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Abstract. In RFID literature, most “privacy-preserving” protocols require the
reader to search all tags in the system in order to identify a single tag. In another
class of protocols, the search complexity is reduced to be logarithmic in the num-
ber of tags, but it comes with two major drawbacks: it requires a large commu-
nication overhead over the fragile wireless channel, and the compromise of a tag
in the system reveals secret information about other, uncompromised, tags in the
same system. In this work, we take a different approach to address time-complexity
of private identification in large-scale RFID systems. We utilize the special archi-
tecture of RFID systems to propose the first symmetric-key privacy-preserving au-
thentication protocol for RFID systems with constant-time identification. Instead
of increasing communication overhead, the existence of a large storage device in
RFID systems, the database, is utilized for improving the time efficiency of tag
identification.
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1. Introduction

The ability to trace RFID tags, and ultimately the individuals carrying them, is a major
privacy concern in RFID systems. Privacy activists have been worried about the invasion
of users’ privacy by RFID tags, calling for the delay or even the abandonment of their
deployment. In extreme cases, companies have been forced to repudiate their plans for
RFID deployment in response to the threat of being boycotted [1]. Consequently, signifi-
cant effort has been made in the direction of designing RFID systems that preserve users’
privacy.

Two main objectives of typical RFID systems are identification and privacy. Identi-
fication, by itself, can be as straightforward as broadcasting tags’ identifiers in clear text.
When combined with the privacy requirement, however, transmitting identifiers in clear
text is obviously unacceptable. For RFID tags capable of performing asymmetric cryp-
tography, such as public-key encryption [2,3] or trapdoor functions [4,5], private identi-
fication can be achieved easily (for instance, by encrypting a randomized version of the
tag’s ID with the reader’s public key).

Public-key operations, however, are beyond the computational capabilities of low-
cost tags. Hoping Moore’s law will eventually render tags capable of performing public-
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key operations, one might consider the computational limitations of RFID tags a tempo-
rary problem. The price of tags, however, will be a determining factor in the deployment
of RFID systems in real life applications. When RFID systems are to replace barcodes
to identify tagged items, the price of tags will contribute to the tagged products’ prices.
When retailers are to choose between tags that can perform sophisticated cryptographic
operations and cheaper tags that cannot, it seems highly likely that the cheaper tags will
prevail. Consequently, low-cost RFID systems are restricted to the use of symmetric-key
cryptography in most practical scenarios.

Privacy-preserving symmetric-key protocols are faced with the following paradox.
On one side, a tag must encrypt its identity with its secret key so that only authorized
readers can extract the identity. On the opposite side, authorized readers must first de-
termine the identity of the tag in order to know which key is to be used for decryption.
Therefore, given that tags’ responses are randomized (to protect users’ privacy), and
that the length of tags’ responses is sufficiently long (so that easy to implement attacks
such as random guessing and exhaustive search will have small probability of success),
searching the database for those responses is a nontrivial task.

Most RFID protocols trade-off identification efficiency for the sake of privacy. That
is, private identification is accomplished, but the reader is required to perform a linear
search among all tags in the system in order to identify the tag being interrogated (see,
e.g., [6,7,8,9,10]). In a typical protocol of this class, the reader interrogates a tag by
sending a random nonce, r1. The tag generates another nonce, r2, computes h(ID, r1, r2),
where h is a cryptographic hash function, and responds with s =

(
r2, h(ID, r1, r2)

)
. (Dif-

ferent protocols implement variants of this approach; but this is the main idea of this
class of protocols.) Upon receiving the tag’s response, the reader performs a linear search
of all the tags in the system, computing the hash of their identifiers with the transmit-
ted nonces, until it finds a match. Obviously, unauthorized observers cannot correlate
different responses of the same tag, as long as the nonce is never repeated.

Although protocols of this class have been shown to provide private identification,
their practical implementation has a scalability issue. In a large-scale RFID system, per-
forming a linear search for every identification run can be a cumbersome task, especially
in applications requiring identification of multiple tags simultaneously (which is the typ-
ical scenario in many RFID applications). Moreover, denial of service attacks can be
launched by giving authorized readers false identifiers causing them to perform exhaus-
tive search amongst all tags in the system before realizing that the received response is
invalid. Hence, for an RFID system to be practical, one must aim for a scheme that can
break the barrier of linear-time identification complexity.

A big step towards solving the scalability issue in privacy-preserving RFID systems
was proposed by Molnar and Wagner in [11]. This new approach traded-off computa-
tional and communication overhead on tags to speed up the identification process. The
authors utilized a tree data structure, where each edge in the tree corresponds to a unique
secret key, each leaf of the tree corresponds to a unique tag, and each tag carries the set
of keys on the corresponding path from the root of the tree to its leaf. When a reader in-
terrogates a tag, the tag responds with a message encrypted with its first key. By decrypt-
ing the tag’s response with the keys corresponding to all edges of the first level of the
tree, the reader can determine to which edge the tag belongs. By traversing the tree from
top to bottom, the tag can be identified in O(log NT ) time using O(log NT ) reader-tag
interactions, where NT is the number of tags in the system.
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Arranging tags in a tree based on secret keys they possess, however, introduced a
new security threat to the RFID system: every compromised tag will reveal the secret
keys from the root of the tree to its leaf. Since these keys are shared by other tags in
the system, compromising one tag will reveal secret information about all tags sharing
a subset of those keys. In [8], the tree structure is analyzed showing that in a tree with
a branching factor of two, compromising 20 tags in a system of 220 tags leads to the
identification of uncompromised tags with an average probability close to one.

Researchers who believe that reducing identification complexity from O(NT ) to
O(log NT ) cannot be overlooked as a result of the vulnerability it introduced have been
making significant effort to mitigate the tag compromise problem in tree based sys-
tems [12,13,14]. The idea shared by all such attempts is to employ key updating mech-
anisms to mitigate the effect of tag capture. Other researchers, however, believe that the
new threat overweighs the reduction in identification complexity, thus, proceeding with
the linear-time class of protocols and trying to improve on its performance (see, e.g.,
[8,9,10]).

Another major drawback of the tree based class of protocols is the increase in com-
munication and computation overhead on tags. In a typical RFID system, the reader in-
terrogates multiple tags simultaneously. Consequently, even in the linear-time identifica-
tion protocols, where communication overhead is O(1), collision avoidance and medium
access control are among the most challenging problems in the design of efficient RFID
systems [15,16,17,18,19]. Increasing the communication overhead to O(log NT ) can only
complicate collision avoidance even further. Moreover, extra computation overhead can
also be problematic for passive tags as it leads to more energy consumption.

We point out here that this work takes only into account protocols that are both se-
cure and provide private identification. That is, although there exist protocols that can
provide constant-time identification, they either fail to provide privacy against active ad-
versaries or fail to provide secure authentication. Discussion of such protocols is deferred
to Section 2 (the related work section).

In this paper, we address the private identification problem in large-scale RFID sys-
tems. We propose a protocol that, in addition to being resilient to tag compromise attacks,
allows constant-time identification, without imposing extra communication or computa-
tion overhead on the resource limited tags. The main drive behind devising our protocol
is the intuition that, in order to overcome the problems in both linear and logarithmic
time identification classes, one must aim for a solution that is fundamentally different
than both of them. We do not resort to tree structure, nor do we incur more communica-
tion overhead. Instead, we utilize resources that are already available in RFID systems to
improve identification efficiency. That is, since in any RFID system there is a database,
to store information about tags in the system, and since storage is relatively cheap in
today’s technology, we tradeoff storage for the sake of better identification efficiency.
To the best of our knowledge, the proposed protocol is the first symmetric-key privacy-
preserving protocol that allows constant-time tag identification. Table 1 compares our
protocol to the class of linear-time identification protocols, Class 1, and to the class of
log-time identification protocols, Class 2.

