest
velocity model of constant spektbr X, SD occurs when the
length of the intersection is longer thaiy;,. To measure the
set of lines that intersect a sgt and have a cord withimd
of length longer thanvt;;, we define the notion of effective E(T') = /7T lT’(@)dG. (16)
thicknessT” (6). 0o

Definition 3: Effective Thickness 7"(0) : The effective Hence, step (iv) follows. The combination of (15), (16), (2)
thicknessT”(¢) for a setA is defined as the measure of thexnd (3) yields:

TE(T}) _ wE(T)) _ E(T))

1Any other velocity model can be assumed to map the sampling time q/_ _ _ i) i (17)
thresholdt,;, into a trajectory lengthi;, (v). v Lo 7E(Ty) E(Ty)

In step (i), A; is a subset of4, and, hence, the length of the
line that is common to both, and.4; is equal to the length
of the cord inA;. In step (ii), we integrate the line density
dl = d¢ Adf over all lines that intersectl; and have a length
of at leastvt,,. In step (iii), for a fixed directior® the integral
of d¢ over all lines for which|¢(.A; > vty is equal to the
effective thicknesg” (0). The average effective thickness for
random lines is given by:
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Fig. 3. (a) The effective thickness of a rectangle on directiog 0, (b) the effective thickness of a rectangle on a random directioft) the effective
sensing area of a disk.

Trajectory of X Definition 4: Effective Sensing Area A’ : Let the average
r=HET) /2 effective thickness of a set be equal taE (7”). The effective
sensing aread’ is defined as a disk of radius = E(7")/2.
Using the notion of the effective sensing area, we can map
the target detection probability under the SD model, to a target
detection problem under the ID model using the following

¢ Effective arca A,

\ corollary.
Area: i, Perimeter: L, Corollary 3: The target detection probability under the SD
model is equal to the target detection probability under the 1D
Fig. 4. The equivalent effective area for a senspr model, when the sensing areas of the sensors are replaced by

the effective sensing areas.
Following the same steps as in the proof of Theorem 1, Proof: The proof follows by setting.; = 277" in (5). ®

yields Theorem 3. m Infigure 4, we show the equivalence between the sensing area
of a sensors; under the SD model. Note that in the case of
C. Mapping the SD Model to the ID Model the unit disk model, the effective sensing area is a subset of

o . . the original sensing area. As an example, in figure 3(c) the
The ID model facilitates a geometric interpretation of thggetive sensing area of a disk of radiuss a concentric disk

target detection problem. Any target crossing the sensin? L, 5 vtin 2
area of a sensor is detected. However, no such geome?r crad'UST VT (%3*)%. Through the rest of the paper

interpretation exists for the SD model. We now provide we focus on the ID model, with equivalent results holding for
reduction from the SD model to the ID model that allowd'® SD model.
us to map any results for the simpler ID model to the SD onB. Mean Free Path until the First Detection

Our goal is to define for each sensqr an effective sensing | several applications, the distance that the tafgetavels
areaA; with the following property. If a targeX' crosses the wthin the Fol undetected is an important metric of the quality
boundary ofA; (ID model), thenX is detected under the SDof detection. In this section, we analytically compute the
model. mean free pathE (o) until the first detection of a targeX.

For sensing areas of arbitrary shape, the average effectie facilitate the computation we assume that sensors have
thickness ofA;, does not correspond to the average thickneggentical sensing areas. Note that computing the mean free
of a subset of4;. As an example, in figure 3(a), all lines ofpath £(o) traveled byX, is sufficient to determine the mean
direction . intersecting the rectangular sensing arkahave time E(t) until X is first detected, given a velocity model for
a line segment withiod longer tharvt,, (assumingt;, <b.).  X. The mean free path problem can be stated as follows.
However, for a directior® # {0, 7,7} there is a set of lines Mean Free Path Problem: Let N sensors with identical
with a line segment within4; shorter tharwt,,. The subset sensing areas be randomly and independently deployed within
of A; that does not result in detection for lines in directiod Fol of areaF,. Assuming that a targeX is moving on a
¢ is depicted by the shaded areas in figure 3(b). Hence, ofigaight line, compute the mean free path before the taxget
cannot define a subset of; with average thickness equal tojs detected.
the average effective thickness 4f. The mean free path for which the targéf remains

However, from (14), the probability of detectid?y (k) only undetected is given by the following theorem.
depends onE(T!), and not the shape of the sensing area.

