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Abstract

In this work, we investigate the security of anonymous
wireless sensor networks. To lay down the foundations of a
formal framework, we propose a new model for analyzing
and evaluating anonymity in sensor networks. The novelty
of the proposed model is twofold: first, it introduces the
notion of “interval indistinguishability” that is stronger
than existing notions; second, it provides a quantitative
measure to evaluate anonymity in sensor networks. The
significance of the proposed model is that it captures a
source of information leakage that cannot be captured
using existing models. By analyzing current anonymous
designs under the proposed model, we expose the source of
information leakage that is undetectable by existing models
and quantify the anonymity of current designs. Finally, we
show how the proposed model can lead to a general and
intuitive direction for improving the anonymity of current
designs.
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1. Introduction

In sensor networks, small devices (called sensor nodes)
are employed to capture relevant events and report col-
lected data. The type of events nodes are designed to
capture and report is an application dependent. Applica-
tions where sensor nodes can be utilized range from taking

Figure 1. An example of a sensor networks deployed in
a battlefield.

patients’ vital signs in controlled indoor environments
to collecting tactical military information in hostile war
zones.

A topic that has been drawing increasing research atten-
tion in wireless sensor networks is source location privacy
[1]–[9]. (Source anonymity and source location privacy
will be used synonymously for the rest of the paper.) Given
the adversary’s knowledge of the locations of sensor nodes
in the network, determining the individual nodes reporting
the occurrence of real events can translate to the exposure
of the location of the real events themselves. Applications
in which hiding the occurrence of real events can be
critical include, but are not limited to, the deployment of
sensor nodes in battlefields as a means of coordinating
strategic military actions, and the classic Panda-Hunter
Game, where a malicious hunter monitors an existing
animal tracking network to determine the location of the
endangered panda [1], [2], [7], [8].

In such applications, at which source location privacy
is of critical importance, special attention must be paid
to the design of the node transmission algorithm so that
monitoring sensor nodes does not reveal critical source
information. One of the major challenges for the source
anonymity problem is that it cannot be solved using tra-



Figure 2. An illustration of the intuitive approach. The
node is programmed to transmit fake messages so that
real events are hidden within the fake transmissions.

ditional cryptographic primitives. Encrypting nodes’ trans-
missions, for instance, can hide the contents of plaintext
messages, but the mere existence of ciphertexts is indica-
tive of information transmission.

In the presence of a global adversary, who is able
to monitor the traffic of the entire network, routing-
based solutions has been shown to leak private source
information [6]. An intuitive approach to report a real
event without revealing, to a global adversary, its location
information is to program nodes to transmit fake mes-
sages even if there are no real events to be reported [6].
When real events occur, they can be embedded within the
transmissions of fake messages. This intuitive approach,
however, does not completely solve the location privacy
problem. When fake transmissions are scheduled according
to some probabilistic distribution, statistical analysis can
be used to distinguish between real and fake transmissions
if real events are transmitted as they arrive. This intuitive
approach is illustrated in Figure 2.

By realizing the problem with the intuitive approach
of Figure 2, the solution becomes trivial. As opposed
to transmitting real events as they occur, they can be
transmitted instead of the next scheduled fake one. For
example, sensor nodes can be programmed to transmit
an encrypted message every minute. If there is no event
to report, the node transmits a fake message. If a real
event occurs within a minute from the last transmission,
it must be delayed until exactly one minute after the last
transmission has passed. This algorithm, trivially, provides
source anonymity since an adversary monitoring a node
will observe one transmission every minute and, assuming
the semantic security of the underlying encryption, the
adversary has no means of distinguishing between fake
and real events. Figure 3 depicts an example of this trivial
solution.

The trivial solution, however, has a major drawback:
reporting real events must be delayed until the next sched-
uled transmission. (In the above example, in which a

Figure 3. An illustration of the trivial solution. Nodes
are programmed to transmit fake messages according to
some pre-defined probabilistic distribution. When a real
event occurs, it must be delayed until the next scheduled
fake transmission before it can be sent out.

transmission is scheduled every minute, the average latency
of transmitting real events will be half a minute.) When
real events have time-sensitive information, this latency
might be unacceptable.

Reducing the latency of transmitting real events by
adopting a more frequent scheduling algorithm is im-
practical for most sensor network applications. This is
mainly because sensor nodes are battery powered and, in
many applications, are unchargeable (for example, they
maybe deployed in an unreachable or hostile environment).
Consequently, a more frequent scheduling algorithm can
exhaust nodes’ batteries rather quickly, rendering sensor
nodes useless.