The rest of the paper is organized as follows. In Section 2, we discuss some related
work in the design of RFID systems. In Section 3 we describe our system model, ad-
versarial model, and security model. The proposed system is described in Section 4. In
Section 5, we prove our claim of constant-time identification and provide a case study
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Table 1. Performance comparison as a function of the number of tags in the system, NT . Class 1 represents
protocols with linear-time identification, while Class 2 represents protocols with log-time identification. The
overhead in the last column refers to computation and communication overhead on the tags’ side.

Search time Key size Database size Overhead

Class 1 O(NT ) O(1) O(NT ) O(1)

Class 2 O(lg NT ) O(lg NT ) O(NT ) O(lg NT )

Proposed O(1) O(1) O(NT ) O(1)

in Section 6. Section 7 is dedicated to the security proofs of the proposed system. The
robustness against tag capture attacks is detailed in Section 8. In Section 9, we discuss
desynchronization attacks against the proposed system and extend our system to prevent
such attacks. We conclude our paper in Section 10.

2. Related Work

Many protocols have been designed to meet the stringent computational capabilities of
low-cost RFID systems. The class of stateful protocols is an example of such protocols.
In stateful protocols, the tag maintains a state that can allow authorized readers to iden-
tify it. To avoid tag impersonation, the state gets updated with the completion of an iden-
tification run with an authorized reader. Since every tag’s state must be the same as the
state stored at the database, such protocols must be designed to be secure against desyn-
chronization attacks. Obviously, since tags are identified via their states, which are sent
in the clear, readers can identify tags responses in constant time.

However, such protocols are not designed to provide privacy against active adver-
saries. To see this, recall that the tag cannot update its state without completing an iden-
tification run with an authorized reader (since the tag must always be synchronized with
the database). Therefore, an active adversary interrogating the same tag multiple times,
in the absence of an authorized reader, will receive the same response (the tag’s cur-
rent state). In other words, such stateful protocols, although might be suitable for some
applications, cannot be used in applications where privacy against active adversaries is
required. Examples of such protocols include, but are not limited to, [20,21,22,23,24].
This class of protocols, however, remains attractive due its fast identification and the fact
that it requires less computation effort on the tags. Consequently, many noncryptographic
techniques have been proposed to increase tags privacy. Such techniques include the use
of a blocker tag [25], the use of a watchdog tag [26], the use of an RFID guardian [27],
and the use of an RFID Enhancer Proxy (REP) [28].

Another class of protocols that claim to achieve constant-time identification is the
class based on time stamps. Protocols of this class, however, have been analyzed and
shown to lack some required security propeeties (see, e.g., [29,30]). Protocols of this
class include [31,32,33].

To overcome the lack of privacy against active adversary in stateful protocols, linear-
time identification protocols were introduced. If properly designed, linear-time identifi-
cation protocols can provide privacy against both passive and active adversaries as well
as secure reader-tag mutual authentication. One advantage of the linear class of protocols
is that it can be designed without any synchronization requirement. This lack of synchro-
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nization, however, is the main reason why authorized readers have to perform a linear
search amongst all tags in the system to identify each response. Due to its desirable secu-
rity and privacy characteristics, however, this class has attracted the most attention from
researchers in the RFID technology. Protocols of this class include, but are not limited
to, [6,7,8,9,10].

The main drive behind the introduction of tree based protocols is to decrease the
extensive amount of computational power required to identify tags in the linear-time pro-
tocols. Most RFID tags, however, are not tamper resistant. Hence, capturing an RFID
tag and obtaining its secret information is not a complicated task. For the linear-time
protocols this does not pose a real problem, since the secret information of each tag is
independent of the others. For the logarithmic-time protocols, this is not the case. Con-
sequently, many protocols have been proposed to address the tag compromise vulnera-
bility in logarithmic-time identification systems. Protocols of this class include, but are
not limited to, [11,12,34,13,14].

3. Model Assumptions

In this section, we state the system, adversarial, and security model used to develop this
protocol. The comprehensive details of the adversarial and the security models are not
needed for the description of the protocol and can be skipped for a better flow of ideas.

3.1. System Model

RFID systems are typically composed of three main components: tags, readers, and a
database. In our model, the tag is assumed to have limited computing power: hash com-
putations are the most expensive operations tags can perform. The reader is a computa-
tionally powerful device with the ability to perform sophisticated cryptographic opera-
tions. The database is a storage resource at which information about tags in the system is
stored. Readers-database communications are assumed to be secure.

We assume that tags have nonvolatile memory so they can retain their keying infor-
mation and carry out necessary updates. Although this assumption is already practical
for passive tags with today’s technology, depending on the reader’s transmission power
and its distance from the tag, technology will only improve and make this assumption
even more practical. Indeed, most RFID protocols are based on the same assumption
(see, e.g., [10,12,13,14]).

3.2. Adversarial Model

We assume adversaries with complete control over the communication channel. Ad-
versaries can observe all exchanged messages, modify exchanged messages, block ex-
changed messages and replay them later, and generate messages of their own. We do
not consider an adversary whose only goal is to jam the communication channel. Dis-
tinguishing tags by the physical fingerprints of their transmissions requires sophisticated
devices and cannot be solved using cryptographic solutions. It is out of the scope of this
work as in the majority of similar proposals.

The adversary A is modeled as a polynomial-time algorithm. Given a tag, T , and a
reader, R, we assumeA has access to the following oracles:
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• Query (T,m1, x2,m3): A sends m1 as the first message to T ; receives a response,
x2; and then sends the message m3 = f (m1, x2). This oracle models the adversary’s
ability to interrogate tags in the system.

• Send (R, x1,m2, x3): A receives x1 from the reader R; replies with m2 = f (x1);
and receives the reader’s response x3. This oracle models the adversary’s ability
to act as a tag in the system.

• Execute (T,R): The tag, T , and the reader, R, execute an instance of the protocol.
A eavesdrops on the channel, and can also tamper with the messages exchanged
between T and R. This oracle models the adversary’s ability to actively monitor
the channel between tag and reader.

• Block (·): A blocks any part of the protocol. This query models the adversary’s
ability to launch a denial of service attack.

• Reveal (T ): This query models the exposure of the tags’ secret parameters to
A. The oracle simulates the adversary’s ability to physically capture the tag and
obtain its secret information.

A can call the oracles Query, Send, Execute, and Block any polynomial number of
times. The Reveal oracle can be called only once (on the same tag), at which the tag is
considered compromised and, thus, there is no point of calling the Reveal oracle on the
same tag multiple times. To model tag compromise attacks, however, the adversary is
allowed to call other oracles after the Reveal oracle on the same tag; detailed discussion
about this is provided in Section 8.

3.3. Security Model

The security model presented in this section does not consider the adversary’s ability to
perform pre-processing before engaging in the games. In Section 8, however, we will
modify the security model to give the adversary such ability to perform pre-processing
that involves calling the Reveal oracle on tags in the system. The main purpose of this
modification is to allow modeling tag compromise attacks.

The two main security goals of our protocol are tags’ privacy and tag-reader mu-
tual authentication. There are different notions of privacy in the RFID literature (see,
e.g., [35,29,36]). In this paper, privacy is measured by the adversary’s ability to trace
tags by means of their responses in different protocol runs. We define three notions of
untraceability, universal, forward, and existential.