Hence, we can define an effective sensing a#édor each Theorem 4: LetN sensors with identical sensing areas be
sensors;, that is not necessarily a subset. 4f randomly and independently deployed withinFal of area



of X

Trajectory of X Trajectory

(a) (b) (c)

Fig. 5. (a) Any sensor within a distanc%gi) from the trajectory of the targeX, detects X, (b) Equivalent formulation, for a target of average thickness
E(T), and sensors with sensing areas reduced to point masses, detection occurs if a;sérutides” with the target, (c) the mean free path of a target
X and the equivalent free area.

Fy. Assuming a targeX moving on a straight line, the meanvalue and, hence its expectation is given by:
free path beforeX is detected equals:

Q e_/)f
E(o) = / Plo > ox)dox = —— (1 — e—ﬂE(T)Q) ’
£ E(T
E(o) = NE(()T)' (18) 0 pE(T) o1

Proof: Under the ID model, a targek travels for a Where @ denotes the maximum possible length of the tra-
distancer x undetected, if it does not cross the sensing arealgftory of X within the F'ol. When the residual areg is
any sensor. When the sensors have a sensing area of iden§igzall enough so that #/ ~ 1 andQ is long enough so that
thickness for allg, on a given trajectory, any sensor withine *#"9 = 0,
distance@ from the trajectory ofX, detectsX. This event 1 Fy
is equivalent to considering that the targéthas an average E(o) ~ pE(T) - NE(T)
thickness of E(T) = T(6),V0, while the sensing area of
all sensors is reduced to point masses. Figure 5(a) iIIustraﬁ

target X being detected by sensors with sensing areas : : :
. L7 . eas of constant thickne%g6), V6. This assumption can by
average thicknes&/(T’) while it crosses theol. Figure 5(b) relaxed if one assumes sensing areas of equal thickness on a

lllustrates the equivalent scenario, where t_he targeas an given directiond, but not constant over afl, and then average
average thickness of(7T'), while the sensing areas of the

. over all 6.

sensors are reduced to point masses.

When the targef{ moves a distancey, it covers an area V. VALIDATION OF THE THEORETICAL RESULTS
of size F(ox) = E(T)ox + f, where f denotes the residual |n this section, we verify the validity of our theoretical
shaded area in figure 5(c). Hence, the probability that tigsults be performing extensive simulations. We randomly
target X is not detected for a distance of> oy is equal to deployedN sensors in a circulafol of radius R = 100m.
the probability that no sensor is located witt#ifox ). Given We then generated random lines corresponding to random
that the sensors are randomly and independently deployed, fagectories of targets and measured the number of sensors
number of sensors withitF (o0 x) is given by a homogeneousthat detect the moving targets. We performed the following
planar Poisson point process of dengity- Fﬂo [14]: experiments.

(22)

[ |
e that in the present analysis we have assumed sensing

(pF)* op A. Probability of Detection by a Single Sensor

B (19) In our first experiment,we randomly deployed a single

ensor, with a circular sensing area of radiusie varied

where | S| denotes number of sensors. Equation (19) hc’kisfrom 10m to 80m and measured the probability that a target
under t_he assumption thé, — oo, while the Sensor density moving at a random trajectory is detected by the sensor. For
p remains constant. Based on (19), the probability that the frgg., 14 4ius we repeated the experiment 100 times to ensure
path of target is o > o, is equal to the probability that giaistical validity. Based on our derivations in Section IV, the
no sensors exist within an area of si#¢o ) : probability that the target is detected is equal to:

Ple>0x) = P(Nr@)x) =0) Pp—g=2i_" (23)

e=PF(@) = o=P(B(Do+f)  (20) Lo R
In figure 6(a) we show the probability of detectidr, for

The random variable is a non-negative continuous randonvaryingr for our first experiment. We observe an almost exact

P(IS] = k) =



Probability of detecting a target g for varying r Probability of detecting a target q; for varying a
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Fig. 6. Homogeneous SN: (a) Probability of detecting a target by the deployment of a single sensor with circular sensing area, as a function of the radius
r. (b) Probability of detecting a target by the deployment of a single sensor with square sensing area, as a function ofvthe side

match between the theory and the simulation, confirming theignificantly smaller than the perimeter of t#&7. We also

the probability of a random line intersecting a set of perimetebserve that the Poisson approximation is very close to the
L; given that it intersects the overset of perimelgris equal exact theoretical value as well as the simulated value.

to the quotient of the two perimeters.

