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Quantifying the Impact of Efficient Cross-Layer

Jamming Attacks via Network Traffic Flows
Patrick Tague, David Slater, Guevara Noubir, and Radha Poovendran

Abstract—We investigate a class of coordinated jamming at-
tacks in which multiple jammers collaboratively apply knowledge
about the network layer functionality to efficiently reduce the
throughput of network traffic. We show how a constrained
optimization framework can be used to characterize coordinated
jamming attacks and allow the impact of the attack to be
quantified from the perspective of the network. Using this
network-centric interpretation of jamming attacks, a network
designer can attain a greater understanding of the potential
threat of jamming. To illustrate our approach, we propose and
evaluate a variety of metrics to model the attack impact, serving
both as adversarial objective functions and as network evaluation
metrics, and present a simulation study to quantify and compare
attack performance.

Index Terms—Jamming, Network flow, Optimization, Resource
allocation

I. INTRODUCTION

The open, shared nature of a broadcast communication

channel introduces vulnerabilities to wireless networks such

as denial-of-service (DoS) attacks [2]. Jamming is a partic-

ularly debilitating DoS attack where an adversary transmits

interfering signals over the shared medium to block valid

communications, for instance by transmitting wide-band noise

or high-power narrow-band pulses [3], [4]. Communication

systems attempting to perform jamming mitigation typically

employ spread-spectrum techniques, forcing the adversary to

exhaust significantly more resources by increasing the jam-

ming bandwidth or power required to perform the attack [3]–

[5]. Such techniques significantly increase the resource cost

required for the jamming attack, leading to effective anti-

jamming against resource-constrained jammers.

By incorporating cross-layer information and network com-

munication into the jamming attack, a resource-constrained

adversary can significantly increase the efficiency of the at-

tack by targeting specific communication channels, helping to

counteract the effect of the anti-jamming systems. Recent work

has shown that intelligent jammers can exploit the structure

of wireless link layer and MAC protocols [6]–[8] and link

layer error correction protocols [9] to jamming attacks that

require significantly less energy than jamming continuously

or randomly.
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In this work, we propose to additionally incorporate in-

formation from the network layer into the jamming attack,

leading to a further reduction in the required energy resources.

By noting that network flows traverse multiple links, the

jamming adversary can effectively block an entire network

flow [10] by jamming only the link where minimal energy is

required. Additionally, since the probability of correct packet

decoding is a function of the interference power at the receiver,

the adversary can adjust its transmission power to moderate

the probability of successfully jamming a packet [4]. This

jamming power regulation can be applied independently for

each network flow and allows jammers to balance the resource

expenditure over multiple flows in trade for a decreased

probability of jamming success.

An adversary with a network of jammers can optimize the

jamming attack by combining the network-layer information

with transmission power regulation, and balancing the jam-

ming workload across the jamming network. Furthermore, to

counteract the probabilistic success of jamming packets, the

jamming workload can be allocated such that packets unsuc-

cessfully jammed by upstream jammers can be targeting by

downstream jammers, given sufficient coverage of the network.

Hence, the adversary can optimize a global utility function

such as the expected flow rate reduction, energy expenditure,

or jamming network lifetime through intelligent assignment

of jamming workload and transmission power levels to the

jamming networks. We denote this cross-layer DoS attack as

a flow-jamming attack.

In this article, we quantify the effect of flow-jamming

attacks on network performance, and identify crucial concepts

which may then be incorporated into network protocol design.

We make the following contributions toward this problem.

• We formulate flow-jamming attacks as constrained opti-

mization problems which jointly optimize over jamming

transmission power levels and jamming workload allo-

cation to a network of jammers distributed throughout a

wireless network.

• We propose a variety of metrics to evaluate the effect of

flow-jamming attacks on network traffic and the fractional

resource expenditure of the jamming adversary, which

double as objective functions for optimization.

• We introduce convex and linear programming relaxations

to the optimization framework by decomposing the op-

timization into two independent optimization problems,

thereby enabling efficient computation.

• We propose a cooperative distributed algorithm for flow-

jamming attacks for a decentralized jamming network and

compare the performance to the centralized approach.
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The following outline summarizes the remainder of this arti-

cle. In Section II, we describe our wireless network model and

necessary assumptions. Likewise, in Section III we formulate

our adversary model and assumptions. Then in Section IV,

we propose evaluation metrics and formulate constraints for

the flow-jamming attack framework. We formulate optimal

centralized attacks as constrained optimization problems in

Section V. We then propose a distributed algorithm for flow-

jamming attacks in the absence of centralized adversarial con-

trol in Section VI. In Section VII, we evaluate and compare the

performance of the centralized and distributed flow-jamming

attacks using the proposed metrics. Finally, we summarize our

results in Section VIII.

II. NETWORK MODEL

In this work, we utilize cross-layer information from the

network (layer 3), data-link/MAC (layer 2), and physical chan-

nel (layer 1). We state our models and assumptions governing

these layers, from the top down. A summary of the notation

and metrics defined throughout this article is given in Table I.

A. Network Layer

Let N denote the set of nodes which make up the wireless

network. Traffic flows f ∈ F are established throughout the

network between source-destination ordered pairs (s, d) via

a suitable routing algorithm. For each (s, d) pair, we define

an associated traffic flow f with rate rf packets per second,

which we assume is fixed over the duration of interest to the

adversary. Without loss of generality, we assume that each flow

consists of a single path from the source s to the destination

d, as any multiple-path flow can be decomposed into a set of

corresponding single-path flows.