Definition 1 (Universal Untraceability) In an RFID system, tags are said to be univer-
sally untraceable if an adversary cannot track a tag based on information gained before
the tag’s last authentication with a valid reader. In other words, there is no correlation
between a tag’s responses before and after completing a protocol run with a valid reader.

Universal untraceability is modeled by the following game between the challenger
C (an RFID system) and a polynomial time adversaryA.

1. C selects two tags, T0 and T1, and a valid reader, R.
2. A makes queries on T0, T1, and R using the Query, Send, Execute, and Block

oracles for a number of times of its choice.
3. A stops calling the oracles and notifies C.
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4. C carries out an instance of the protocol with T0 and T1, during which mutual
authentication of both tags with R is achieved.

5. C selects a random bit, b, and sets T = Tb.
6. A makes queries of T and R using the Query, Send, Execute, and Block oracles.
7. A outputs a bit, b′, and wins the game if b′ = b.

The second notion of privacy, forward untraceability, is defined as follows.

Definition 2 (Forward Untraceability) In an RFID system with forward untraceability,
an adversary capturing the tag’s secret information cannot correlate the tag with its
responses before the last complete protocol run with a valid reader.

Forward untraceability is modeled by the following game between C andA.

1. C selects two tags, T0 and T1, and a valid reader, R.
2. A makes queries of T0, T1, and R using the Query, Send, Execute, and Block

oracles for a number of times of its choice.
3. A stops calling the oracles and notifies C.
4. C carries out an instance of the protocol with T0 and T1, during which mutual

authentication of both tags with R is achieved.
5. C selects a random bit, b, and sets T = Tb.
6. A calls the oracle Reveal (T).
7. A outputs a bit, b′, and wins the game if b′ = b.

Finally, the third notion of privacy, existential untraceability, is defined as follows.

Definition 3 (Existential Untraceability) Tags in an RFID system are said to be exis-
tentially untraceable if an active adversary cannot track a tag based on its responses to
multiple interrogation, even if the tag has not been able to accomplish mutual authenti-
cation with an authorized reader.

Existential untraceability is modeled by the following game between C andA.

1. C selects two tags, T0 and T1.
2. A makes queries of T0 and T1 using the Query oracle for at most C − 1 number

of times for each tag, where C is a pre-specified system security parameter.
3. A stops calling the oracles and notifies C.
4. C selects a random bit, b, and sets T = Tb.
5. A makes a query of T using the Query oracle.
6. A outputs a bit, b′, and wins the game if b′ = b.

To quantify the adversary’s ability to trace RFID tags, we define the adversary’s advan-
tage of successfully identifying the tag in the previous games as

AdvA = 2
(

Pr[b′ = b] −
1
2

)
. (1)

If the adversary cannot do any better than a random guess, then Pr(b′ = b) = 1/2.
Consequently, the adversary’s advantage, AdvA, is zero, at which point we say that tags
are untraceable.

The other security goal of our protocol is mutual authentication. An honest protocol
run is defined as follows [24]: A mutual authentication protocol run in the symmetric



8

key setup is said to be honest if the parties involved in the protocol run use their shared
key to exchange messages, and the messages exchanged in the protocol run have been
relayed faithfully (without modification).

Another term that will be used for the reminder of the paper is the definition of
negligible functions: A function γ : N → R is said to be negligible if for any nonzero
polynomial ℘, there exists N0 such that for all N > N0, |γ(N)| < (1/|℘(N)|). That is, the
function is said to be negligible if it converges to zero faster than the reciprocal of any
polynomial function.

We now give the formal definition of secure mutual authentication for RFID systems
as appeared in [24].

Definition 4 (Secure Mutual Authentication) A mutual authentication protocol for
RFID systems is said to be secure if and only if it satisfies all the following conditions:
1. No information about the secret parameters of an RFID tag is revealed by messages
exchanged in protocol runs.
2. Authentication⇒ Honest protocol: the probability of authentication when the proto-
col run is not honest is negligible in the security parameter.
3. Honest protocol⇒ Authentication: if the protocol run is honest, the tag-reader pair
must authenticate each other with probability one.

To model the adversary’s attempt to authenticate herself to a reader (tag), we propose
the following game between the challenger C and adversaryA.

1. C chooses a tag, T , at random, and a reader, R.
2. A calls the oracles Query, Send, Execute, and Block using T and R for a number

of times of its choice.
3. A decides to stop and notifies C.
4. A calls the oracle Send (Query) to impersonate a tag (reader) in the system.
5. IfA is authenticated as a valid tag (reader),A wins the game.

Definition 4 implies that the protocol achieves secure mutual authentication only if the
adversary’s probability of winning the previous game is negligible.

4. System Description

4.1. Protocol Overview

In our system, each tag has an internal counter, c, and is preloaded with a unique secret
pseudonym, ψ, and a secret key, k. The secret key and the secret pseudonym are updated
whenever mutual authentication with a valid reader is accomplished, while the counter
is incremented every time authentication fails.

When an RFID reader is to identify and authenticate a tag within its range, it gener-
ates a random nonce, r ∈R {0, 1}L, and transmits it to the tag. Upon receiving r, the tag
computes h(ψ, c) and r̃ := h(0, ψ, c, k, r), where ψ is the tag’s current pseudonym, k is the
tag’s current secret key, c is the tag’s internal counter, and r is the received nonce. The
tag then increments its counter, c← c + 1. With h(ψ, c), the reader accesses the database
to identify the tag and obtain its information, including its pseudonym, ψ, its secret key,
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Figure 1. A schematic of one instance of the protocol.

k, and a new pseudonym, ψ′, to update the tag. With r̃, the reader authenticates the tag
by confirming its knowledge of the secret key, k, obtained from the database.

Once the tag has been identified and authenticated, the reader responds with
h(1, ψ, k, r̃), h(2, ψ, k, r̃)⊕ψ′, and h(3, ψ′, k, r̃). With h(1, ψ, k, r̃), the tag authenticates the
reader (by verifying its knowledge of its secret key, k). If the reader is authenticated, the
tag uses h(2, ψ, k, r̃)⊕ψ′ to extract its new pseudonym, ψ′. Once the new pseudonym has
been computed, the tag verifies its integrity using h(3, ψ′, k, r̃). The tag and the reader
then update the tag’s secret key to k′ = h(k) truncated to the required length, `. Figure 1
depicts a single protocol run between an RFID reader-tag pair.

4.2. Database Overview

As mentioned above, the tag is identified by its randomized response, h(ψ, c), which is
an L-bit long string. Since security requires that L is sufficiently long, it is infeasible to
construct a physical storage that can accommodate all possible 2L responses, for direct
addressing. (This is the reason why previous schemes resorted to linear search amongst
all tags in the system to identify a response.) For ease of presentation, the structure of
the database is divided into three logical parts, M-I, M-II, and M-III.

To allow for constant-time identification, with feasible storage, we truncate the L-bit
identifiers to their s most significant bits, where s is small enough so that a storage of
size 2s is feasible. Of course, many identifiers will share the same s most significant bits
(to be exact, 2L−s possible identifiers will share the same truncated value). M-I is a table
of size O(2s), with addresses ranging from 0 to 2s − 1, and each table entry contains a
pointer to an entry in M-II (similar to a hashtable data structure, with truncation instead
of hashing). All identifiers with the same s most significant bits will be stored in a smaller
table in M-II, and the pointer at address s in M-I will point to the head of this smaller
table. Finally, actual information about tags in the system is stored in M-III. Detailed
construction of the database and description of the identification process will be the focus
of the remainder of this section.