Furthermore, a transmission scheduling based on any
pre-specified probabilistic distribution, not necessarily de-
terministic as in the above example, will suffer the same
problem discussed above: slower rates lead to longer
latencies and faster rates lead to shorter battery lives.
Consequently, practical solutions are designed to achieve
the objective of source anonymity under two main con-
straints: minimizing latency and maximizing the lifetime
of sensors’ batteries.

To make things even more complex, the arrival rate
and distribution of real events can be time varying and
unknown in advance. Therefore, in the trivial solution, no
pre-specified probabilistic distribution for fake transmis-
sions can satisfy both constraints for arbitrary time-variant
distribution of real event arrivals.

The current state of the art in designing anonymous
sensor networks works as follows. In the absence of real
events, nodes are programmed to transmit independent
identically distributed (iid) fake messages according to a
certain distribution with a certain rate. However, unlike
the trivial solution, real events are transmitted as soon as
possible (earlier than the next pre-scheduled fake trans-
missions) under the following condition: the distribution
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of the entire message transmissions (fake and real) of
each node is “statistically” similar to the transmission of
only fake messages. (Statistical similarity is achieved via
the use of statistical goodness of fit tests1 to determine
the transmission time of real events.) That is, to a global
adversary monitoring the network, the time between any
two transmissions (real or fake) will follow the same
distribution of fake messages only. The current consensus
is that this approach provides dependable solutions for
the source anonymity problem in wireless sensor networks
[7]–[11].

The above solution is better illustrated through the
following example. Consider designing nodes to transmit
fake messages according to a specific distribution. Fur-
ther, let nodes store a sliding window of times between
consecutive transmissions (inter-transmission times), say
X1,X2, · · · ,Xk, where Xi is the random variable repre-
senting the inter-transmission time between the ith and the
i+1st transmissions and k is the length of the sliding win-
dow. Now, when a real event occurs, its inter-transmission
time, denoted by Xk+1, is defined to be the smallest
value such that the sequence X2,X3, · · · ,Xk+1 passes
some statistical goodness of fit tests. That is, an adversary
observing the sequence of inter-transmission times will
observe a sequence that is statistically indistinguishable
from an iid sequence of random variables following the
pre-specified distribution of fake transmissions.

However, continuing in this fashion will skew the mean
since nodes always favor shorter inter-transmission times
to transmit real events. To adjust the mean, the next
inter-transmission time following a real event, Xk+2 in
this example, must be stretched out. Again, Xk+2 is
determined so that the sequence of inter-transmission times
in the sliding window, X3,X4, · · · ,Xk+2, satisfies the
same statistical goodness of fit tests used to compute
Xk+1. Therefore, an adversary observing the sensor node
cannot distinguish between real and fake transmissions
[7]–[11]. Figure 4 illustrates an instance of this approach.

In this paper, we take a closer look at the current state
of the art in designing anonymous sensor networks. The
driving motive behind this work is the key observation that,
although an adversary might not be able to distinguish
between real and fake transmissions, there still exists a
source of information leakage that can affect the security
of such designs. The inability to detect the source of
information leakage in the current approach is not a result
of false statements claimed in previous proposals; the lack
of a formal framework that properly models anonymity
in wireless sensor networks is the main reason for the
inability to detect such a vulnerability. The main purpose

1. A statistical goodness of fit test is a statistical test that determines
if a sequence of data samples follows a certain probabilistic distribution.

Figure 4. An illustration of the current state of the
art in designing anonymous systems. Nodes transmit
fake messages according to a pre-specified probabilis-
tic distribution and maintain a sliding window of inter-
transmission times. When a real event occurs, it is
transmitted as soon as possible under the condition
that the samples in the sliding window maintain the
designed distribution. The transmission following the
real transmission is delayed to maintain the mean of
the distribution of inter-transmission times in the sliding
window.

of this work is to provide such a framework.

1.1. Our Contributions

We summarize our contributions by the following
points.
• We detect a source of information leakage in the

current designs of anonymous systems that can un-
dermine their security.

• We introduce the new notion of interval indistin-
guishability to analyze anonymity in wireless sensor
networks. The new notion is stronger than existing
notions and captures the source of information leak-
age that is undetectable by existing notions.

• We propose a quantitative measure to evaluate
anonymity in sensor networks.