B. Data-Link/MAC Layer

We are primarily interested in characterizing the worst-case

effect of flow-jamming on the performance of networking

protocols, without coupling its effect with that of typical

link-layer errors. Therefore, we assume a number of network

idealities, which if removed would only increase the impact of

the jamming attack, by requiring additional network transmis-

sions. Firstly, we assume that packetization or framing at the

data-link layer [11] occurs without error, i.e. that there are no

framing errors at each receiving node. Similarly, we assume

that the packet transmissions of all flows in F do not lead

to collisions at the MAC layer. Collision-free scheduling can

be achieved, for example, by requiring that neighboring nodes

transmit on orthogonal communication channels using any of

the class of OFDMA protocols [12], which includes TDMA,

FDMA, and CDMA as special cases. A network attempting to

mitigate jamming is likely to utilize OFDMA or other spread-

spectrum techniques to accomplish this goal.

C. Physical Layer

In this section, our goal is to derive a physical layer

model that can incorporate a broad range of environments

and modulation/coding techniques. We are primarily interested

TABLE I
A SUMMARY OF NOTATION AND METRICS IS PROVIDED.

Symbol Definition

N Set of wireless network nodes

F Collection of network flows

rf Packet rate of flow f ∈ F

J Set of jammers

Ej Energy budget for jammer j ∈ J

djf Distance from jammer j ∈ J to flow f ∈ F

Pjf Transmission power used by j ∈ J targeting f ∈ F

q(djf , Pjf ) Packet error rate (PER) in f ∈ F due to j ∈ J

xjf Jammer-to-flow assignment for j ∈ J and f ∈ F

P Vector of variables Pjf

x Vector of variables xjf

πf (j) Order of jammer j along flow f

λj(xj , Pj) Resource expenditure of jammer j

λ(x, P ) Resource expenditure metric (18)

I(x, P ) Jamming impact metric (17)

G(x, P ) Jamming gain metric (19)

V (x, P ) Resource variation metric (20)

Φ(x, P ) Demand penalty function (21)

in analyzing the physical layer packet error rate (PER), the

probability that a packet is received in error, as the primary

purpose of a jamming attack is to drastically increase this

quantity.

For each transmitter and receiver, we assume the following

physical communication model [4]. Given that the transmitter

T and receiver R are separated by a distance d and T transmits

with constant power PT , the received signal power PR at node

R is given by

PR = ρPT d−α. (1)

The constant ρ in (1) incorporates the antenna gains GTR

of T in the direction of R and GRT of R in the direction

of T , the transmission wavelength λ, and the constant loss

factor L, assumed to be independent of transmit power PT .

The constant α is the path-loss exponent, assumed to be α ≥ 2,

that captures the decay in signal power with distance. Typical

values of the path-loss exponent vary in the range 2 ≤ α ≤ 4
for open, outdoor environments and in the range 4 ≤ α ≤ 7
for constricted, indoor environments.

The PER of the physical layer communication protocol

can be analyzed with respect to the signal-to-interference-and-

noise ratio (SINR) s given by

s =
PR

I + N
(2)

where I is the interference power and N is the noise power

at the receiver. In the absence of jamming, we assume the

interference power I is zero and refer to the corresponding

quantity PR/N as the signal-to-noise ratio (SNR). We note

that this assumption is equivalent to incorporating ambient

interference into the quantity N . Under this model, we assume

that each transmitter in the network adjusts its transmit power

PT as a function of the fixed distance d to a sufficient level

to maintain an SNR of γ at the receiver. The SINR at the

receiver can thus be expressed as

s =
γ

1 + I/N
. (3)
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The probability of packet error (PER) can be computed as

a function q(s) of the SINR s. We note that the exact form

of the function q(s) depends on the modulation and coding

schemes. Examples of PER function q(s) based on Gaussian

noise and interference include

q(s) = βe−ξs (4)

and

q(s) = β erfc
(

√

ξs
)

, (5)

where erfc(·) is the complementary error function for the

Gaussian distribution [4], ξ is a constant depending on the

modulation and coding schemes, and β is a constant maximum

PER. As a particular example, the PER for packets of length

L bits using uncoded BPSK or QPSK modulation under a

Gaussian noise model has the form

q(s) = 1 −
(

1 − b erfc
(

√

ξs
))L

, (6)

which is well approximated by the PER function in (5) with

β = bL for reasonable values of parameters b and L.

Since the constant ξ in (4) and (5) is a scalar coefficient

of s, it can be chosen to fit a reference PER. For example, if

interference power I = mPR is sufficient to cause a PER of

p, then using (4), we have

p = βe−ξs = βe−
ξγ

1+I/N = βe−
ξγ

1+mγ , (7)

and the constant ξ can be parameterized by m and p as

ξ =
1 + mγ

γ
ln

(

β

p

)

. (8)

III. ADVERSARY MODEL

Let J denote a set of jamming nodes which make up the

adversarial wireless network. We assume that each jammer

j ∈ J is able to sense transmissions and infer network

flow topology and rates within a particular sensing region

around the jammer’s location. In addition, we assume that

each jammer j ∈ J may exchange information with a subset

Jj ⊆ J of neighboring jammers without interfering with

the network of nodes N . This can be achieved by selecting

channels orthogonal to those used by the communicating

network.

We suppose that each jammer j is constrained by an energy

budget Ej , which denotes a finite supply of energy allotted

for a particular time interval of attack, since a jamming

network unconstrained in terms of energy would be able to

brute force jam all nearby flows without the need for any

network information. With a constrained energy budget, on

the other hand, the jamming adversary will seek an optimal

allocation of resources with respect to the jammers’ energy

budgets and their affect on the underlying communicating

network topology, by incorporating cross-layer information

and distributing the jamming workload. We thus define the

jammer-to-flow assignment variable xjf ∈ [0, 1] as the fraction

of packets in flow f which jammer j will attempt to jam.