The proposed protocol can be broken into four main phases: parameters selection
phase, system initialization phase, tag identification phase, and identity randomization
and system update phase. Each phase is detailed below.
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Table 2. A list of parameters and used notations.

Symbol Definition

NT The total number of tags in the system
N The total number of pseudonyms in the system
ψi The pseudonym corresponding to the ith tag
C The maximum counter value
` The length of the secret parameter in bits
h Cryptographic hash function
L The output length of the used hash function
n The length of the truncated hash values

Ψi,c A tag identifier, Ψi,c := h(ψi, c)
Ψn

i,c The n most significant bits of Ψi,c

4.3. Parameters Selection

During this phase, the database is initialized and each tag is loaded with secret informa-
tion. The secret information includes the tag’s secret key, which the tag and reader use to
authenticate one another, and the tag’s pseudonym, which is used for tag identification.

Given the total number of tags the RFID system is suppose to handle, NT , and prede-
fined security and performance requirements (more about this later), the system designer
chooses the following parameters to start the initialization phase:

• The total number of pseudonyms, N. Since pseudonyms will be used as unique
tag identifiers, there must be at least one pseudonym for every tag in the sys-
tem. Furthermore, since tags are assigned new identifiers following every suc-
cessful mutual authentication process with an authorized reader, the total number
of pseudonyms must be greater than the total number of tags in the system, i.e.,
N > NT .

• The maximum counter value, C. The counter is used by RFID tags to mitigate
traceability by active adversaries; the larger the counter is, the more difficult it will
be for active adversaries to track the tag; on the downside, the size of the database
will grow linearly with the counter (the database size is O(NC)). Therefore, the
size of the counter is a trade-off between tags’ privacy and system complexity.

• The length, `, in bits, of the tags’ secret parameters (pseudonyms and keys). As
in any symmetric key cryptosystem, ` should be chosen properly to prevent easy-
to-implement attacks, such as exhaustive search and random guessing. Obviously,
` must be long enough to generate N distinct pseudonyms, i.e., ` ≥ dlog2 Ne. In
practice, however, ` will be much longer.

• The hash function, h. In particular, the output length of the hash values, L, is of
special importance. The length must be chosen large enough so that there are no
collisions during database initialization, which is described below.

• The length, n, of the truncated hashes. The size of n is the key for constant-time
identification and practicality of the system. It will be determined in Section 5.

Table 2 summarizes the list of system parameters and used notations.
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4.4. System Initialization

Once the system parameters have been chosen, the initialization phase can start. The
initialization phase can be summarized in the following steps.

1) Given the number of pseudonyms, N, and the length of each pseudonym, `, the sys-
tem designer draws, without replacement, N pseudonyms randomly from the set of all
possible `-bit strings. That is, N distinct pseudonyms, ψ1, ψ2, . . . , ψN , are chosen at ran-
dom from {0, 1}`. Each tag is given a unique pseudonym and a secret key, and each tag’s
counter is initially set to zero. We emphasize that the drawn pseudonyms are not publicly
known; otherwise, tags’ privacy can be breached.

2) For each pseudonym, ψi, the hash value h(ψi, c) is computed for all i = 1, . . . ,N and
all c = 0, . . . ,C − 1. That is, a total of NC hash operations must be performed, as de-
picted in Figure 2. Each row of the table in Figure 2 corresponds to the same pseudonym.
Therefore, all entries in the ith row must point to the same memory address carrying
information about the tag identified by the pseudonym ψi.

In order for tags to be identified uniquely, the hash values in the table of Figure 2
must be distinct. This can be achieved by choosing the hash function, h, to be an expan-
sion function, as opposed to the usual use of hash functions as compression functions,
so that collision will occur with small probability.1 We will assume that the output of
the hash function has length L bits, which must be at least equal to dlog2 NCe so that
the table in Figure 2, which is of size NC, can be constructed without collisions (L will
be much larger in practice). If a pseudonym that causes a collision in Figure 2 is found,
the pseudonym is replaced by another one that does not cause a collision. (Observe that
the pool of possible pseudonyms is of size 2`, which is much larger than the required
number of pseudonyms N, giving the system designer a sufficient degree of freedom in
constructing the system.) With the appropriate choice of the hash function, a table of
hash values with no collisions can be constructed. Note that this operation is performed
only once during the initialization phase, thus, it does not undermine the performance of
the system.

Since the length of h(ψi, c) (the tags’ identifiers), L, is large to avoid collision, it
would be infeasible to have a physical storage that can accommodate all possible L-bit
strings (for direct addressing). For example, if L = 128, a database of size in the order
of 4 × 1028 Gigabyte will be required. Previously proposed privacy-preserving schemes
solve this problem in one of two approaches. The first approach requires O(NT ) memory
space to store information about each tag in the system, and requires the reader to per-
form a linear search among tags in the system to identify tags’ responses; thus requiring
O(NT ) space and O(NT ) time for identification. The other method identifies tags based
on their key information and requires the reader to perform logarithmic search to identify
tags’ responses; thus requiring O(NT ) space and O(log NT ) time for identification.

3) For ease of presentation, we will divide the database into three logical parts, M-I,
M-II, and M-III. The first part, M-I, consists of a single table of size O(2n).The second

1For example, this can be accomplished by concatenating multiple hash functions, i.e., h(x) =

h1(x)|| · · · ||hm(x), so that h(x) has the required length.
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Figure 2. During database initialization, all values of h(ψ, c) are computed.

part, M-II, consists of multiple smaller tables; the total size of all the tables in M-II is
O(NC). Finally, the last part, M-III, is of size O(N).

The table in M-I is a table of pointers. The addresses of M-I range from 0n to 1n;
each entry in the table points to the head of one of the mini tables in M-II (according to
a specific relation explained below).

Each entry of M-II contains two fields. In the first field, the hash values obtained in
the table of Figure 2 are stored (i.e., h(ψi, c) for all i = 1, . . . ,N and all c = 0, . . . ,C − 1).
M-II is organized based on the hash values stored in the first field. We say that two hash
values h(ψ1, c1) and h(ψ2, c2) are in the same position, b, if their n most significant bits
are the same (recall that the output length of the hash function is L > n). All hash values
that have the same position, i.e., share the n most significant bits, are stored in the same
mini table in M-II (e.g., the hash values with b = s in Figure 3). Hash values with distinct
positions are stored in different tables (e.g., hash values with b = 0n, s, 1n in Figure 3).
(Recall that Figure 2 contains the computed hash values; hence, table M-II can be viewed
as a reorganized version of the two-dimensional table in Figure 2 into a one-dimensional
table of size O(NC).) The second field of each entry of M-II stores a pointer to an entry
in M-III containing information about a tag in the system (depending on the value of the
first field). For example, if the value stored in the first field is h(ψi, c), then the value in
the second field will be a pointer to the data entry in M-III where information about the
tag with pseudonym ψi can be found.

After M-II has been constructed, the pointers at M-I are chosen to satisfy the fol-
lowing: the pointer stored at address a in M-I must point to the mini table in M-II that
stores identifiers with position a. In other words, each pointer in M-I must point to the
identifiers with position equal to the address of the pointer.

Finally, M-III is the actual storage where tags’ information is stored. Figure 3 depicts
the architecture of the database with the three logical partitions. The identification phase
below will further illustrate the structure of the database.