• We analyze, both analytically and via simulation,
the current approach of designing anonymous sensor
networks and quantify the amount of information
leakage when the current approach is analyzed under
the proposed model.

• Inspired by the new model, we suggest an approach
for improving the anonymity of existing designs.

We emphasize that the goal of this work is not to propose
a specific design for anonymous sensor network. This
work aims to provide a general, security oriented, model
for analyzing and evaluating the security of anonymous
systems.

The rest of the paper is organized as follows. In Section
2 we discuss some related works. In Section 3 we provide
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a formal definition for the proposed model and discuss
how it properly captures the anonymity problem. Section
4 is devoted to the analysis of the current approach using
the proposed model. In Section 5, we suggest a new
direction for solving the anonymity problem in wireless
sensor networks. We conclude the paper in Section 6.

2. Related Work

Source location privacy in sensor networks is part of
a broader area, the design of anonymous communication
systems. The foundation for this field was laid by Chaum
in [12], and since then has become a very active area of
research. In particular, topics related to location anonymity
have been discussed by Reed et al. in [13], who introduced
the idea of preserving anonymity through onion routing,
and by Gruteser and Grunwald in [14], who discussed ways
to provide anonymity in location-based services, such as
Global Positioning Systems.

In wireless sensor networks, much of the work in
source location privacy assumes a passive, local eaves-
dropper operating close to the base station. Privacy is
maintained in such models through anonymous routing.
The location privacy problem was first introduced in [1],
[2]. The local eavesdropper model was introduced and the
authors demonstrated that existing routing methods were
insufficient to provide location privacy in this environment.
They also proposed a phantom flooding scheme to solve
the problem. In [3], Xi et al. proposed a new random walk
routing method that reduces energy consumption at the cost
of increased delivery time. Path confusion has also been
proposed as an anonymity-preserving routing scheme by
Hoh and Gruteser in [4]. In [5], Ouyang et al. developed
a scheme in which cycles are introduced at various points
in the route, potentially trapping the adversary in a loop
and forcing the adversary to waste extra resources.

However, in the global adversarial model, in which the
adversary has access to all transmissions in the network,
routing-based schemes are insufficient to provide location
privacy [6]. The global adversarial model was first intro-
duced by Mehta et al. in [6]. The authors motivated the
problem, analyzed the security of existing routing-based
schemes under the new model, and proposed two new
schemes. In the first scheme, some sensor nodes act as
fake sources by mimicking the behavior of real events. For
example, if the network is deployed to track an animal, the
fake sources could send fake messages with a distribution
resembling that of the animal’s movements. This assumes
some knowledge of the time distribution of real events,
an assumption we do not make. In the second scheme,
packets (real and fake) are sent either at constant intervals
or according to a predetermined probabilistic schedule.
Although this scheme provides perfect location privacy, it

also introduces undesirable performance characteristics, in
the form of either relatively high latency or relatively high
communication and computational overhead. The scheme
of [7] was proposed to address this latency/overhead trade-
off.

In [7], Shao et al. introduced the notion of statistically
strong source anonymity in which a global adversary, who
is able to monitor the traffic in the entire network, is
unable to infer source locations by performing statistical
analysis on the observed traffic. In order to realize their
notion of statistical anonymity, nodes are programmed to
transmit fake events according to pre-specified distribution.
More specifically, after the transmission of every fake
event, the node draws an exponentially distributed random
variable t ∼ Exp(λ), where λ is the pre-specified rate
of the exponential distribution. The node then waits for
t time units and then transmits another fake event. That
is, in the absence of real event transmissions, an adversary
monitoring the sensor node will observe inter-transmission
times that are iid exponentials with mean µ = 1/λ.

Upon the occurrence of real events, the goal of a sensor
node is to transmit them while maintaining the exponential
distribution of the inter-transmission times. Obviously, if
nodes delay their transmission of real events to the next
scheduled fake transmission, no statistical test can be used
to distinguish between real and fake events (since inter-
transmission times are kept exponential iid’s with the same
rate). The goal, however, is to minimize the latency of
reporting real events while maintaining statistical indistin-
guishability between real and fake transmissions.

To reduce the latency, the authors of [7] proposed
the following procedure: let imdi represent the inter-
transmission time between the ith and the i + 1st trans-
missions. Assume a real event has occurred after the trans-
mission of the ith event. Given {imd1, imd2, . . . , imdi},
imdi+1, the time after the transmission of the ith event the
node must wait before it can transmit the real event, is de-
termined as follows: imdi+1 is the smallest positive value
such that the sequence {imd1, imd2, . . . , imdi, imdi+1}
passes the Anderson-Darling (A-D) goodness of fit test
[15] for a sequence of iid exponentials with mean µ.

