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Jamming-Aware Traffic Allocation for Multiple-Path

Routing Using Portfolio Selection
Patrick Tague, Sidharth Nabar, James A. Ritcey, and Radha Poovendran

Abstract—Multiple-path source routing protocols allow a data
source node to distribute the total traffic among available paths.
In this article, we consider the problem of jamming-aware source
routing in which the source node performs traffic allocation
based on empirical jamming statistics at individual network
nodes. We formulate this traffic allocation as a lossy network
flow optimization problem using portfolio selection theory from
financial statistics. We show that in multi-source networks,
this centralized optimization problem can be solved using a
distributed algorithm based on decomposition in network utility
maximization (NUM). We demonstrate the network’s ability to
estimate the impact of jamming and incorporate these estimates
into the traffic allocation problem. Finally, we simulate the
achievable throughput using our proposed traffic allocation
method in several scenarios.

Index Terms—Jamming, Multiple path routing, Portfolio se-
lection theory, Optimization, Network utility maximization

I. INTRODUCTION

Jamming point-to-point transmissions in a wireless mesh

network [2] or underwater acoustic network [3] can have

debilitating effects on data transport through the network. The

effects of jamming at the physical layer resonate through

the protocol stack, providing an effective denial-of-service

(DoS) attack [4] on end-to-end data communication. The

simplest methods to defend a network against jamming attacks

comprise physical layer solutions such as spread-spectrum

or beamforming, forcing the jammers to expend a greater

resource to reach the same goal. However, recent work has

demonstrated that intelligent jammers can incorporate cross-

layer protocol information into jamming attacks, reducing

resource expenditure by several orders of magnitude by tar-

geting certain link layer and MAC implementations [5]–[7]

as well as link layer error detection and correction protocols

[8]. Hence, more sophisticated anti-jamming methods and

defensive measures must be incorporated into higher-layer

protocols, for example channel surfing [9] or routing around

jammed regions of the network [7].

The majority of anti-jamming techniques make use of

diversity. For example, anti-jamming protocols may employ

multiple frequency bands, different MAC channels, or multiple

routing paths. Such diversity techniques help to curb the effects

of the jamming attack by requiring the jammer to act on
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multiple resources simultaneously. In this paper, we consider

the anti-jamming diversity based on the use of multiple routing

paths. Using multiple-path variants of source routing protocols

such as Dynamic Source Routing (DSR) [10] or Ad-Hoc

On-Demand Distance Vector (AODV) [11], for example the

MP-DSR protocol [12], each source node can request several

routing paths to the destination node for concurrent use. To

make effective use of this routing diversity, however, each

source node must be able to make an intelligent allocation

of traffic across the available paths while considering the

potential effect of jamming on the resulting data throughput.

In order to characterize the effect of jamming on throughput,

each source must collect information on the impact of the

jamming attack in various parts of the network. However,

the extent of jamming at each network node depends on a

number of unknown parameters, including the strategy used

by the individual jammers and the relative location of the

jammers with respect to each transmitter-receiver pair. Hence,

the impact of jamming is probabilistic from the perspective of

the network1, and the characterization of the jamming impact

is further complicated by the fact that the jammers’ strategies

may be dynamic and the jammers themselves may be mobile.

In order to capture the non-deterministic and dynamic

effects of the jamming attack, we model the packet error rate

at each network node as a random process. At a given time, the

randomness in the packet error rate is due to the uncertainty

in the jamming parameters, while the time-variability in the

packet error rate is due to the jamming dynamics and mobility.

Since the effect of jamming at each node is probabilistic,

the end-to-end throughput achieved by each source-destination

pair will also be non-deterministic and, hence, must be studied

using a stochastic framework.

In this article, we thus investigate the ability of network

nodes to characterize the jamming impact and the ability

of multiple source nodes to compensate for jamming in

the allocation of traffic across multiple routing paths. Our

contributions to this problem are as follow:

• We formulate the problem of allocating traffic across

multiple routing paths in the presence of jamming as a

lossy network flow optimization problem. We map the

optimization problem to that of asset allocation using

portfolio selection theory [13], [14].

• We formulate the centralized traffic allocation problem

for multiple source nodes as a convex optimization prob-

lem.

1We assume that the network does not make use of a jamming detection,
localization, or tracking infrastructure
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Fig. 1. An example network with sources S = {r, s} is illustrated. Each
unicast link (i, j) ∈ E is labeled with the corresponding link capacity.

• We show that the multi-source multiple-path optimal

traffic allocation can be computed at the source nodes

using a distributed algorithm based on decomposition in

network utility maximization (NUM) [15].

• We propose methods which allow individual network

nodes to locally characterize the jamming impact and

aggregate this information for the source nodes.

• We demonstrate that the use of portfolio selection theory

allows the data sources to balance the expected data

throughput with the uncertainty in achievable traffic rates.

The remainder of this article is organized as follows. In Sec-

tion II, we state the network model and assumptions about the

jamming attack. To motivate our formulation, in Section III,

we present methods that allow nodes to characterize the local

jamming impact. These concepts are required to understand

the traffic allocation optimization and the mapping of this

problem to Portfolio selection. In Section IV, we formulate

the optimal multiple path traffic allocation problem for multi-

source networks. In Section V, we evaluate the performance

of the optimal traffic allocation formulation. We summarize

our contributions in Section VI.