4.5. Tag Identification

Tags in a protocol run of the system are identified by the hash of their pseudonyms con-
catenated with their internal counters. Denote by Ψi,c the hash value of the ith pseudonym
concatenated with a counter c; that is, Ψi,c := h(ψi, c). Furthermore, we will denote by
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Figure 3. The architecture of the database. Each entry in M-I points to another, smaller table in M-II. The
entries of the smaller tables in M-II point to tags’ information.

Ψn
i,c the truncated value of Ψi,c; more precisely, Ψn

i,c represents the n most significant bits
of Ψi,c (i.e., the position of Ψi,c).

Once Ψi,c has been received, the reader accesses the data entry at address Ψn
i,c in

M-I. This table entry is actually a pointer, p, to one of the tables in M-II. There are three
possible scenarios here:

1) The value at address Ψn
i,c in M-I is a null. This implies that, during the construction of

the table in Figure 2, no identifier with position Ψn
i,c is constructed. Therefore, either the

tag is not a valid one or the tag’s response has been modified. In the example of Figure
3, if the n most significant bits of the received Ψi,c are zeros, then no valid tag matches
this response.

2) The pointer, p, at address Ψn
i,c points to a table in M-II with exactly one entry. In this

scenario, the first field of the entry pointed at by p must be the entire (untruncated) Ψi,c;
the value at the second field will be a pointer to the entry in M-III that contains informa-
tion about the interrogated tag. In the example of Figure 3, if the n most significant bits
of the received Ψi,c are ones, then the pointer at address 1n in M-I will point to the entry
at M-II at which Ψk,c′k = 1n||t′k and the pointer, p′′, are stored. In turn, p′′ will point to the
entry at M-III where information about the tag with pseudonym ψk is stored.

3) The pointer at address Ψn
i,c of M-I points to a table in M-II with more than one en-

try. In this scenario, the reader searches the first fields of the mini table in M-II until it
reaches the entry that matches the complete (untruncated) received identifier, Ψi,c; and
then follows the pointer (in the corresponding second field) to get the tag’s information.
In the example of Figure 3, if the received identifier is Ψk,ck = s||tk, the reader will follow
the pointer at address s of M-I. The pointer, however, points to a table in M-II with more
than one entry. Therefore, the reader must search until it reaches the last entry of the
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table to find a match for the received Ψk,ck = s||tk. Once the match is found, the reader
can follow the pointer, p′′, to the entry in M-III containing information about the tag
with pseudonym ψk.

The identification process allows for unique identification of tags in the system. This
is due to the requirement that, in the initialization phase, the values in the table of Fig-
ure 2 are distinct. Consequently, the entries in M-II are distinct, allowing for the unique
identification of tags.

Remark 1 Recall that the pseudonyms drawn in the initialization are not publicly
known. If the pseudonyms were published, an adversary can, in principle, construct her
own system and identify tags in constant-time. Further discussion about the adversary’s
ability to expose secret pseudonyms is provided in Section 8.

4.6. Identity Randomization and System Update

Once a tag has been authenticated, the reader draws one of the unoccupied pseudonyms
generated in the initialization phase. (Recall that the number of pseudonyms is greater
than the number of tags in the system; consequently, there will always be unused
pseudonyms available for identity randomization.) Once an unoccupied pseudonym has
been chosen, it is to be transmitted to the tag in a secret and authenticated way.

To allow for correct identification of a tag after its pseudonym has been updated, the
database must be updated accordingly. A straightforward way of updating the database
is by updating the pointers corresponding to the outdated and updated pseudonyms. For
example, if the tag’s outdated pseudonym is ψi and its updated pseudonym is ψk, then
all pointers in M-II corresponding to entries Ψi,0,Ψi,1, . . . ,Ψi,C−1 must point to a null;
and all pointers in M-II corresponding to entries Ψk,0,Ψk,1, . . . ,Ψk,C−1 must point to the
entry in M-III containing information about the tag. This method, however, requires O(C)
updates.

An alternative method that allows a faster update is depicted in Figure 4. Instead
of updating the pointers as in the previous method, the tag’s information is moved to
the entry in M-III pointed at by the pointers corresponding to the updated pseudonym
in M-II. The only price to pay for this method over the previous one is that the size of
M-III will increase from O(NT ) to O(N) (asymptotically, N and NT are of the same size).
In the example of Figure 4, instead of changing all entries in M-II with pointer p′ to p,
and changing entries with pointer p to null, the tag’s information is moved to the entry
in M-III pointed at by p′ and the entry pointed at by p is emptied.

5. Performance Analysis

For the proposed scheme to be practical, we must show that a set of parameters can be
chosen such that our claim of constant-time identification can be achieved with feasible
resources (namely, feasible database size). This section is devoted to showing that, with
a set of appropriately chosen parameters, the proposed technique can achieve constant-
time identification with a database of size O(NT ).

Assuming that the Ψi,c’s are uniformly distributed, the probability that the truncated
version Ψn

i,c takes a specific value, s, is α = Pr(Ψn
i,c = s) = 2−n, for any s ∈ {0, 1}n. Let
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(a) (b)

Figure 4. (a) Before (b) After; an illustration of database update. Note that only the tag information is updated,
rather than the pointer values. This way, we only have to update two entries instead of O(C) entries.

M := NC and define m := log2 M, where N is the total number of pseudonyms and C
is the maximum counter value. Then, out of the M values of Ψi,c’s, the probability that
exactly k of them share the same truncation value (i.e., exactly k of them have the same
n most significant bits) is

Pr(k = k) =

(
M
k

)
αk(1 − α)M−k, (2)

where k is the random variable representing the number of Ψn
i,c sharing the same value,

s, for any s ∈ {0, 1}n. Then, for k � M,(
M
k

)
=

M!
k!(M − k)!

≈
Mk

k!
. (3)

Using the facts that lim
n→∞

(1 −
1
n

)n = e−1, M = 2m, and α = 2−n we get:

(1 − α)M−k ≈ (1 − α)M (4)

= (1 − 2−n)2m
(5)

= (1 − 2−n)2n·2m−n
(6)

≈ e−2m−n
. (7)

Substituting equations (3) and (7) into (2) yields,
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Pr(k = k) ≈
Mk

k!
· αk · e−2m−n

(8)

=
2mk

k!
·

1
2nk · e

−2m−n
(9)

=
1
k!
· βk · e−β, (10)

where β = 2m−n. Choosing m = n yields β = 1 and equation (10) can be reduced to

Pr(k = k) ≈
1
k!
· e−1 for k = 0, 1, . . . . (11)

It can be easily verified that Pr(k = k) in equation (11) is a valid probability mass function
by verifying that

∑∞
k=0 Pr(k = k) = 1.

Using the fact that e =
∑∞

k=0
1
k! , the expected number of truncated Ψi,c’s with the

same value is

E[k] =

∞∑
k=0

k · Pr(k = k) (12)

=

∞∑
k=1

k ·
1
k!
· e−1 (13)

= 1. (14)

Recall that identifiers Ψi,c with the same truncated value Ψn
i,c will be in the same

table in M-II; and when the reader receives one of these identifiers it will have to search
the table to be able to identify the tag. Equation (14), however, implies that the expected
size of the tables in M-II is one. Therefore, upon receiving a tag identifier Ψi,c, the reader
goes to the table entry in M-I at address Ψn

i,c, follows the pointer p1 stored at that address,
searches the table in M-II pointed at by p1 for the received Ψi,c (on average there will
be only one entry by (14)), and then follows a pointer p2 to information about the tag.
Indeed, the search time is independent of the number of tags in the system (on average).