Since we assumed that the underlying link layer does not

admit collisions, we further assume that it is not possible to si-

multaneously jam multiple packets from non-interfering links

with a single narrow-band jamming transmission. Once the

assignment variables xjf have been determined, we assume

the jammers can coordinate their jamming transmissions such

that neighboring jammers do not simultaneously attempt to

jam the same packet in a common flow.

We further suppose that each jammer j can select the

jamming transmission power Pjf used to jam each packet

in flow f , which is a primary parameter in determining the

energy exhausted by j. The choice of transmission power Pjf

determines the PER q(s) (e.g. (4) or (5)) through the received

interference power I , which is related according to (1). Since

I is inversely proportional to the distance from the jammer to

the receiver, we assume that the each jammer chooses to jam a

multi-hop flow at the receiver closest to itself, thus maximizing

the effect of jamming. This minimum distance is denoted by

djf . Using (1), the interference power I can thus be expressed

as ρPjf d−α
jf . Combined with (3), this expression yields the

SINR s as a function of Pjf and djf , given by

s =
γ

1 + ρPjf d−α
jf /N

. (9)

The PER q(s) can now be expressed by the function

q(djf , Pjf ) via (9), assuming the jammer can estimate the

constants ρ, α, and N . For instance, the PER model in (4)

with β = 1 is given by

q(djf , Pjf ) = e
− ξγ

1+ρPjf d
−α
jf

/N
. (10)

This function of djf and Pjf captures the intuitive behavior

that the probability of jamming success (PER) increases as

a function of transmission power Pjf and decreases as a

function of distance djf . Furthermore, given a fixed distance

djf , the function q(djf , Pjf ) behaves according to a sigmoid,

or “s-shaped”, function [13], which is useful for optimization

techniques.

Given that jammer j is jamming with power Pjf , the

average energy per packet which is exhausted is equal to a

constant cost c times the jamming power Pjf , where c may

depend on parameters such as modulation and coding schemes,

the duty cycle of the jammer, and the packet length. The

energy expended on a particular flow is then this quantity times

the flow rate rf and the flow assignment xjf .

For a given set of deployed jammers with energy budgets

Ej and set of network flows with rates rf , the flow-jamming

attack is uniquely specified by the jammer-to-flow assign-

ment variables xjf and the jamming transmission powers

Pjf . Hence, the resource allocation problem of interest is

for jammers to collaboratively and optimally determine the

assignment variables xjf and transmission powers Pjf . An

example of a network and jammer topology to illustrate the

model is given in Figure 1.

The ability for the jammers to collaboratively optimize

depends on their ability to exchange locally sensed informa-

tion about the network flows as well as their own resource

constraints. In the case that the set of neighboring jammers Jj

exchanging information is equal to the entire set J , the opti-

mization problem is essentially a centralized optimal resource

allocation problem [14]. Such centralized solutions serve as
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Fig. 1. An example network and jammer topology is illustrated with three network flows and two jammers. Sample jamming options are indicated by the
corresponding minimum distance djf and power Pjf .

a performance baseline for comparison and are addressed

in Section V for various evaluation metrics introduced in

Section IV-B. Noting that extensive jammer communication

overhead is counter-productive in practice, we develop a

distributed algorithm for flow-jamming in Section VI.

IV. ATTACK METRICS AND CONSTRAINTS

In order to define the feasible set of allocations for the

jamming network, we present a set of constraints which must

be satisfied by the flow-jamming attack with respect to the

jammer resources and traffic flows. Additionally, we define a

set of metrics regarding the effects of the attack in terms of

network throughput and jammer resource expenditure, which

serve as objective functions for evaluation and optimization of

feasible attacks.

We let x and P respectively denote the vectors of jammer-

to-flow assignment variables xjf and jamming transmission

powers Pjf . When convenient, we refer to the sub-vectors of

variables x and P corresponding to a single flow f as xf and

Pf and to a single jammer j as xj and Pj . We let 1 denote

a vector of ones such that 1
T
x is equivalent to the `1 vector

sum norm [15] for non-negative x.

A. Attack Constraints

We formulate the base constraints on flow-jamming attacks

with respect to the jammer-to-flow assignment vector x and

power vector P . The first pair of constraints follow the

definitions of xjf and Pjf and restrict the variables to their

corresponding domains as

0 ≤ xjf ≤ 1, (11)

Pmin ≤ Pjf ≤ Pmax (12)

for all j ∈ J and f ∈ F , where Pmin and Pmax are re-

spectively the minimum and maximum jamming transmission

powers.

For a given jammer-to-flow assignment vector x and power

vector P , it is necessary that the resource of each jammer

j ∈ J does not exceed their energy budget Ej . Since the jam-

mers may be heterogeneous in terms of their energy budgets,

we normalize the resource expenditure to the fraction of their

available energy that is exhausted. The resource expenditure

is then given by

λj(xj , Pj) =
c

Ej

∑

f∈F

Pjf rfxjf . (13)

The supply constraint yielded by these fractional resource

expenditures is given by

0 ≤ λj(xj , Pj) ≤ 1 (14)

for all j ∈ J .

The jamming allocation must additionally satisfy a flow

constraint, as jammers cannot jam more flow than exists in the

network. Since jamming success is probabilistic, we formulate

the constraint in the average case by interpreting q(djf , Pjf ) as

the average fraction of jamming attempts which are successful.