II. SYSTEM MODEL AND ASSUMPTIONS

The wireless network of interest can be represented by a

directed graph G = (N , E). The vertex set N represents the

network nodes, and an ordered pair (i, j) of nodes is in the

edge set E if and only if node j can receive packets directly

from node i. We assume that all communication is unicast over

the directed edges in E , i.e. each packet transmitted by node

i ∈ N is intended for a unique node j ∈ N with (i, j) ∈ E .

The maximum achievable data rate, or capacity, of each unicast

link (i, j) ∈ E in the absence of jamming is denoted by the pre-

determined constant rate cij in units of packets per second2.

We further assume that jamming is the only factor leading to

packet loss, in that network congestion and transmission errors

are managed by the underlying network protocols.

Each source node s in a subset S ⊆ N generates data

for a single destination node ds ∈ N . We assume that each

source node s constructs multiple routing paths to ds using

a route request process similar to those of the DSR [10] or

AODV [11] protocols. We let Ps = {ps1, . . . , psLs
} denote the

2We assume that this capacity is an available constant which corresponds
to the maximum packet rate for reliable transport over each wireless link. We
do not address the analysis or estimation of this link capacity parameter.

collection of Ls loop-free routing paths for source s, noting

that these paths need not be disjoint as in MP-DSR [12].

Representing each path ps` by a subset of directed link set

E , the sub-network of interest to source s is given by the

directed subgraph

Gs =

(

Ns =

Ls
⋃

`=1

{j : (i, j) ∈ ps`}, Es =

Ls
⋃

`=1

ps`

)

of the graph G.

Figure 1 illustrates an example network with sources S =
{r, s}. The subgraph Gr consists of the two routing paths

pr1 = {(r, i), (i, k), (k, m), (m, u)}

pr2 = {(r, i), (i, j), (j, n), (n, u)},

and the subgraph Gs consists of the two routing paths

ps1 = {(s, i), (i, k), (k, m), (m, t)}

ps2 = {(s, j), (j, n), (n, m), (m, t)}.

In this article, we assume that the source nodes in S have no

prior knowledge about the jamming attack being performed.

That is, we make no assumption about the jammer’s goals,

method of attack, or mobility patterns. We assume that the

number of jammers and their locations are unknown to the

network nodes. Instead of relying on direct knowledge of the

jammers, we suppose that the network nodes characterize the

jamming impact in terms of the empirical packet delivery rate.

Network nodes can then relay the relevant information to the

source nodes in order to assist in optimal traffic allocation.

Each time a new routing path is requested or an existing

routing path is updated, the responding nodes along the path

will relay the necessary parameters to the source node as

part of the reply message for the routing path. Using the

information from the routing reply, each source node s is

thus provided with additional information about the jamming

impact on the individual nodes.

III. CHARACTERIZING THE IMPACT OF JAMMING

In this section, we propose techniques for the network nodes

to estimate and characterize the impact of jamming and for

a source node to incorporate these estimates into its traffic

allocation. In order for a source node s to incorporate the

jamming impact in the traffic allocation problem, the effect of

jamming on transmissions over each link (i, j) ∈ Es must be

estimated and relayed to s. However, to capture the jammer

mobility and the dynamic effects of the jamming attack, the

local estimates need to be continually updated. We begin

with an example to illustrate the possible effects of jammer

mobility on the traffic allocation problem and motivate the use

of continually updated local estimates.

A. Illustrating the Effect of Jammer Mobility on Network

Throughput

Figure 2 illustrates a single-source network with

three routing paths p1 = {(s, x), (x, b), (b, d)},

p2 = {(s, y), (y, b), (b, d)} and p3 = {(s, z), (z, b), (b, d)}.

The label on each edge (i, j) is the link capacity cij indicating
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Fig. 2. An example network that illustrates a single-source network with
three routing paths. Each unicast link (i, j) is labeled with the corresponding
link capacity cij in units of packets per second. The proximity of the jammer
to nodes x and y impedes packet delivery over the corresponding paths, and
the jammer mobility affects the allocation of traffic to the three paths as a
function of time.

the maximum number of packets per second (pkts/s) which

can be transported over the wireless link. In this example,

we assume that the source is generating data at a rate of

300 pkts/s. In the absence of jamming, the source can

continuously send 100 pkts/s over each of the three paths,

yielding a throughput rate equal to the source generation rate

of 300 pkts/s. If a jammer near node x is transmitting at

high power, the probability of successful packet reception,

referred to as the packet success rate, over the link (s, x)
drops to nearly zero, and the traffic flow to node d reduces to

200 pkts/s. If the source node becomes aware of this effect,

the allocation of traffic can be changed to 150 pkts/s on

each of paths p2 and p3, thus recovering from the jamming

attack at node x. However, this one-time re-allocation by the

source node s does not adapt to the potential mobility of the

jammer. If the jammer moves to node y, the packet success

rate over (s, x) returns to one and that over (s, y) drops

to zero, reducing the throughput to node d to 150 pkts/s,

which is less than the 200 pkts/s that would be achieved

using the original allocation of 100 pkts/s over each of the

three paths. Hence, each node must relay an estimate of its

packet success rate to the source node s and the source must

use this information to reallocate traffic in a timely fashion

if the effect of the attack is to be mitigated. The relay of

information from the nodes can be done periodically or at the

instants when the packet success rates change significantly.