Since the database consists of three parts, M-I, M-II, and M-III; and since the size of
M-I is O(2n), the size of M-II is O(NC), and the size of M-III is O(N), the only concern
is the size of M-I. The above analysis shows that, by choosing n = dlog2 NCe, the sys-
tem achieves the constant-time identification claim. Therefore, the size of M-I is O(NC)
and, consequently, the total size of the database is O(NC). However, C is a constant,
independent from the number of tags in the system; and N is O(NT ). Therefore, with the
proposed system, the required size of the database for constant-time identification to be
achieved is O(NT ).

6. Case Study

Since big O analysis can be impractical by absorbing big constants, we give here a
numerical example of the practicality of our system. Assume an enterprise with one
billion items to be tagged, i.e., NT = 109. Assume further that the total number of
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pseudonyms is two billions, i.e., N = 2NT and C = 1000. Then, the truncated identi-
fiers are n = dlog2 NCe = 41-bit long. Therefore, M-I can be constructed with a storage
smaller than 12 terabyte; a practical storage even for personal usage.2

Therefore, an active adversary must interrogate a tag more than 1000 consecutive
times, not separated by a protocol run with a valid reader, in order to correlate its re-
sponses. Observe that, unlike security models in general computer communications,
1000 consecutive interrogations is an unlikely scenario for RFID systems. A web server,
for instance, is always online. In a typical RFID systems, however, adversaries must be in
close proximity to tags in order to interrogate them. Observe, moreover, that an adversary
who is always in the vicinity of a tag can track it down visually without interrogation. So,
in typical designs, the goal is protect tags privacy against adversaries that are not always
in close proximity to the RFID tags. Therefore, limiting the number of consecutive tag
interrogations is a typical relaxation in RFID models [38].

7. Security Analysis

In this section, we prove that our protocol preserves the integrity of the tag and reader
while maintaining user privacy. Before we proceed with the proofs of privacy and in-
tegrity, we state some important assumptions about the used hash function that are nec-
essary for our security proofs.

7.1. Cryptographic Hash Functions

We assume the use of a secure cryptographic one-way hash function (the Secure Hash
Algorithm, SHA, family is a popular example that is accepted by the National Institute
of Standards and Technology, NIST, as a standard [39]). Under practical assumptions
about the adversary’s computational power, the used hash function satisfies the following
properties.

1. Given the output of the hash function, it is computationally difficult to infer the
input. That is, given the value of h(x), the probability to predict the correct value
of x by computationally bounded adversaries is negligible.

2. Given x and h(x), the probability to predict h(x + i), for any i, without actually
evaluating h(x + i) is negligible.

Given the above properties of the used hash function, the following lemma states an
important result that will be used for the privacy and integrity proofs.

Lemma 1 The secret parameters of RFID tags in the proposed protocol cannot be ex-
posed without calling the Reveal oracle.

Proof: In any interrogation, the tag responds with its current identifier Ψi,c = h(ψi, c),
where ψi is the tag current pseudonym and c is its internal counter. Given the above prop-
erties of the used hash function, the pseudonym cannot be exposed by the observation of
h(ψi, c) with a non-negligible probability. Furthermore, the new pseudonym is delivered
to the tag by transmitting (h(2, ψi, ki, r̃) ⊕ ψi+1), which can be viewed as an encryption of

2Western Digital has already released 8-TB hard drives for personal use [37].
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ψi+1 with the key h(2, ψi, ki, r̃). Since ψi and ki are unknown to adversaries, h(2, ψi, ki, r̃)
will act as a random key and the new pseudonym ψi+1 will be delivered secretly. More-
over, since the outdated and the updated pseudonyms, ψi and ψi+1, are unknown to ad-
versaries, the two identifiers, h(ψi, c) and h(ψi+1, c), cannot be correlated with a non-
negligible probability and, similarly, the identifiers h(ψi, c) and h(ψi, c + 1), cannot be
correlated with a non-negligible probability.

Therefore, unless A calls the Reveal oracle, no secret information about RFID tags
in the proposed protocol can be revealed.

Before we proceed with the formal proofs, we discuss the effect of the Block oracle
and desynchronization attacks.

7.2. Desynchronization Attacks

Jamming the communication channel, i.e., blocking all messages, is not of an interest
to this work, since it does not lead to breaching of tags’ privacy nor does it lead to
authenticating unauthorized users.

Blocking the first message (from the reader to the tag) will just cause the tag not to
respond. Similar to jamming, no information will be leaked by blocking the first message.

Blocking the second message (from the tag to the reader) can be modeled by the
Query oracle. In fact, intercepting the tag’s response is equivalent to a Query oracle in
which the adversary does not control the value of r transmitted in the first message.

Blocking the last message (from the reader to the tag) has two effects. First, it will
cause the tag to increase its internal counter (since the protocol run is incomplete), but
this can also be modeled using the Query oracle. Second, and more important, it will
lead the reader to update the tag’s pseudonym while the tag has not,3 i.e., a desynchro-
nization attack. Fortunately, however, this can be solved by storing both the updated and
the outdated pseudonyms in the database (the database must be designed accordingly, as
detailed in Section 9).

In what follows, we formally prove the privacy and integrity of the proposed proto-
col.

7.3. Privacy

In this section, we show that the proposed protocol satisfies the three notions of tag
privacy defined in Section 3.3.

Theorem 1 In the proposed protocol, tags are universally untraceable.

Proof: Assume the challenger C has chosen two tags, T0 and T1, and a reader R for the
game. A starts the game by calling the Query, Send, Execute and Block oracles on T0,
T1, and R for a number of times of its choice before deciding to stop. A records all the
outputs of the oracle calls and notifies C.

Now, R carries out protocol runs with T0 and T1 causing their pseudonyms and keys
to update. C chooses a bit b uniformly at random and sets T = Tb. By Lemma 1,A cannot
infer the outdated nor the updated values of the tags’ pseudonyms and keys.A now calls

3This is an inherited problem shared by all interactive protocols. The fundamental problem here is that the
sender of the last message has no means of confirming that the message has been successfully delivered.
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the oracles Query, Send, Execute and Block and outputs a bit b′. SinceA does not know
the outdated or the updated pseudonyms, by the assumptions on the used hash function,
the probability Pr(b = b′) will be greater than 1/2 with a non-negligible probability.

Therefore, the adversary’s advantage, as defined in equation 1, will be greater than
zero with only a negligible probability.

The following theorem concerns forward untraceability in our protocol.

Theorem 2 In the proposed protocol, tags are forward untraceable.

Proof: Similar to the proof of universal untraceability, assume the challenger C has
chosen two tags, T0 and T1, and a reader R for the game. A starts the game by calling
the Query, Send, Execute and Block oracles on T0, T1, and R for a number of times of its
choice before deciding to stop. A records all the outputs of the oracle calls and notifies
C.

Now, R carries out protocol runs with T0 and T1 causing their pseudonyms and keys
to update. C chooses a bit b uniformly at random and sets T = Tb and gives it to A. By
Lemma 1, A cannot infer the outdated nor the updated values of the tags’ pseudonyms
and keys. A now calls the Reveal(T ) oracle, thus getting T ’s secret parameters, and
then outputs a bit b′. Since A cannot infer the outdated pseudonyms and keys of T0
and T1 from the recorded oracle outputs, and since the updated pseudonyms are chosen
independently of the outdated ones, A cannot correlate T ’s updated pseudonym with
its previous responses. Furthermore, since the updated key is a hashed function of the
outdated key, by the assumptions on the used hash function,A cannot infer the value of
the outdated key with a non-negligible probability. Hence, the probability Pr(b = b′) will
be greater than 1/2 with only a non-negligible probability.