Since the flow available to downstream jammers is thus

dependent on upstream and adjacent jammers, we define the

order πf (j) of each jammer j along the flow f such that

πf (ji) < πf (jk) implies that jammer ji will jam f upstream

of (at a node closer to the source than) jammer jk. Similarly,

πf (ji) = πf (jk) implies that jammers ji and jk will jam the

same node in f . We let π−1
f (m) denote the set of jammers j

with πf (j) = m. The desired flow constraint is thus given by
∑

j∈π
−1

f
(m)

xjf +
∑

j∈
⋃

i<m
π
−1

f
(i)

q(djf , Pjf )xjf ≤ 1 (15)

for all f ∈ F and for each order m. We note that if all jamming

success probabilities q(djf , Pjf ) are forced to 1, then the set

of flow constraints given by (15) for a particular flow f and

for all m reduces to the single linear constraint 1
T
xf ≤ 1.

Solving for x in this special case is equivalent to finding the

optimal partition of the jammer-to-flow assignment.

Finally, we allow for an optional constraint based on the

jammer’s desire to jam a certain portion of the network traffic.

This demand constraint on each flow f imposes a lower bound

zf on the expected fraction of throughput reduction as
∑

j∈J

q(djf , Pjf )xjf ≥ zf (16)

for all f ∈ F . While the previous constraints always allow

a feasible solution, adding the demand constraint further

restricts the domain, possibly resulting in an infeasible set of
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constraints. We again note that a special case arises when the

probabilities q(djf , Pjf ) are forced to 1. The jammer then

has the ability to impose a lower bound of zf = 1 for all

flows f , which due to (15) is satisfied only when all flows are

completely jammed.

B. Attack Evaluation Metrics

With constraints defining the feasible set, it is natural

to define metrics that analyze the effectiveness of a given

solution with respect to jammer resource expenditure and

network throughput, thus providing objective functions for

optimization. If the jamming network is locally optimizing

using a distributed protocol, it may result in a solution that

violates the overall flow or demand constraints, resulting in

undefined metrics. We consider this problem of over-allocation

alongside our distributed algorithm in Section VI.

To begin, we evaluate the extent to which the jammers in J
are able to reduce network throughput by defining the jamming

impact I(x, P ), the average fractional throughput reduction,

as

I(x, P ) =
1

|F|

∑

j∈J
f∈F

q(djf , Pjf )xjf . (17)

The average resource expenditure for the set J of jammers

is defined as the fraction λ(x, P ) given by

λ(x, P ) =
1

|J |

∑

j∈J

λj(xj , Pj). (18)

By combining (17) and (18), we can evaluate the overall

jamming impact per unit of resource expenditure. Thus, we

define the jamming gain G(x, P ) equal to the ratio of jamming

impact to resource expenditure as

G(x, P ) =
I(x, P )

λ(x, P )
. (19)

The jamming gain serves as a basis for optimizing the resource

efficiency of the attack, instead of optimizing for resource

expenditure or impact alone.

The above metrics reflect the average behavior over the set

J of jammers. However, in order to maximize the lifetime

of the jamming network [16], we are interested in measuring

the ability to fairly distribute the resource expenditure among

the jammers. We thus define the jamming resource variation

V (x, P ) equal to the relative difference between the maximum

and minimum resource expenditure as

V (x, P ) = 1 −
minj λj(xj , Pj)

maxj λj(xj , Pj)
, (20)

falling in the range [0, 1]. Large variation indicates that some

jammers are fully exhausting their energy budgets while others

have unallocated energy resources due to network geometry.

Small variation implies a balance of relative energy expendi-

ture and allows for prolonged minimum jammer lifetime and

flow-jamming attack duration.

As an alternative to imposing the demand constraint (16)

for all f ∈ F , we can incorporate a penalty function Φ(x, P )
into the metrics which measures the degree of violation of

the demand constraint. This also ensures the existence of a

feasible solution. The penalty function is thus defined as

Φ(x, P ) =
∑

f∈F



zf −
∑

j∈J

q(djf , Pjf )xjf





+

, (21)

where (y)+ = max(0, y). The demand constraint (16) can

be written equivalently in terms of the penalty function as

Φ(x, P ) = 0.

V. FLOW-JAMMING ATTACK FORMULATIONS

In order to quantify the effect of worst-case flow-jamming

attacks on network traffic, we formulate these attacks as

constrained optimization problems subject to the constraints

given in Section IV-A, using the evaluation metrics presented

in Section IV-B as objective functions. The general formula-

tion yields a non-convex optimization problem, which demon-

strates the upper bound on the effectiveness of the attack. We

then demonstrate a two-step convex optimization relaxation,

which yields a real-time approximation of the desired solution

by first solving for transmission powers P and then optimizing

the assignment x with respect to the chosen P . We discuss

the trade-offs between optimality of solutions and associated

computational overhead in Section VII.

A. Optimal Flow-Jamming Attacks

Suppose the adversary is interested in maximizing an ob-

jective function g(x, P ) that measures the performance of

the jamming attack (e.g. gain, negative resource expenditure,

etc.) and minimizing the penalty function Φ(x, P ). In order

to determine the optimal solution (x∗, P ∗) subject to the

constraints outlined in Section IV-A, the adversary must solve

the constrained optimization problem

(x∗, P ∗) = arg max
x,P

g(x, P ) − ∆Φ(x, P )

s.t. (11), (12), (14), and (15)
(22)

where ∆ ≥ 0 is a weight on the penalty Φ(x, P ) for vio-

lating the demand constraint (16). The objective and penalty

functions are optimized simultaneously, with ∆ determining

the relative importance of the two functions. A large ∆ value

would seek primarily to satisfy the demand constraint, using

g(x, P ) as a secondary criterion, with the opposite true for

small ∆ values. We present the following objective functions

g(x, P ) of interest using the metrics defined in Section IV-B.