These updates must be performed at a rate comparable to the

rate of the jammer movement to provide an effective defense

against the mobile jamming attack.

Next, suppose the jammer continually changes position

between nodes x and y, causing the packet success rates

over links (s, x) and (s, y) to oscillate between zero and

one. This behavior introduces a high degree of variability into

the observed packet success rates, leading to a less certain

estimate of the future success rates over the links (s, x) and

(s, y). However, since the packet success rate over link (s, z)
has historically been more steady, it may be a more reliable

option. Hence, the source s can choose to fill p3 to its capacity

and partition the remaining 100 pkts/s equally over p1 and

p2. This solution takes into account the historic variability
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Fig. 3. The estimation update process is illustrated for a single link. The
estimate µij(t) is updated every T seconds, and the estimation variance

σ2
ij

(t) is computed only every Ts seconds. Both values are relayed to relevant

source nodes every Ts seconds.

in the packet success rates due to jamming mobility. In the

following section, we build on this example, providing a set

of parameters to be estimated by network nodes and methods

for the sources to aggregate this information and characterize

the available paths on the basis of expected throughput.

B. Estimating Local Packet Success Rates

We let xij(t) denote the packet success rate over link

(i, j) ∈ E at time t, noting that xij(t) can be computed

analytically as a function of the transmitted signal power of

node i, the signal power of the jammers, their relative distances

from node j, and the path loss behavior of the wireless

medium. In reality, however, the locations of mobile jammers

are often unknown, and, hence, the use of such an analytical

model is not applicable. Due to the uncertainty in the jamming

impact, we model the packet success rate xij(t) as a random

process and allow the network nodes to collect empirical data

in order to characterize the process. We suppose that each

node j maintains an estimate µij(t) of the packet success rate

xij(t) as well as a variance parameter σ2
ij(t) to characterize

both the uncertainty in the estimate and the variability in the

process3 xij(t).
We propose the use of a recursive update mechanism

allowing each node j to periodically update the estimate µij(t)
as a function of time. As illustrated in Figure 3, we suppose

that each node j updates the estimate µij(t) after each update

period of T seconds and relays the estimate to each relevant

source node s after each update relay period of Ts � T
seconds. The shorter update period of T seconds allows each

node j to characterize the variation in xij(t) over the update

relay period of Ts seconds, a key factor in determining the

variance σ2
ij(t).

Similar to the approach in [9] which uses the packet delivery

ratio (PDR) to detect jamming attacks, we use the observed

PDR to compute the estimate µij(t). During the update period

represented by the time interval [t − T, t], each node j can

record the number rij([t−T, t]) of packets received over link

(i, j) and the number vij([t − T, t]) ≤ rij([t − T, t]) of valid

3At a time instant t, the estimate µij(t) and estimation variance σ2
ij

(t)
define a random variable describing the current view of the packet success rate.
This random variable can be appropriately modeled as a beta random variable
[16], though the results of this article do not require such an assumption.
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packets which pass an error detection check4. The PDR over

link (i, j) for the update period [t−T, t], denoted PDRij([t−
T, t]), is thus equal to the ratio

PDRij([t − T, t]) =
vij([t − T, t])

rij ([t − T, t])
. (1)

This PDR can be used to update the estimate µij(t) at the

end of the update period. In order to prevent significant

variation in the estimate µij(t) and to include memory of

the jamming attack history, we suggest using an exponential

weighted moving average (EWMA) [17] to update the estimate

µij(t) as a function of the previous estimate µij(t − T ) as

µij(t) = αµij(t − T ) + (1 − α)PDRij([t − T, t]), (2)

where α ∈ [0, 1] is a constant weight indicating the relative

preference between current and historic samples.

We use a similar EWMA process to update the variance

σ2
ij(t) at the end of each update relay period of Ts seconds.

Since this variance is intended to capture the variation in the

packet success rate over the last Ts seconds, we consider the

sample variance Vij([t − Ts, t]) of the set of packet delivery

ratios computed using (1) during the interval [t − Ts, t] as

Vij([t − Ts, t]) =V ar {PDRij([t − kT, t− kT + T ]) :

k = 0, . . . , dTs/T e − 1} . (3)

The estimation variance σ2
ij(t) is thus defined as a function of

the previous variance σ2
ij(t − Ts) as

σ2
ij(t) = βσ2

ij (t − Ts) + (1 − β)Vij ([t − Ts, t]), (4)

where β ∈ [0, 1] is a constant weight similar to α in (2).

The EWMA method is widely used in sequential estimation

processes, including estimation of the round-trip time (RTT)

in TCP [18]. We note that the parameters α in (2) and β in (4)

allow for design of the degree of historical content included

in the parameter estimate updates, and these parameters can

themselves be functions α(t) and β(t) of time. For example,

decreasing the parameter α allows the mean µij(t) to change

more rapidly with the PDR due to jammer mobility, and

decreasing the parameter β allows the variance σ2
ij(t) to give

more preference to variation in the most recent update relay

period over historical variations. We further note that the up-

date period T and update relay period Ts between subsequent

updates of the parameter estimates have significant influence

on the quality of the estimate. In particular, if the update

period Ts is too large, the relayed estimates µij(t) and σij(t)
will be outdated before the subsequent update at time t + Ts.