We also repeated our experiment when the deployed sengor
had a square Sensing area of perim@t@;L wherea denotes In our third experiment, we evaluated the detection per-
the length of the side of the square and was varied from 1dafmance of a SN when all deployed sensors have identical
to 80m. In figure 6(b) we show the probability of detectiBp ~ Sensing areas. We initially deployed 30 sensors with a circular
for varying « for the case of square sensing area. We obsers@nsing area of radius= 10m and measured the probability
that regardless of the shape of the sensing area, our theorefédietectionP(Zy, ) that a target randomly crossing tt&/

formula agrees with the simulation. is detected by exactly sensors. The probability(Zy ;) for
the homogeneous case is given by:

Probability of Detection in Homogeneous SN

B. Probability of Detection in Heterogeneous SN

N L k L N—k
In our second experiment we deployed sensors with het- P(Zny) = ( ) <) (1 - ) ) (26)
erogeneous sensing capabilities and evaluated the detection k Lo Lo

perfqrmance of the SN. Eac_h sensor dgployed had circularfigure 7(c) we showP(Zy ;) for a homogeneous SN as
sensing area of a radius uniformly distributed (3 1]. We a function ofk. We also evaluate the probabilitfy (k) that
selected a small sensing area in order to satisfy the conditignarget would be detected by at ledssensors, that in the
max; ¢; — 0 while 37, ¢; — ~, so that the probability of homogeneous case is given by (11). In figure 7(d), we show
detection of a target by exactlysensors can be approximated~,, (k) as a function ofk. We observe that our theoretical
by (10). We varied the number of sensors deployed frofsrmulas match the simulation results.

N = 100 to N = 1000, and computedPp(1). The exact  We also evaluated the probabiliti,; of not detecting a

formula for Pp(1) is given by target crossing the sensor field as well as the probability of
N detection by at least one sens®y(1), a function of the
Pp(1) = H (1 — Li) (24) number of sensors deployed. In figure 6(e) we shidw as
=1 Lo a function of N. In figure 7(f) we showPp (1) as a function

of N. From figures 7(e), 7(f), one can selelt so that the
Pp(1) is above a threshold. As an example/h (1) > 95%
Pp(l)=1-¢" ST (25) more than 30 sensors must be deployed.

Figure 7(f), also shows the fraction of thén/ denoted as
In figure 7(a), we show the theoretical value BH(1), the Fr(A4,) covered by at least one sensor. From figure 7(f), we
value according to Theorem 2, and the simulated value, @6te that it is not necessary to cover the enfikel to achieve
a function of N. We observe that when the conditions ofjetection probability close to unity. Thus, target mobility
Theorem 2 are satisfied, one can compiitg(k) without helps detecting targets with a significantly smaller number of
incurring the high computational cost of the exact formulgensors, compared to the number required for detecting static
(ask increases the number of terms in the exact formula gfrgets.
Pp(k) increase exponentially).

In figure 7(b), we showPp(1) when the radius of the VI. CONCLUSION

sensors is uniformly distributed if0,0.1]. We observe that We studied the problem of quantifying the target detection
the target detection probability grows almost linearly witleapability of heterogeneous SN. We mapped the mobile target
the number of sensors is deployed when the length of tbetection problem to the line-set intersection problem and
perimeters of the sensing areas of the devices deployed deeived analytical expressions for the probability of target

For large N according to Theorem 2°5(1) tends to
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Fig. 7. (a) Heterogeneous SN: Probability of target detection by at least one sensor as a function of the network size, when the radius of the sensing area

is uniformly distributed withinr € [0, 1]. (b) Probability of target detection by at least one sensor as a function of the network size, when the radius of
the sensing area is uniformly distributed withine [0,0.1]. (c¢) Homogeneous SN: Target detection probability by exaktsensors. (d) Target detection
probability by at leask sensors. (e) Probability of missing a target as a function of the network size. (f) Probability of target detection by at least one sensor
as a function of the network size, and comparison with the fraction ofihe covered by at least one sensor.

detection in stochastically deployed heterogeneous SN. W& A. Arora, P. Dutta, S. Bapat, V. Kulathumani, and H. Zhang, ‘A

showed that the target detection probability depends 0n|y on Line i_n_ thge Sand: A Wir_eless Sensor Network for Targe_t Detection,
; . Classification, and Tracking,” Computer Networks (Elsevier), vol. 46

the length of the perimeters of the sensing areas of the sensors ; "5, 605-634, Dec. 2004.

and not on their shape or area. We also analytically evaluatg®] S. Meguerdichian, F. Koushanfar, G. Qu, and M. Potkonjak, “Exposure

the mean free path until a target is first detected, a critical !n Wireless Ad Hoc Sensor Networks,” In Proc. of MOBICOM 2001,

- . o . July 2001, pp. 139-150.
measure of timely target detection. We verified our theoretlc[@b] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava,

results via detailed simulations. “Coverage Problems in Wireless Ad-Hoc Sensor Networks,” in Proc. of
INFOCOM, April 2001, pp. 1380-1387.
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