Case 1 - Maximum Impact Attack: To maximize the

overall impact without a demand penalty, the adversary can

set g(x, P ) = I(x, P ) with ∆ = 0. Alternatively, to impose

a demand penalty, the adversary can set ∆ > 0 and zf > 0
for at least one flow f , noting that the penalty is assessed

individually for each flow f , while the overall impact is

averaged over all f ∈ F .

Case 2 - Minimum Resource Attack: To minimize the

resource expenditure λ(x, P ) required to meet the demand

constraint (16), the adversary can set g(x, P ) = −λ(x, P )
and set zf > 0 for at least one flow f to prevent the trivial

solution x = 0. For sufficiently large ∆, the optimization of
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this problem will focus on meeting the demand constraint with

the minimum resource expenditure.

Case 3 - Maximum Gain Attack: The goals of maximizing

impact and minimizing resource expenditure can be combined

in maximizing the jamming gain g(x, P ) = G(x, P ). Since

maximizing the gain does not necessarily lead to a high

jamming impact I(x, P ), demand penalties with ∆ > 0 and

zf > 0 for at least one flow f can be imposed.

Case 4 - Minimum Variation Attack: To balance the

resource expenditure over the set of jammers J , the adversary

can set g(x, P ) = V (x, P ) and set zf > 0 for at least one

flow f to prevent the trivial solution x = 0. The optimal

solution will attempt to meet the demand constraint with the

optimal balance of resources over the jammers.

B. Computational Considerations and Attack Approximations

By inspection of the constraints and objective functions, we

see that the flow constraint, demand constraint, and evaluation

metrics are dependent on q(djf , Pjf ), which is sigmoidal in

Pjf . Hence, the general optimization formulation in (22) is a

non-convex optimization problem [17], and the determination

of the optimal solution (x∗, P ∗) must thus rely on heuristic

methods. The implication is that only local optimums are

guaranteed, and the computation time for finding these points

may prohibit real-time jamming attacks.

Given the complications involved in solving non-convex

optimization problems, we present an alternative convex opti-

mization formulation. The goal of our approach is to decom-

pose the joint optimization of variables x and P into two

independent optimization problems. Fixing P yields linearity

in the constraints (14), (15), and (16), and convexity in the

objective and penalty functions (17), (18), and (21), with

respect to the optimization variable x. Hence, the two-stage

decomposition is given by

P ∗
jf = arg max

Pjf

h(Pjf )

s.t. (12)

x
∗ = arg max

x

g(x, P ∗) − ∆Φ(x, P ∗)

s.t. (11), (14), and (15),

(23)

which can be efficiently solved when the objective function

h(Pjf ) is convex in Pjf and g(x, P ∗) is convex in x. For

x, the metric of jamming gain G(x, P ) is given by ratio

of two linear functions in x, and can thus be formulated

through linear-fractional transformation as a convex optimiza-

tion problem [17]. The metric of resource variation in (20)

is generally non-convex, and motivates the need for a similar

convex objective.

Attacks aiming to minimize the resource variation V (x, P )
can be approximated by an alternative formulation which

simultaneously minimizes the maximum resource expenditure

and maximizes the minimum resource expenditure for each

jammer j, effectively tightening the upper and lower bounds

on each λj(x, P ). Hence, instead of minimizing the variation

V (x, P ), we can instead introduce a variable upper bound λU

and lower bound λL and minimize the difference λU−λL with

the modified supply constraint

λL ≤ λj(xj , Pj) ≤ λU , (24)

for all j ∈ J , with the bounding constraints 0 ≤ λL ≤ 1 and

0 ≤ λU ≤ 1.

Given that the attack formulation in (23) for the given value

of P
∗ is a convex optimization problem, the remaining piece is

to define the objective function h(Pjf ) in order to aptly fix the

value P
∗. In what follows, we discuss two heuristic methods

that can be used to define this objective function independently

of the optimization variable x.

1) Decomposition for High-Gain Attack: The first approach

seeks to find P that will maximize the gain of the flow-

jamming attack independently of x. For a single jammer j
and flow f , the contribution Ijf toward the impact I(x, P )
of the flow-jamming attack can be expressed as

Ijf = xjf q(djf , Pjf ), (25)

where djf is constant. Likewise, the fraction λjf of resources

used by jammer j to jam packets in flow f can be written as

λjf = cPjf rfxjf /Ej . (26)

Thus, the individual gain of the single jammer-to-flow assign-

ment can be measured by the ratio Ijf /λjf , which does not

depend on xjf . We thus define the objective function h(Pjf )
as

h(Pjf ) =
Ejq(djf , Pjf )

crfPjf

. (27)

The maximum value of the objective function h(Pjf ) for each

(j, f) pair can thus be individually chosen independent of

the assignment variable xjf . Due to the sigmoidal shape of

the PER function q(djf , Pjf ), the optimal power P ∗
jf can be

determined analytically [18]. Using these values for P
∗ yields

the optimal gain for a single jammer and flow, though it is

not necessarily optimal when multiple jammers and flows are

considered. It does, however, allow the assignment variables

xjf to be efficiently optimized using (23).