Furthermore, if the update period T at each node is too large,

the dynamics of the jamming attack may be averaged out over

the large number of samples rij([t−T, t]). The update periods

T and Ts must thus be short enough to capture the dynamics

of the jamming attack. However, decreasing the update period

Ts between successive updates to the source node necessarily

increases the communication overhead of the network. Hence,

4In the case of jamming attacks which prevent the receiving node j from
detecting transmissions by node i, additional header information can be
periodically exchanged between nodes i and j to achieve the convey the
total number of transmissions, yielding the same overall effect.

there exists a trade-off between performance and overhead in

the choice of the update period Ts. We note that the design

of the update relay period Ts depends on assumed path-loss

and jammer mobility models. The application-specific tuning

of the update relay period Ts is not further addressed in this

article.

Using the above formulation, each time a new routing path

is requested or an existing routing path is updated, the nodes

along the path will include the estimates µij(t) and σ2
ij(t) as

part of the reply message. In what follows, we show how the

source node s uses these estimates to compute the end-to-end

packet success rates over each path.

C. Estimating End-to-End Packet Success Rates

Given the packet success rate estimates µij(t) and σ2
ij(t)

for the links (i, j) in a routing path ps`, the source s needs

to estimate the effective end-to-end packet success rate to

determine the optimal traffic allocation. Assuming the total

time required to transport packets from each source s to the

corresponding destination ds is negligible compared to the

update relay period Ts, we drop the time index and address

the end-to-end packet success rates in terms of the estimates

µij and σ2
ij . The end-to-end packet success rate ys` for path

ps` can be expressed as the product

ys` =
∏

(i,j)∈ps`

xij , (5)

which is itself a random variable5 due to the randomness in

each xij . We let γs` denote the expected value of ys` and ωs`m

denote the covariance of ys` and ysm for paths ps`, psm ∈ Ps.

Due to the difficulty in inferring correlation between estimated

random variables, we let the source node s assume the packet

success rates xij as mutually independent, even though they

are likely correlated. Under this independence assumption, the

mean γs` of ys` given in (5) is equal to the product of estimates

µij as

γs` =
∏

(i,j)∈ps`

µij , (6)

and the covariance ωs`m = E[ys`ysm] − E[ys`]E[ysm] is

similarly given by

ωs`m =
∏

(i,j)∈ps`⊕psm

µij

∏

(i,j)∈ps`∩psm

(

σ2
ij + µ2

ij

)

− γs`γsm.

(7)

In (7), ⊕ denotes the exclusive-OR set operator such that an

element is in A ⊕ B if it is in either A or B but not both.

The covariance formula in (7) reflects the fact that the end-

to-end packet success rates ys` and ysm of paths ps` and psm

with shared links are correlated even when the rates xij are

independent. We note that the variance ω2
s` of the end-to-end

rate ys` can be computed using (7) with ` = m.

Let γs denote the Ls × 1 vector of estimated end-to-end

packet success rates γs` computed using (6), and let Ωs

denote the Ls ×Ls covariance matrix with (`, m) entry ωs`m

computed using (7). The estimate pair (γs,Ωs) provides the

5If the xij are modeled as beta random variables, the product ys` is well-
approximated by a beta random variable [19].
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sufficient statistical characterization of the end-to-end packet

success rates for source s to allocate traffic to the paths in

Ps. Furthermore, the off-diagonal elements in Ωs denote the

extent of mutual overlap between the paths in Ps.

IV. OPTIMAL JAMMING-AWARE TRAFFIC ALLOCATION

In this section, we present an optimization framework for

jamming-aware traffic allocation to multiple routing paths in

Ps for each source node s ∈ S. We develop a set of constraints

imposed on traffic allocation solutions and then formulate a

utility function for optimal traffic allocation by mapping the

problem to that of portfolio selection in finance. Letting φs`

denote the traffic rate allocated to path ps` by the source node

s, the problem of interest is thus for each source s to determine

the optimal Ls×1 rate allocation vector φs subject to network

flow capacity constraints using the available statistics γs and

Ωs of the end-to-end packet success rates under jamming.

A. Traffic Allocation Constraints

In order to define a set of constraints for the multiple-path

traffic allocation problem, we must consider the source data

rate constraints, the link capacity constraints, and the reduction

of traffic flow due to jamming at intermediate nodes. The

traffic rate allocation vector φs is trivially constrained to the

non-negative orthant, i.e. φs ≥ 0, as traffic rates are non-

negative. Assuming data generation at source s is limited to

a maximum data rate Rs, the rate allocation vector is also

constrained as 1
T φs ≤ Rs. These non-negativity and data rate

constraints define the convex space Φs of feasible allocation

vectors φs characterizing rate allocation solutions for source

s.

Due to jamming at nodes along the path, the traffic rate is

potentially reduced at each receiving node as packets are lost.

Hence, while the initial rate of φs` is allocated to the path,

the residual traffic rate forwarded by node i along the path

ps` may be less than φs`. Letting p
(i)
s` denote the sub-path

of ps` from source s to the intermediate node i, the residual

traffic rate forwarded by node i is given by y
(i)
s` φs`, where y

(i)
s`

is computed using (5) with ps` replaced by the sub-path p
(i)
s` .