Observe, however, that on average imdi+1 < µ since
imdi+1 is, by definition, the minimum value that passes
the test. Therefore, continuing in this fashion will cause
the mean of the entire sequence to skew away from desired
mean.

To solve the problem of mean deviation described
above, the scheme in [7] includes a mean recovery algo-
rithm. The mean recovery algorithm outputs a delay δ and
the time between the transmission of a real event and the
following event (fake or real) is set to imdi+2 = t + δ,
where t ∼ Exponential(λ). The scheme in [7] is designed
so that the sequence {imd1, . . . , imdn}, where n is the
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last transmitted message, always passes the A-D goodness
of fit test. The authors also published a complementary
paper [8] that minimizes the overall communication over-
head by having some nodes act as proxies that filter out
fake messages. This approach makes schemes based on
generating fake messages more attractive by mitigating the
performance problems.

Shao et al. also consider the problem of an active
adversary in [16]. Their adversary also has the ability to
perform node compromise attacks, and they develop tools
to prevent the adversary from gaining access to event data
stored in a node even if the adversary possesses that node’s
secret keys. Li et al. presented a survey of anonymity in
sensor networks [9].

3. Modeling Anonymity

In this section we introduce our anonymity model for
wireless sensor networks. Intuitively, anonymity should be
measured by the amount of information about sources’
locations an adversary can infer by monitoring the sensor
network. The challenge, however, is to come up with
an appropriate model that captures all possible sources
of information leakage and a proper way of quantifying
anonymity in different systems.

We start here by stating our assumptions about the
network structure and the adversary’s capabilities. We
will then describe the currently used notion for source
anonymity in sensor networks and point out a source of
information leakage that is undetectable by this notion.
Then, we will give a formal definition of a stronger
anonymity notion that, in addition to capturing the sources
of information leakage captured by the current notion,
captures the source of information leakage that was missed
by the current notion. Finally, we propose a quantitative
measure for evaluating the security of anonymous sensor
networks.

3.1. Network Model

We assume that communications take place in a network
of energy constrained sensor nodes. That is, nodes are
assumed to be powered with unchargeable batteries, thus,
conserving nodes energy is a design requirement. Nodes
are also equipped with a semantically secure encryption al-
gorithm,2 so that computationally bounded adversaries are
unable to distinguish between real and fake transmission
by means of cryptographic tests. When a node detects an

2. In cryptography, semantic security implies that, given a ciphertext,
unauthorized users without the knowledge of the decryption key have no
means of distinguishing between two plaintexts in which one of them
corresponds to the observed ciphertext [17].

event, it places information about the event in a message
and broadcasts an encrypted version of the message.

3.2. Adversarial Model

Our adversary is similar to the one considered in [6],
[7], in that it is external, passive, and global. By external,
we mean that the adversary does not control any of the
nodes in the network and also has no control over the real
event process. By passive, we mean that the adversary is
capable of eavesdropping on the network, active attacks
are not considered. By global, we mean that the adversary
can simultaneously monitor the activity of all nodes in the
network. In particular, the adversary can observe the timing
and origin of every transmitted message.

As opposed to a global adversary, a local adversary is
only capable of eavesdropping over a small area, typically
the area surrounding the base station, and attempts to
determine the source of traffic by examining the packet
routing information or trying to follow the packets back to
their source. Protocols that attempt to disguise the source
of traffic through routing, while highly secure against local
adversaries, do not defend against global adversaries [6].

We also assume that the adversary is capable of storing
a large amount of message traffic data and performing
complex statistical tests. Furthermore, the adversary is
assumed to know the distribution of fake message trans-
missions. The only information unknown to the adversary
is the timing when real events occur.

3.3. Event Indistinguishability (EI)

Currently, anonymity in sensor networks is modeled by
the adversary’s ability to distinguish between individual
real and fake transmissions by means of statistical tests.
That is, given a series of nodes’ transmissions, the ad-
versary should not be able to distinguish, with significant
confidence, which transmission carries real information
and which transmissions is fake.

Consider an adversary observing the sensor network
over multiple time intervals, without being able to dis-
tinguish between individual fake and real nodes’ trans-
missions. Assume, however, that during a certain time
interval the adversary is able to notice a change in the
statistical behavior of transmission times of a certain node
in the network. This distinguishable change in transmission
behavior can be indicative of the existence of real activities
reported by that node, even though the adversary was
unable to distinguish between individual transmissions.