Therefore, the adversary’s advantage, as defined in equation 1, will be greater than
zero with only a negligible probability.
Finally, the following theorem concerns existential untraceability in our protocol.

Theorem 3 Without being able to achieve mutual authentication with an authorized
reader, a tag interrogated fewer than C number of times by an active adversary is un-
traceable.

Proof: Assume that C has given T0 and T1 to A. Let ψ0 and ψ1 denote the pseudonyms
of T0 and T1, respectively. Without loss of generality, assume that tags T0 and T1 have
their internal counters at zero.A calling the Query oracle on T0 and T1 for m and n times,
respectively, where m, n < C will observe the following sequences

{h(ψ0, 0), . . . , h(ψ0,m − 1)}, (15)

{h(ψ1, 0), . . . , h(ψ1, n − 1)}. (16)

The challenger C now chooses a bit b at random, sets T = Tb, and gives T toA. By
interrogating the tag,A gets an identifier h(ψb, `), where b ∈ {0, 1} and ` ∈ {m, n}. Again,
by Lemma 1, ψ0 and ψ1 cannot be recovered by the observation of the sequences in
equations (15) and (16). Furthermore, by the assumptions on the hash function, h(ψ0,m)
and h(ψ1, n) cannot be correlated to the observed values in equations (15) and (16) with a
non-negligible probability. Therefore, the probability that A’s guess b′ is equal to b can
be higher than 1/2 with only a negligible probability and, hence, AdvA = 0 and tags are
existentially untraceable, provided that m, n < C.
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7.4. Mutual Authentication

We shift our attention now to the other security requirement, authenticity.

Theorem 4 The proposed protocol performs secure mutual authentication.

Proof: Assume that C has given A a tag T and a reader R. Assume further that A has
called the Query, Send, Execute and Block oracles for a number of times of its choice and
recorded the oracle outputs.

The first condition of Definition 4 of secure mutual authentication is satisfied by
Lemma 1.

Assume now that A attempts to impersonate the tag T . A must answer the reader’s
challenge r with a response s =

(
h(ψ, c), r̃ = h(0, ψ, c, k, r)

)
, where ψ is the tag’s cur-

rent pseudonym and k is its key. Since ψ and k remain secret, by Lemma 1, A can be
successful with only a negligible probability. Observe further that, even ifA attempts to
impersonate an arbitrary tag in the system (the one with pseudonym ψ), A must know
the value of k corresponding to the tag with pseudonym ψ in order to be authenticated
with a non-negligible probability. Therefore, the probability of impersonating a tag in the
system is negligible.

On the other hand, assume that A attempts to impersonate the reader R. A sends r
to the tag and receives h(ψ, c) and r̃ = h(0, ψ, c, k, r), where ψ is the tag’s pseudonym, k is
its secret key, and c is its internal counter. Since, by the assumption on the hash function,
A cannot infer the secret parameters, the probability of coming up with a response that
will be equal to h(1, ψ, k, r̃) is negligible. Consequently, the probability of impersonating
an authorized reader in the system is negligible.

Therefore, the probability of mutual authentication when the protocol is not honest
is negligible and, hence, the second condition of Definition 4 of secure mutual authenti-
cation is satisfied.

As shown above, the adversary’s probability of causing a desynchronization be-
tween the tag and the reader by authenticating herself to either one of them is negligi-
ble. Causing a desynchronization by blocking the last message of the protocol can be
solved by making the reader store both the updated and the outdated values (as will be
discussed in Section 9). Therefore, if the protocol run is honest, mutual authentication
will be achieved with probability one and, consequently, the third condition of Definition
4 of secure mutual authentication is satisfied.

Hence, all conditions of Definition 4 of secure mutual authentication are satisfied
and the proposed protocol is shown to provide secure mutual authentication.

8. Tag Compromise Analysis

In this section we describe a vulnerability to tag compromise, modify the adversarial
model to capture this vulnerability, analyze our system using the modified model, and
propose countermeasures to mitigate tag compromise attacks.

8.1. The Compromise attack

Each tag in the proposed protocol has two pieces of secret information, its pseudonym
and its key. Since tags’ pseudonyms and keys are designed to be statistically independent
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Figure 5. The adversary’s average probability of distinguishing between two tags vs. the number of protocol
runs using a compromised tag, in a system with 2 × 109 pseudonyms.

for different tags, compromising some tags in the system does not affect the security of
other, uncompromised tags. An adversary, however, can compromise a tag in the system
and attempt to harvest as many pseudonyms as possible by performing multiple protocol
runs with a valid reader.

The adversarial model of Section 3 can be modified to capture the tag compromise
attack. Let an adversary calling the Reveal (T ) oracle, thus capturing the tag T , have
the ability to perform multiple protocol runs with the system. Let q be the number of
protocol runs an adversary has performed with the system using compromised tags. The
number of interest here is how many distinct pseudonyms the adversary has collected,
after q protocol runs. This is known in the literature of probability theory as the “coupon
collecting problem” [40]. Given there are N distinct pseudonyms and the adversary has
performed q protocol runs, assuming each pseudonym is equally likely to be selected,
the expected number of distinct pseudonyms collected by the adversary is [40]:

N
(
1 −

(N − 1
N

)q
)
. (17)

Assume an adversary has built a system, similar to our construction, with the collected
pseudonyms. The adversary’s advantage of distinguishing between two tags, given by
equation (1), will be greater than zero if at least one of the two tags’ pseudonyms is in
the constructed table. Thus, given the adversary has performed q protocol runs with a
system of N pseudonyms, the probability of distinguishing between two tags is:

1 −
(N − 1

N

)2q
. (18)

Consider the numbers given in Section 6, i.e., N = 2×109. To have a 0.001 probability of
distinguishing between two tags, an adversary needs to compromise a tag and complete
more than a million protocol runs with the system. Figure 5 shows the adversary’s prob-
ability of having an advantage greater than zero as a function of the number of protocol
runs performed with the system using compromised tags.
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8.2. Countermeasures

Remember, however, that the database is a powerful device. Therefore, designing the
database to record timing information about the tag’s past protocol runs can mitigate this
threat. For example, the database can store information about the tag’s last five protocol
runs (this can be stored as part of the tag’s information, i.e., in M-III). If the adversary
attempts to harvest different pseudonyms by performing multiple protocol runs with the
system, the tag will be detected. Therefore, to harvest enough pseudonyms, the adversary
will need to compromise more than one tag, depending on the system’s parameters and
the required probability of success.

Furthermore, the database can periodically update the system by replacing va-
cant pseudonyms with new pseudonyms (recall that the number of pseudonyms in the
database, N, is only a small fraction of the number of all possible pseudonyms, 2`).
This pseudonym update procedure is performed offline by the database, thus, not affect-
ing identification time. Moreover, as a result of the independence of secret parameters
amongst tags, the updating procedure is independent of tags.

With the periodic update described earlier, the space of possible pseudonyms will
increase to all possible `-bit long strings, as opposed to the predefined smaller number
N. Therefore, for a bounded adversary, any polynomial number of collected pseudonyms
is negligible in the security parameter `. (Recall that the size of the actual database is
still proportional to N; only from the adversary’s point of view the size is proportional
to 2`.) Consequently, the adversary’s probability of breaking the privacy of the system is
negligible in `, provided the periodic update of the database.