The capacity constraint on the total traffic traversing a link

(i, j) thus imposes the stochastic constraint
∑

s∈S

∑

`:(i,j)∈ps`

φs`y
(i)
s` ≤ cij (8)

on the feasible allocation vectors φs. To compensate for the

randomness in the capacity constraint in (8), we replace the

residual packet success rate y
(i)
s` with a function of its expected

value and variance. The mean γ
(i)
s` and variance (ω

(i)
s` )2 of

y
(i)
s` can be computed using (6) and (7), respectively, with ps`

replaced by the sub-path p
(i)
s` . We thus replace y

(i)
s` in (8) with

the statistic γ
(i)
s` + δω

(i)
s` , where δ ≥ 0 is a constant which can

be tuned based on tolerance to delay resulting from capacity

violations6. We let Ws denote the |E|×Ls weighted link-path

6The case of δ = 0 corresponds to the average-case constraint and will

lead to increased queueing delay whenever y
(i)
s`

> γ
(i)
s`

. Increasing the value
of δ improves the robustness to variations around the mean but decreases the
amount of traffic which can be allocated to the corresponding path.

incidence matrix for source s with rows indexed by links (i, j)
and columns indexed by paths ps`. The element w((i, j), ps`)
in row (i, j) and column ps` of Ws is thus given by

w ((i, j), ps`) =

{

min
{

1, γ
(i)
s` + δω

(i)
s`

}

, if (i, j) ∈ ps`

0, otherwise.
(9)

Letting c denote the |E| × 1 vector of link capacities cij

for (i, j) ∈ E , the link capacity constraint in (8) including

expected packet loss due to jamming can be expressed by the

vector inequality
∑

s∈S

Wsφs ≤ c, (10)

which is a linear constraint in the variable φs. We note that

this statistical constraint formulation generalizes the standard

network flow capacity constraint corresponding to the case of

xij = 1 for all (i, j) ∈ E in which the incidence matrix Ws

is deterministic and binary.

B. Optimal Traffic Allocation Using Portfolio Selection Theory

In order to determine the optimal allocation of traffic to the

paths in Ps, each source s chooses a utility function Us(φs)
that evaluates the total data rate, or throughput, successfully

delivered to the destination node ds. In defining our utility

function Us(φs), we present an analogy between traffic allo-

cation to routing paths and allocation of funds to correlated

assets in finance.

In Markowitz’s portfolio selection theory [13], [14], an

investor is interested in allocating funds to a set of financial

assets that have uncertain future performance. The expected

performance of each investment at the time of the initial

allocation is expressed in terms of return and risk. The return

on the asset corresponds to the value of the asset and measures

the growth of the investment. The risk of the asset corresponds

to the variance in the value of the asset and measures the

degree of variation or uncertainty in the investment’s growth.

We describe the desired analogy by mapping this allocation

of funds to financial assets to the allocation of traffic to routing

paths. We relate the expected investment return on the financial

portfolio to the estimated end-to-end success rates γs and the

investment risk of the portfolio to the estimated success rate

covariance matrix Ωs. We note that the correlation between

related assets in the financial portfolio corresponds to the

correlation between non-disjoint routing paths. The analogy

between financial portfolio selection and the allocation of

traffic to routing paths is summarized below.

Portfolio Selection Traffic Allocation

Funds to be invested Source data rate Rs

Financial assets Routing paths Ps

Expected Asset return Expected Packet success rate γs`

Investment portfolio Traffic allocation φs

Portfolio return Mean throughput γT
s φs

Portfolio risk Estimation variance φT
s Ωsφs

As in Markowitz’s theory, we define a constant risk-aversion

factor ks ≥ 0 for source s ∈ S to indicate the preference

for source s to allocate resources to less risky paths with
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lower throughput variance. This risk-aversion constant weighs

the trade-off between expected throughput and estimation

variance. We note that each source s can choose a different

risk-aversion factor, and a source may vary the risk-aversion

factor ks with time or for different types of data. For a given

traffic rate allocation vector φs, the expected total throughput

for source s is equal to the vector inner product γT
s φs. The

corresponding variance in the throughput for source s due to

the uncertainty in the estimate γs is equal to the quadratic term

φT
s Ωsφs. Based on the above analogy making use of portfolio

selection theory, we define the utility function Us(φs) at

source s as the weighted sum

Us(φs) = γT
s φs − ksφ

T
s Ωsφs. (11)

Setting the risk-aversion factor ks to zero indicates that the

source s is willing to put up with any amount of uncertainty

in the estimate γs of the end-to-end success rates to maximize

the expected throughput. The role of the risk-aversion factor

is thus to impose a penalty on the objective function propor-

tional to the uncertainty in the estimation process, potentially

narrowing the gap between expected throughput and achieved

throughput. The cases of ks = 0 and ks > 0 are compared in

detail in Section V.

Combining the utility function in (11) with the set of con-

straints defined in Section IV-A yields the following jamming-

aware traffic allocation optimization problem which aims to

find the globally optimal traffic allocation over the set S of

sources.