For example, consider a sensor network deployed in a
battlefield. For a certain time interval, there was no activity
in the vicinity of a sensor node the enemy is monitoring.
Therefore, by design, the node has been transmitting fake
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messages for the duration of that time interval. Assume
now that a moving platoon is in the vicinity of this
node and the node started to report location information
about the moving platoon. The enemy dose not need to
distinguish between individual transmissions to infer the
existence of the moving platoon. All that is needed is the
ability to distinguish between the time interval when no
real activity is reported and the time interval when the
platoon is in the vicinity of the sensor node.

Consequently, in many real life applications, modeling
source anonymity in sensor networks by the adversary’s
ability to distinguish between individual event transmis-
sions is insufficient to guarantee location privacy. This
fact calls for a stronger model to properly address source
anonymity in sensor networks.

Before we proceed to the new anonymity model, we
formally define the currently adopted notion to model
anonymity in sensor networks, namely, event indistin-
guishability.

Definition 1 (Event Indistinguishability - ‘EI’): Events
reported by sensor nodes are said to be indistinguishable
if the inter-transmission times between them cannot be
distinguished with significant confidence by means of
statistical tests.

3.4. Interval Indistinguishability (II)

The main goal of source location privacy systems is
to hide the existence of real events. This implies that,
an adversary observing a sensor node during different
time intervals, at which some of the intervals include the
transmission of real events and the others do not, should
not be able to determine with significant confidence which
of the intervals contain real traffic.

This leads to the notion of interval indistinguishability
that will be essential for our anonymity formalization.

Definition 2 (Interval Indistinguishability - ‘II’):
Let IF denotes a time interval with only fake event
transmissions (call it the “fake interval”), and IR denotes
a time interval with some real event transmissions (call
it the “real interval”). The two time intervals are said
to be statistically indistinguishable if the distributions of
inter-transmission times during these two intervals cannot
be distinguished by means of statistical tests.

To model interval indistinguishability, we propose the
following game between a challenger C (the system de-
signer) and an adversary A.

Game 1 (Modeling Interval Indistinguishability):

1) C draws a bit b ∈ {0, 1} uniformly at random.
2) C chooses two intervals I0 and I1, in which Ib is a

real interval and the other one is fake.
3) C gives I0 and I1 to A.

4) A makes any statistical test of her choice on I0 and
I1 and outputs a bit b′.

5) If b′ = b, A wins the game.

With Definition 2 and Game 1, we aim to find a
security measure that can formally quantify the anonymity
of different designs. Let Pr[b′ = b] be the adversary’s
probability of winning Game 1 and identifying the real
interval. We quantify the anonymity of the sensor network
by

Λ := 1− 2
(

Pr[b′ = b]− 1

2

)
. (1)

Observe that, in the best case, the adversary cannot
do better than a random guess, i.e., Pr[b′ = b] = 1/2
leading to Λ = 1 (absolute anonymity). In the worst
case, Pr[b′ = b] = 1 leading to Λ = 0 (no anonymity).
Any other probability of winning the game will give an
anonymity measure in the interval [0, 1]. Therefore, the
anonymity measure of equation (1) is well-defined.

Given Definitions 1 and 2, the relation between event
indistinguishability (EI) and interval indistinguishability
(II) is stated as follows.

Lemma 1: Interval Indistinguishability ⇒ Event Indis-
tinguishability.

Proof: Assume there exist a system satisfying in-
terval indistinguishability but does not satisfy event in-
distinguishability. Since real and fake transmissions are
distinguishable, given a fake interval and a real interval,
the real interval can be identified as the one with the
real transmission; a contradiction to the hypothesis that
the system satisfies interval indistinguishability. Therefore,
if intervals are indistinguishable, then individual events
within them must also be indistinguishable.

To show that the proposed notion is stronger than the
current one, it remains to show that event indistinguisha-
bility does not imply interval indistinguishability. Section
4 proves this fact by providing a counter example.

With the above definition of interval indistinguishabil-
ity, we introduce the notion of Λ-anonymity in sensor
networks.

Definition 3 (Λ-anonymity): A wireless sensor network
is said to be Λ-anonymous if it satisfies two conditions

1) in different stages of each interval, inter-
transmission times are indistinguishable,

2) the anonymity of the system, as defined in equation
(1), is at least Λ.