9. Preventing Desynchronization Attacks

Recall that if the tag does not accept the reader’s response, the database will update
the tag’s pseudonym while the tag has not. Consequently, the reader will not be able
to identify the tag in future protocol runs. As mentioned in Section 7.2, however, the
database can be designed to overcome such attacks by storing both the updated and
outdated pseudonyms; details are as follows.

9.1. Redesigning the Update Procedure

Consider the update procedure described in Section 4.6. Let each entry of M-III consists
of a linked list data structure, as opposed to a single entry as in the basic description.
For illustration purposes, assume the linked list consists of four fields containing the
following data. The first field contains information about a tag Ti with pseudonym ψi,
where ψi is the Ti’s “updated” pseudonym. The second field will contain a pointer to the
entry of M-III corresponding to Ti’s outdated pseudonym, if it existed (i.e., if the tag has
been interrogated previously). The third field contains information about a tag Tk with
pseudonym ψk, where ψk is the Tk’s “outdated” pseudonym. The fourth field will contain
a pointer to the entry of M-III corresponding the Tk’s updated pseudonym, if it existed.
The construction is best illustrated through the following example.

Consider Figure 6 for updating the database. Assume the reader has authenticated
the tag T1 with a current pseudonym ψi. Assume further that the database returns a new
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(a) (b)

Figure 6. (a) Before (b) After; an illustration of database update. Note that only the tag information is updated,
rather than the pointer values. This way, we only have to update two entries instead of O(C) entries.

pseudonym ψk as the updated pseudonym for the tag T1. Just like the update procedure
described in Section 4.6, the information about tag T1 in M-III will be copied into the data
entry pointed at by the pointers in M-II corresponding to the updated pseudonym ψk (i.e.,
pointer p′ in the example of Figure 6). However, instead of deleting the information about
tag T1 in the entry pointed at by the pointer corresponding to the outdated pseudonym ψi

(i.e., pointer p in the example of Figure 6), the information remains there.
Observe, however, that by continuing in this fashion, information about the tag will

have multiple copies in the database, one for each identification run. To prevent this prob-
lem, we use the pointer field in M-III. That is, the use of the new pointer fields in M-III
will allow preventing the desynchronization attack with only two copies of tag informa-
tion in M-III, one corresponding the updated pseudonym and one corresponding to the
outdated pseudonym. Observe, in Figure 6-b, that the information about tag T1 corre-
sponding to the outdated pseudonym ψi is followed by a pointer field that stores a pointer
to the information about T1 corresponding to the updated pseudonym ψk. Similarly, that
the information about tag T1 corresponding to the updated pseudonym ψk is followed
by a pointer field that stores a pointer to the information about T1 corresponding to the
outdated pseudonym ψi.

Assume now that the tag T1 has received the updated identifier ψk successfully and,
hence, no desynchronization attack has been attempted. Upon interrogation, the tag will
respond with its identifier Ψk,c, which will enable the reader to identify the tag. Once the
entry in M-III with information about the tag has been found (the bottom box of M-III in
the example of Figure 6-b), the pointer in the field after the tag’s information is followed
to empty the data entry with information corresponding to the tags outdated pseudonym
ψi (in the top box of M-III in the example of Figure 6-b). The database then draws an
unused pseudonym ψ j to update the tag, mark the information corresponding to ψk as
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outdated, and copies the tag’s information to the entry corresponding to ψ j. Therefore,
only two copies of the tag’s information need to be stored in M-III.

On the other hand, assume that there has been a desynchronization attempt during
the last protocol run and, thus, the tag has not updated its pseudonym to ψk. Therefore,
upon the next interrogation, the tag will respond with its identifier Ψi,c. Since both the
updated and the outdated pseudonyms are stored, the database can still identify the tag
via its outdated pseudonym (in the top box of M-III in the example of Figure 6-b). Once
the tag’s information has been found, the pointer is followed to delete the tag’s informa-
tion corresponding to the undelivered pseudonym ψk (in the bottom box of M-III in the
example of Figure 6-b). Just like the previous case, the database then draws an unused
pseudonym ψ j to update the tag, mark the information corresponding to ψi as outdated,
and copies the tag’s information to the entry corresponding to ψ j. Therefore, whether a
desynchronization attack has been attempted or not, only two copies of the tag’s infor-
mation need to be stored in M-III.

As can be observed in the example of Figure 6-a, the tag T2 has ψk as its outdated
pseudonym. This does not prevent the database from choosing ψk as the new pseudonym
to update tag T1. If the existence of a tag with an outdated pseudonym prevents the
database from using this pseudonym to update other tags, then each tag in the system will
occupy two pseudonyms. As this might not cause a problem when the number of tags in
the system is not too large, it can be problematic if the number of tags in the system is
very large (a billion tags, for instance). Therefore, we allow the database to update tags
with any pseudonym as long as there is no other tag in the system with this pseudonym
as its “updated” pseudonym, even if other tags have this pseudonym as their “outdated”
pseudonym. In the example of Figure 6, ψk is chosen to update the tag T1 even though
the tag T2 has the same pseudonym as its outdated pseudonym.

Assume now that the tag T1 in the example of Figure 6 has received ψk success-
fully. Since in the next interrogation, T1 will respond with Ψk,c, the pseudonym ψk will
be marked now as the tag’s outdated pseudonym. Therefore, there might be more than
one tag with the same outdated pseudonym and, hence, upon receiving an identifier cor-
responding to such pseudonym, the database will search linearly (amongst tag stored in
the same entry of M-III) until it finds the match. We show next that this does not violate
the constant-time identification claim by showing that the expected number of tags in the
same entry of M-III is independent of the total number of tags in the system.

9.2. Identification Complexity

We seek to find the number of tags with the same outdated pseudonym, thus, falling in the
same entry of M-III, causing the database to search linearly amongst them. Recall that
pseudonyms are drawn uniformly at random to update tags. That is, the tag’s information
can fall into any entry of M-III with equal probability. This problem is equivalent to
a well-studied problem in probability theory called the “balls in bins” problem [41].
In a classic variant of the balls in bins problem, m balls are thrown at n bins and the
probability of any ball falling in a certain bin is the same for all balls and all bins.

Instead of m balls and n bins, we are interested in throwing NT RFID tags into N
possible pseudonyms (recall that each entry in M-III corresponds to one pseudonym).
Therefore, the probability that a certain tag will fall into a particular entry in M-III is 1/N.
Consequently, the expected number of tags that will fall in a particular entry of M-III is



25∑NT
i=1

1
N = NT

N . Since N > NT by design, the expected number of outdated information
in a single entry of M-III is less than one. Therefore, given the redesigned updating pro-
cedure described in Section 9.1 to prevent desynchronization attacks, the identification
complexity of the proposed protocol is constant.

10. Conclusion

In this paper, we addressed the problem of individual tag identification in large-scale
RFID systems. We proposed a protocol that enables the private identification of tags in
the system with constant-time complexity. By utilizing the existence of a large storage
device in the system, the constant-time identification is achieved by performing the nec-
essary time consuming computations offline (independent of the reader-tag interactions).
As opposed to tree based protocols, the proposed protocol does not further complicate the
already challenging problems in RFID systems, namely, collision avoidance and medium
access control. Furthermore, tag compromise threats can be mitigated by periodically up-
dating the database which, due to independence of secret parameters amongst tags, can
be performed independent of any tag-reader interaction. To the best of our knowledge,
this is the first symmetric-key, constant-time identification protocol in the literature of
RFID that allows for secure mutual authentication and private identification.
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