Optimal Jamming-Aware Traffic Allocation

φ∗ = argmax
{φs}

∑

s∈S

γT
s φs − ksφ

T
s Ωsφs

s.t.
∑

s∈S

Wsφs ≤ c

1
T φs ≤ Rs for all s ∈ S,

0 ≤ φs for all s ∈ S.

(12)

Since the use of centralized protocols for source routing

may be undesirable due to excessive communication overhead

in large-scale wireless networks, we seek a distributed formu-

lation for the optimal traffic allocation problem in (12).

C. Optimal Distributed Traffic Allocation using NUM

In the distributed formulation of the algorithm, each source

s determines its own traffic allocation φs, ideally with minimal

message passing between sources. By inspection, we see

that the optimal jamming-aware flow allocation problem in

(12) is similar to the network utility maximization (NUM)

formulation of the basic maximum network flow problem [15].

We thus develop a distributed traffic allocation algorithm using

Lagrangian dual decomposition techniques [15] for the NUM

problem.

The dual decomposition technique is derived by decoupling

the capacity constraint in (10) and introducing the link prices

λij corresponding to each link (i, j). Letting λ denote the

|E| × 1 vector of link prices λij , the Lagrangian L(φ, λ) of

the optimization problem in (12) is given by

L(φ, λ) =
∑

s∈S

γT
s φs − ksφ

T
s Ωsφs + λT

(

c −
∑

s∈S

Wsφs

)

.

(13)

The distributed optimization problem is solved iteratively

using the Lagrangian dual method as follows. For a given set

of link prices λn at iteration n, each source s solves the local

optimization problem

φ∗
s,n = arg max

φs∈Φs

(

γT
s − λT

nWs

)

φs − ksφ
T
s Ωsφs. (14)

The link prices λn+1 are then updated using a gradient descent

iteration as

λn+1 =

(

λn − a

(

c −
∑

s∈S

Wsφ
∗
s,n

))+

, (15)

where a > 0 is a constant step size and (v)+ = max(0, v)
is the element-wise projection into the non-negative orthant.

In order to perform the local update in (15), sources must

exchange information about the result of the local optimization

step. Since updating the link prices λ depends only on the

expected link usage, sources must only exchange the |E| × 1
link usage vectors us,n = Wsφ

∗
s,n to ensure that the link

prices are consistently updated across all sources. The iter-

ative optimization step can be repeated until the allocation

vectors φs converge7 for all sources s ∈ S, i.e. when

‖φ∗
s,n −φ∗

s,n−1‖ ≤ ε for all s with a given ε > 0. The above

approach yields the following distributed algorithm for optimal

jamming-aware flow allocation.

Distributed Jamming-Aware Traffic Allocation

Initialize n = 1 with initial link prices λ1.

1. Each source s independently computes

φ∗
s,n = arg max

φs∈Φs

(

γT
s − λT

nWs

)

φs − ksφ
T
s Ωsφs.

2. Sources exchange the link usage vectors

us,n = Wsφ
∗
s,n.

3. Each source locally updates link prices as

λn+1 =

(

λn − a

(

c −
∑

s∈S

us,n

))+

.

4. If ‖φ∗
s,n − φ∗

s,n−1‖ > ε for any s,

increment n and go to step 1.

Given the centralized optimization problem in (12) and

the above distributed formulation for jamming-aware traffic

allocation, a set of sources with estimated parameters γs and

Ωs describing the effect of a jamming attack can proactively

compensate for the presence of jamming on network traffic

flow.

7In order to prevent premature termination at a local minimum, sources
could additionally exchange a flag fs indicating whether or not local con-
vergence has been attained such that all sources continue to iterate until all
convergence flags have been set.
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D. Computational Complexity

We note that both the centralized optimization problem in

(12) and the local optimization step in the distributed algo-

rithm are quadratic programming optimization problems with

linear constraints [14]. The computational time required for

solving these problems using numerical methods for quadratic

programming is a polynomial function of the number of

optimization variables and the number of constraints.

In the centralized problem, there are
∑

s∈S |Ps| optimiza-

tion variables corresponding to the number of paths available

to each of the sources. The number of constraints in the

centralized problem is equal to the total number of links

|
⋃

s∈S Es|, corresponding to the number of link capacity

constraints. In the distributed algorithm, each source iteratively

solves a local optimization problem, leading to |S| decoupled

optimization problems. Each of these problems has |Ps| opti-

mization variables and |Es| constraints. Hence, as the number

of sources in the network increases, the distributed algorithm

may be advantageous in terms of total computation time. In

what follows, we provide a detailed performance evaluation

of the methods proposed in this article.

V. PERFORMANCE EVALUATION

In this section, we simulate various aspects of the proposed

techniques for estimation of jamming impact and jamming-

aware traffic allocation. We first describe the simulation setup,

including descriptions of the assumed models for routing

path construction, jammer mobility, packet success rates, and

estimate updates. We then simulate the process of computing

the estimation statistics µij(t) and σ2
ij(t) for a single link

(i, j). Next, we illustrate the effects of the estimation process

on the throughput optimization, both in terms of optimization

objective functions and the resulting simulated throughput.

Finally, we simulate a small-scale network similar to that in

Figure 2 while varying network and protocol parameters in

order to observe performance trends.