2) Decomposition for High-Impact Deterministic Attack:

A second approach is to fix P to maximize the impact of the

attack for each node-flow pair. If Pmax is sufficiently large,

the PER q(djf , Pjf ) can be made close enough to 1 that the

margin 1 − q(djf , Pjf ) is negligible. In this case, the choice

of objective function h(Pjf ) = Pjf yields the optimal value

P ∗
jf = Pmax, allowing for a deterministic flow-jamming attack

in which all probabilities q(djf , Pjf ) are assumed to be 1. In

this case, as mentioned in Section IV-A, the set of non-convex

flow constraints (15) for flow f and all orders m reduces

to the single linear constraint 1
T
xf ≤ 1. Additionally, this

deterministic attack allows the adversary to achieve zf = 1
in the demand constraint (16) given sufficient resources. This

greedy demand constraint simplifies the penalty function, as

the the argument y to the penalty function (y)+ is always

non-negative, implying that (z)+ = z, which results in a

linear program. Furthermore, a sufficiently high ∆ forces the

adversary to maximize the jamming impact for all jammers,

yielding a corresponding heuristic for high-impact attacks.
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VI. DISTRIBUTED FLOW-JAMMING ATTACKS

As the size of the jamming network increases, the communi-

cation and computational overhead of calculating and coordi-

nating the centralized attack algorithm becomes prohibitively

expensive. Therefore, in this section we present a distributed

flow-jamming attack in which each jammer j computes the

jamming transmission power Pjf and assignment variable xjf

using only local information. Since the optimality of the attack

is dependent on the amount of information available, which

in turn is dependent on the size chosen for the local region,

there is an inherent trade-off between communication overhead

and attack performance. However, increasing the required

amount of communication may reduce the responsiveness of

the jamming attack. In order to demonstrate the feasibility

of this attack for resource-constrained jammer networks, we

present the case where each jammer j computes only the local

variables xj and Pj using messages received from jammers in

the neighborhood Jj =
⋃

f π−1
f (πf (j)) of jammers targeting

the same nodes as j.

Prior to the jamming attack commencing, each jammer

senses its local region, determining the initial traffic flow rates

rf as well as the jamming costs of nodes incident to those

flows of interest Fj ⊆ F , and exchanges this information

with its neighborhood. After the attack has begun, a down-

stream jammer j may sense a packet rate at the nearest node

in flow f which is less than the initial packet rate rf . We thus

assume that each jammer j occasionally senses this residual

packet rate, and we let r
(t)
jf denote the sampled value of this

rate at time t. We assume that two jammers j1 and j2 with

πf (j1) = πf (j2) will sense the same rates r
(t)
j1f = r

(t)
j2f at each

time t. We additionally introduce the projected flow rate r̂jf

which acts as an estimate of the value of the residual flow

r
(t)
jf after jamming, which is determined from past allocations.

Note that initially, rf = r
(0)
jf = r̂jf .

In this distributed attack formulation, each jammer j indi-

vidually solves a constrained optimization problem involving

only their local view. Since this step involves no coordination

with neighboring nodes, this may result in jamming allocation

conflicts, where neighboring jammers assignments x sum to

more than unity, resulting in sub-optimal performance. To

compensate for this, each jammer j exchanges Pj and xj

with its neighbors, and an additional optimization problem is

solved for each set of jamming allocation conflicts.

In order to formulate the constrained optimization problem,

it is first necessary to reformulate the objective function

g(x, P ), the penalty function Φ(x, P ), and the constraints in

the scope of a single jammer. Since resource variation is not

well-defined in a single jammer context, we focus only on the

metrics of jamming impact and jamming gain. The objective

function g(x, P ) and penalty function Φ(x, P ) described in

Section V-A can be similarly re-defined as gj(x, P ) and

Φj(x, P ) for each jammer j with respect to the local flows

Fj and itself. Since only the jammer j computes only its own

allocation, the allocation constraint (11) and flow constraint

(15) can be combined by incorporating the projected flow rate

r̂jf for each flow f as

0 ≤ xjf ≤
r̂jf

rf

. (28)

The supply constraint (14) remains unchanged. Use of the

simplified formulation yields the (non-convex) optimization

problem

(x∗
j , P

∗
j ) = arg max

xj ,Pj

gj(xj , Pj) − ∆Φj(xj , Pj)

s.t. (12), (14), and (28).
(29)

We again consider the alternative convex formulation in Sec-

tion V-B allowing each jammer j to solve the two-stage

decomposition

P ∗
jf = argmax

Pjf

h(Pjf )

s.t. (12)

x
∗
j = arg max

xj

gj(xj , P
∗
j ) − ∆Φj(xj , P

∗
j )

s.t. (14) and (28).

(30)

After the optimization has been solved for all jammers in

J , each jammer j shares its allocations with its neighbors Jj .

For each flow f ∈ Fj , if the subset π−1
f (πf (j)) ⊆ Jj of

jammers violate the local flow constraints

∑

k∈π
−1

f
(πf (j))

xkf ≤
r
(t)
jf

rf

(31)

at the corresponding target node, the conflict is resolved as

follows. For each k ∈ π−1
f (πf (j)), let ekf = cP ∗

kf r
(t)
kf x∗

kf

denote the energy allocated to flow f . Each conflicting jammer

k then simultaneously uses the exchanged information to solve

the sub-problem

(x∗
f , P ∗

f ) = arg max
xf ,Pf

∑

k∈π
−1

f
(πf (j))

q(dkf , Pkf )xkf

s.t. (12), (31)

cPkf r
(t)
kf xkf ≤ ekf for each k ∈ π−1

f (πf (j))

0 ≤ xf

(32)

after which jamming commences. At the next update time t
after δ seconds, jammers sense the current residual flow rate

r
(t)
jf and use the previously sensed rate r

(t−δ)
jf to compute the

projected flow for the next set of optimizations as

r̂jf =























r
(t)
jf + r

(t−δ)
jf

∑

k∈Jj\{j}

xkf if r
(t)
jf ≤ r

(t−δ)
jf

r
(t)
jf



1 −
∑

k∈Jj\{j}

xkf



 else.