A. Simulation Setup

The simulation results presented herein are obtained using

the following simulation setup. A network of nodes is de-

ployed randomly over an area, and links are formed between

pairs of nodes within a fixed communication range. The set

S of source nodes is chosen randomly, and the destination

node ds corresponding to each source s ∈ S is randomly

chosen from within the connected component containing s.

Each routing path in the set Ps is chosen using a randomized

geometric routing algorithm which chooses the next hop

toward the destination ds from the set of neighboring nodes

that are closer to ds in terms of either distance or hop-count.

Nodes transmit using fixed power Pt.

We simulate the case of continuous jamming at a fixed

power Pj using omnidirectional antennas. The mobility of

each jammer j consists of repeatedly choosing a random

direction θj ∈ [0, 2π) and a random speed vj ∈ [0, Vmax]
and moving for a random amount of time τj > 0 at the

chosen direction and speed. At each instant in time, the packet

error rate is a function of the transmission powers Pt and

TABLE I
A SUMMARY OF PARAMETERS USED IN OUR SIMULATION STUDY IS

PROVIDED.

Parameter Value

Network area 100 m × 100 m

Radio range 20 m

Number of sources |S| = 1

Number of nodes |N | = 100

Maximum number of paths |Ps| ≤ 5

Transmission power Pt = 20 mW

Link capacity cij = 1000 pkts/s

Jamming transmission power Pj = 50 mW

Maximum jammer mobility speed Vmax = 5 m/s

Packet error rate parameter ξ = 1.1

Path-loss constant ρ = 2.5 × 10−4

Path-loss exponent ν = 2.7

Receiver noise N = 1 nW

EWMA coefficients α = 0.7, β = 0.3

Update period T = 0.05 s

Update relay period Ts = 1 s

Pj , the distance dtr from the transmitter to the receiver, and

the distances djr from each jammer to the receiver. The

packet error rate is set equal to e−ξs where s is the signal

to interference and noise ratio (SINR) s = S/(I + N). The

SINR is computed as a function of the received signal power

S = ρPtd
−ν
tr from the transmitter, the received interference

power I = ρ
∑

j Pjd
−ν
jr from the jammers, and the noise N

at the receiver. The constant ξ > 0 determines the relationship

between the SINR and the packet error rate, and the constants

ρ > 0 and ν ≥ 2 characterize the path-loss of the wireless

medium. Table I summarizes the parameter values used in our

simulation study.

We are interested in comparing the performance of several

methods of traffic allocation using the given network and

jamming models. We define the following cases of interest.

Case I - Ignoring jamming: Each source s chooses the alloca-

tion vector φs using the standard maximum-flow formulation

corresponding to µij = 1 and σ2
ij = 0 for all links (i, j). This

case is included in order to observe the improvement that can

be obtained by incorporating the jamming statistics.

Case II - Maximum throughput: The allocation vectors φs

are chosen using the jamming-aware optimization problem in

(12) with risk-aversion constant ks = 0. This case incorporates

the estimates µij , updated every Ts seconds, in the sequential

allocation problem.

Case III - Minimum risk-return: Similar to Case II with

ks > 0. This case incorporates the estimates µij and uncer-

tainty parameters σ2
ij to balance the mean throughput with the

estimation variance.

Case IV - Oracle model: Each source s continuously opti-

mizes the allocation vector φs using the true values of the

packet success rates xij . This impractical case is included in

order to illustrate the effect of the estimation process.

Our simulations are performed using a packet simulator

which generates and allocates packets to paths in a fixed

network according to the current value of the allocation vector
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Fig. 4. The estimate µij(t) is simulated and compared to the packet success rate xij(t) for varying values of the (a) update relay period Ts, (b) update
period T , and (c) EWMA coefficient α.
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Fig. 5. The estimation variance σ2
ij

(t) is simulated for varying values of the (a) update relay period Ts, (b) update period T , and (c) EWMA coefficient β.

φs. Each trial of the simulation compares several of the above

cases using the same jammer mobility patterns over an interval

of 20 s.

B. Simulation of Estimation Process

We first simulate the process of computing the estimate

µij(t) and the variance σ2
ij(t) over a single link (i, j). Figure 4

shows the true packet success rate xij(t) with the estimate

µij(t) for various parameter values, and Figure 5 shows the

estimation variance σ2
ij(t) for various parameter values. By

inspection of Figure 4, we see that a shorter update relay

period Ts and a longer update period T yield a more consistent

estimate µij(t) with less variation around the true value of

xij(t). In addition, a smaller value of α allows the estimate

µij(t) to reflect rapid changes in xij(t), while a larger value

of α smooths the estimate µij(t) over the sampled PDRs.

Similarly, by inspection of Figure 5, we see that a shorter

update relay period Ts and a longer update period T yield a

lower estimation variance σ2
ij(t). In addition, a smaller value

of the EWMA coefficient β allows the estimation variance

σ2
ij(t) to primarily reflect recent variations in the sampled

PDRs, while a larger value of β incorporates PDR history

to a greater degree.

C. Network Simulation

We next simulate the jamming-aware traffic allocation using

the estimated parameters µij(t) and σ2
ij(t) as described in

Section V-A. To observe the effects of the jamming-aware

formulation and the estimation process, we first compare the

optimal expected throughput and the actual achieved through-

put for Case I, Case II, and Case IV in Figure 6. Figure 6(a)

illustrates the expected throughput γT
s φs and throughput

variance φT
s Ωsφs over time, and Figure 6(b) illustrates the

resulting throughput yT
s φs over time. By inspection, we see

that both cases II and IV consistently outperform the maximum

flow approach of Case I, showing the benefit of incorporating

the jamming statistics into the allocation problem. In addition,

we see that the effect of the estimation error on the optimal

value in Case II is noticeable, but relatively small, compared

to that of the oracle model of Case IV, indicating that the

estimation process effectively characterizes the uncertainty in

the jamming impact.

To observe the effect of the risk-aversion constant ks, we

next compare the optimal expected throughput and the actual

achieved throughput for Case II with ks = 0 to that of Case III

with ks > 0 in Figure 7. Figure 7(a) illustrates the expected

throughput γT
s φs and throughput variance φT

s Ωsφs over time,

and Figure 7(b) illustrates the resulting throughput yT
s φs over

time. By inspection, we see that Case III exhibits a significant

reduction in the throughput variance σ2
ij(t) compared to that

of Case II, resulting in achievable throughput much closer to

the expected throughput. This reduction in variance in Case

III sometimes comes in trade for a reduction in both expected

and achieved throughput compared to that of Case II, as seen

over the intervals from 3 to 7 seconds and 16 to 20 seconds in

Figure 7. However, due to the higher variance in Case II, Case

III can sometimes out-perform Case II in terms of achieved

throughput, as seen over the interval from 8 to 16 seconds in

Figure 7(b).

D. Simulation of Parameter Dependence

We next evaluate the effect of varying network and protocol

parameters in order to observe the performance trends using
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Fig. 6. Case I with µij(t) = 1 and σ2
ij(t) = 0 for all (i, j), case II with the estimated µij(t) and σ2

ij(t), and case IV with the true packet success rates

xij(t) are compared in terms of the (a) optimal expected throughput γT
s φs and the (b) actual achieved throughput yT

s φs. The error bars in (a) indicate one
standard deviation σij(t) above and below the mean, limited by the network capacity of 5000 pkts/s.
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Fig. 7. Case II with ks = 0 is compared to case III with ks > 0 using the estimated µij(t) and σ2
ij(t) in terms of the (a) expected throughput γT

s φs and

the (b) achieved throughput yT
s φs. The error bars in (a) indicate one standard deviation σij(t) above and below the mean, bounded by the network capacity

of 5000 pkts/s.

the jamming-aware traffic allocation formulation. In particular,

we are interested in the effect of the update relay period

Ts and the maximum number of routing paths |Ps| on the

performance of the flow allocation algorithm. In order to

compare trials with different update times or numbers of

paths, we average the simulated results over each simulated

interval of 20 s, yielding a single value for each trial. In

addition to comparing the expected throughput for various

parameter values, we compute the Sharpe ratio [20], given

by the ratio of the expected throughput γT
s φs to the standard

deviation
√

φT
s Ωsφs, measuring the throughput-per-unit-risk

achievable by the different methods. To ensure that the ob-

served trends are due to the intended parameter variation, we

simulate a simple network topology similar to that given in

Figure 2. Figure 8 illustrates the trends in expected throughput,

throughput variance, and Sharpe ratio as the update relay

period Ts increases. Since increased update times lead to

increased variance, as previously seen in Figure 5(a), the

Sharpe ratio decreases with increasing Ts. Figure 9 illustrates

similar figures as the number of paths |Ps| increases, showing

that the achieved throughput increases as the routing path

diversity increases.

VI. CONCLUSION

In this article, we studied the problem of traffic allocation in

multiple-path routing algorithms in the presence of jammers

whose effect can only be characterized statistically. We have

presented methods for each network node to probabilistically

characterize the local impact of a dynamic jamming attack

and for data sources to incorporate this information into

the routing algorithm. We formulated multiple-path traffic

allocation in multi-source networks as a lossy network flow

optimization problem using an objective function based on

portfolio selection theory from finance. We showed that this

centralized optimization problem can be solved using a dis-

tributed algorithm based on decomposition in network utility

maximization (NUM). We presented simulation results to

illustrate the impact of jamming dynamics and mobility on

network throughput and to demonstrate the efficacy of our
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Fig. 8. The expected throughput is computed for Cases I, II, and III with
varying update relay period Ts. In (a), the expected throughput γT

s φs is

illustrated with error bars to indicate one standard deviation
√

φT
s Ωsφs

around the mean, limited by the network capacity of 5000 pkts/s. In (b),

the Sharpe ratio γT
s φs/

√

φT
s Ωsφs is illustrated.
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Fig. 9. The expected throughput is computed for Cases I, II, and III with
varying number of routing paths |Ps|. In (a), the expected throughput γT

s φs

is illustrated with error bars to indicate one standard deviation
√

φT
s Ωsφs

around the mean, limited by the network capacity of 5000 pkts/s. In (b),

the Sharpe ratio γT
s φs/

√

φT
s Ωsφs is illustrated.

traffic allocation algorithm. We have thus shown that multiple-

path source routing algorithms can optimize the throughput

performance by effectively incorporating the empirical jam-

ming impact into the allocation of traffic to the set of paths.
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