(33)

Thus, each jammer j performs the distributed flow-jamming

attack via the following iterative algorithm.

1) At time t = 0, initialize and exchange the distances

djf with jammers in Jj . Set the projected flow rates to

r̂jf = r
(0)
jf = rf .
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2) Exchange the projected flow rates r̂jf with neighbors

and solve the optimization problem in (29) or (30) using

the local information.

3) Exchange the resulting values x
∗
j and P

∗
j with jammers

in Jj .

4) Resolve any allocation conflict by solving (32).

5) Jam using the computed parameters x
∗
j and P

∗
j .

6) At the next update time t, sense the new residual flow

rate r
(t)
jf and compute the new projected flow rate using

(33), then return to step 2.

We note that certain special cases of the objective functions

h(Pjf ) and gj(x, P ) yielding linear programming or convex

optimization problems may allow for Lagrangian dual decom-

position methods to be used [19], though we do not address

these special cases in this work. A comparison of the proposed

distributed algorithm to the centralized formulation is given in

the next section.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the flow-

jamming attacks using the metrics presented in Section IV-B,

the centralized optimization problem in Section V, and the

distributed optimization formulation in Section VI. We first de-

scribe the simulation setup and then illustrate and compare the

performance of the centralized and distributed flow-jamming

attacks using various objective functions.

A. Simulation Setup

We use the following setup to obtain our simulation results.

A network comprising the set N of nodes is randomly de-

ployed over a given area, and a link is formed between any pair

of nodes within a fixed communication range. Each network

flow f ∈ F is formed between a randomly selected source

s and destination d using a randomized geometric routing

algorithm that chooses the next hop toward d from the set

of neighbors that are closer to d in terms of either distance or

hop count. As discussed in Section II-C, we assume that each

transmitting node sets its transmission power to maintain an

SNR of γ at the receiving node.

A network comprising the set J of jammers is deployed

over the same area as the nodes in N , and the neighboring

subsets Jj and Fj for each jammer j are determined by fixed

communication and sensing ranges. The path-loss constant ρ
and exponent α were set using measurements made in an

open environment. We further assume that the interference

model is given by the PER function in (10), with the constant

ξ chosen using the reference parameters m and p in (8).

Table II summarizes the default parameter values used in our

simulation study, noting that specified parameters are varied

in certain cases.

B. Comparison of Optimization Formulations

We first evaluate the performance of the centralized attack

formulation in (22) using the objective functions in Cases

1-4 in Section V-A. We illustrate the results of a single

network and jammer deployment with each of the four attacks

TABLE II
THE PARAMETERS IN OUR SIMULATION STUDY ARE SUMMARIZED.

Parameter Value

Network area 100 m × 100 m

Number of nodes |N | = 200

Network radio range 20 m

Number of network flows |F| = 20

Flow rates rf = 1500 pkts/sec

Signal-to-noise ratio γ = 5

Path-loss constant ρ = 2.5 × 10−4

Path-loss exponent α = 2.7

Receiver noise N = 1 nW

PER parameters m = 10, p = 0.9

Number of jammers |J | = 10

Jammer radio and sensing ranges 50 m

Jammer energy supply Ej = 10 mJ

Jammer cost coefficient c = 10−6

Minimum jamming power Pmin = 0 mW

Maximum jamming power Pmax = 500 mW

Jamming demand zf = 1/2

Penalty coefficient ∆ = 104
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Case 2: Min Resource
Case 3: Max Gain
Case 4: Min Variation

Fig. 2. The centralized flow-jamming attacks in Cases 1-4 presented in
Section V-A are simulated. The metrics of jamming impact I(x, P ), resource
expenditure λ(x, P ), gain G(x, P ), and resource variation V (x, P ) are
illustrated for each attack. The value of each metric is normalized by the
maximum for each group.

performed using the same data set. Figure 2 illustrates the

four values for each metric I(x, P ), λ(x, P ), G(x, P ) and

V (x, P ), with the results of each metric normalized with

respect to the largest result for ease of comparison.

As seen in Figure 2, each attack optimizes the corresponding

metric in trade for weaker performance in terms of other

evaluation metric. The maximum impact attack in Case 1

yields the highest impact I(x, P ) but also has the highest

resource expenditure λ(x, P ). The minimum resource attack

in Case 2 yields the lowest resource expenditure λ(x, P )
but also has the lowest impact I(x, P ). The maximum gain

attack in Case 3 balances the trade-off between impact and

resource expenditure, yielding an increase in both metrics over

the minimum resource attack in Case 2. We note that all

of Cases 1-3 achieve their maximum values by allowing a

subset of the jammers to do a majority of the work, leading

to a high resource variation V (x, P ). The minimum variation
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Fig. 3. The centralized flow-jamming attacks in Cases 1-2 presented in
Section V-A are simulated using both the non-convex formulations and the
convex approximations, requiring respective computational run-time of 3178
seconds, 2784 seconds, 0.7 seconds, and 0.4 seconds. The metrics of jamming
impact I(x, P ), resource expenditure λ(x, P ), gain G(x, P ), and resource
variation V (x, P ) are illustrated for each attack. The value of each metric is
normalized by the maximum for each group.

attack in Case 4 balances this workload and in a further trade-

off between impact and resource expenditure, reducing the

jamming gain but increasing the impact.

We next compare the non-convex formulation with the

performance of the centralized convex attack formulation in

(23) using the two-stage decomposition with the objective

functions in Cases 1-2. Figure 3 illustrates the normalized

results of these cases. As can be seen, the attacks using

convex formulations yield reasonable approximations of the

objective attained by the centralized solution. We note that

the computational run-times of 3178 seconds for Case 1 and

2784 seconds for Case 2 are several orders of magnitude

greater than the run-times of 0.7 seconds and 0.4 seconds

required for the convex approximations. The simulated results

and corresponding run-times for the non-convex formulations

were obtained using the glcSolve solver in the TOMLAB

Optimization Environment [20], and the results and run-times

for the convex were obtained using the CVX package for solv-

ing convex optimization problems [21]. These computation

times demonstrate that real-time jamming attacks using the

non-convex attack formulations are likely impractical. We thus

focus our attention on the use of convex approximations for

the remainder of this simulation study.

C. Effect of Parameter Variation

In order to quantify the effect of parameter variation on

flow-jamming attack performance, we next simulate attacks

using the convex approximation and distributed formulations

over a range of parameters. We illustrate the effect of varying

the number of jammers, the total jamming energy, the number

of traffic flows, and the path-loss exponent α on the resulting

jamming impact I(x, P ).
To evaluate the effect of the size of the adversarial network

on jamming efficiency, we vary the number of jammers |J |
while maintaining a fixed total jamming energy

∑

j∈J Ej .

Figure 4 illustrates the jamming impact I(x, P ) as a function
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Fig. 4. The jamming impact I(x, P ) resulting from each of the centralized
convex and distributed flow-jamming attacks is simulated for various numbers
of jammers |J |, keeping the total jamming energy

∑

j∈J
Ej constant.
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Fig. 5. The jamming impact I(x, P ) resulting from each of the centralized
convex and distributed flow-jamming attacks is simulated for various values of
the total jamming energy

∑

j∈J
Ej , keeping all other network and jamming

parameters constant.

of the number of jammers for attacks using the convex

approximations of Cases 1-4 and the distributed algorithm

in Section VI. As seen in Figure 4, dispersing the jamming

energy over a larger adversarial network increases the jamming

impact via close jammer proximity.

We demonstrate the effect of the jammers’ resource con-

straints on jamming impact by varying the total jamming

energy
∑

j∈J Ej for a fixed number of jammers. Figure 5

illustrates the jamming impact I(x, P ) as a function of the

total jamming energy for attacks using the convex approxima-

tions of Cases 1-4 and the distributed algorithm in Section VI.

As seen in Figure 5, the resulting jamming impact increases

with the total available energy, with diminishing returns as the

energy increases.

To show the effect of network flow topology, we evaluate

the effect of varying the number of network traffic flows

|F|, keeping the total traffic rate fixed. Figure 6 illustrates

the jamming impact I(x, P ) as a function of the number of

traffic flows for attacks using the convex approximations of

Cases 1-4 and the distributed algorithm in Section VI. As seen

in Figure 6, the jamming impact initially increases with the

number of flows due to the decreasing minimum distances
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Fig. 6. The jamming impact I(x, P ) resulting from each of the centralized
convex and distributed flow-jamming attacks is simulated for various numbers
of network traffic flows |F|, keeping the total flow rate

∑

f∈F
rf constant.
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Fig. 7. The jamming impact I(x, P ) resulting from each of the centralized
convex and distributed flow-jamming attacks is simulated for various values of
the path-loss exponent α, keeping all other network and jamming parameters
fixed.

between jammers and flows. However, as the number of flows

increases beyond a threshold, the jamming impact decreases

due to the traffic being spread evenly among areas not covered

by the adversarial network.

To show the effect of the physical medium, we evaluate the

effect of varying the path-loss parameter α. Figure 7 illustrates

the jamming impact I(x, P ) as a function of the path-loss

exponent for attacks using the convex approximations of Cases

1-4 and the distributed algorithm in Section VI. As seen

in Figure 7, the jamming impact decreases with increasing

path-loss exponent due to the increase in transmission power

required to maintain the interference power level. In this case,

it is also necessary for the network nodes to increase their

transmission power to maintain connectivity. We additionally

note that the performance of the distributed algorithm con-

verges to that of the centralized convex approximation as

the path-loss parameter α increases, demonstrating the highly

localized effect of jamming in the lossy environment.

VIII. CONCLUSION

In this work, we showed that cross-layer information and

optimization techniques allow a resource-constrained adver-

sary to intelligently allocate jamming resources over an ad-

versarial network. We introduced the class of flow-jamming

attacks which seek to efficiently reduce network throughput,

demonstrating the potential effects of jamming by even the

most resource-starved adversarial networks. We presented a

set of metrics to quantify the effect of flow-jamming on net-

work flows and jammer resource expenditure and developed a

constrained, non-convex optimization problem to model these

attacks. Furthermore, in order to demonstrate the feasibility of

these attacks in real-time, we proposed convex relaxations and

a distributed version of jamming attacks in this framework. We

demonstrated the potential impact of cross-layer flow-jamming

attacks through a simulation study and showed that the convex

formulations closely approximate the non-convex optimization

problems. Future work can leverage the understanding of

jamming expounded by this work to design network protocols

that are robust to cross-layer jamming attacks.
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