The first condition in Definition 3 is different than event
indistinguishability. It merely means that an adversary
cannot identify the beginning, the middle, nor the end
of any interval. It is necessary to ensure that there is no
distinguishable transition region between intervals. If such
a transition exists, it can lead to anonymity breach.
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Table 1. A list of used terms and notations.

Ei The random variable representing the event reported in the ith transmission
Xi The random variable representing the inter-transmission time between the ith and the i + 1st transmissions
IF A fake interval: an interval consisting of fake events only
IR A real interval: an interval containing some real event transmissions

short inter-transmission times inter-transmission times that are shorter than the mean of the pre-defined distribution
long inter-transmission times inter-transmission times that are longer than the mean of the pre-defined distribution

short-long pattern a short inter-transmission time followed by a long inter-transmission time

4. Analysis of EI-based Approaches

In this section we analyze, using our proposed model,
systems that were shown to be secure under event indis-
tinguishability; i.e., EI-based systems. We provide theoret-
ical analysis showing that real and fake intervals can be
statistically distinguishable. Then, we simulate an existing
scheme to show that the simulation results coincide with
the analytical results, and to quantify the anonymity of
the simulated design. We start by a recapitulation of EI-
based approaches for providing source anonymity in sensor
networks.

4.1. EI-based Approaches

Recall that nodes are designed to transmit fake mes-
sages according to a pre-specified distribution. Further-
more, nodes store a sliding window of times between con-
secutive transmissions, say X1,X2, · · · ,Xk, where Xi

is the random variable representing the time between the
ith and the i+ 1st transmissions and k is the length of the
sliding window. When a real event occurs, its transmission
time, represented by Xk+1, is defined to be the smallest
value such that the sequence X2,X3, · · · ,Xk+1 passes
some statistical goodness of fit tests. That is, an adversary
observing the sequence of inter-transmission times will
observe a sequence that is statistically indistinguishable
from an iid sequence of random variables with the pre-
specified distribution of fake message transmissions.

However, by continuing in this fashion, the mean will
skew since nodes always favor shorter intervals to transmit
real events. To adjust the mean, the next transmission fol-
lowing a real one, Xk+2 in this example, will be delayed.
Again, the delay is determined so that the sequence in the
sliding window satisfies some statistical goodness of fit
test. Consequently, as shown in [7], an adversary observing
the sensor node cannot differentiate between real and fake
transmissions.

4.2. Theoretical Interval Distinguishability

As discussed in Section 3, when an adversary can
distinguish between real and fake intervals, source location

can be exposed, even if the adversary cannot distinguish
between individual transmissions. In what follows, we give
theoretical analysis of interval indistinguishability in EI-
based systems.

Let Xi be the random variable representing the time
between the ith and the i + 1st transmissions and let
E[Xi] = µ. We will demonstrate an adversary’s strategy of
detecting the source location by investigating two intervals,
a fake interval and a real one.

4.2.1. Fake Interval (IF ). In fake intervals, inter-
transmission times are iid random variables. That is, the
Xi’s are iid’s with mean µ. Therefore, during any fake
interval IF , for any Xi−1,Xi ∈ IF ,

E
[
Xi |Xi−1 < µ

]
= µ. (2)

4.2.2. Real Interval (IR). Let Ei be the random variable
representing the event reported in the ith transmission.
Then, Ei can take the values R and F , where R denotes
a real event transmission and F denotes a fake one. Since
in general scenarios the distribution of inter-arrival times
of real events can be varying and unknown beforehand,
we will assume that Ei can take the values R and F with
arbitrary probabilities.

Recall that the time between the transmission of a real
event and its preceding fake one is usually shorter than the
mean µ by design (to reduce latency). Recall further that
the time between the transmission of a real event and its
successive one is usually longer than µ by design (to adjust
the ensemble mean). That is, during any real interval IR,
for any Xi−1,Xi ∈ IR,

E
[
Xi |Xi−1 < µ,Ei = R

]
> µ, (3)

and,
E
[
Xi |Xi−1 < µ,Ei = F

]
= µ, (4)

by design. Using equations (3) and (4) we get,

E
[
Xi |Xi−1 < µ

]
= E

[
Xi |Xi−1 < µ,Ei = R

]
· Pr[Ei = R]

+ E
[
Xi |Xi−1 < µ,Ei = F

]
· Pr[Ei = F ] (5)

> µ · Pr[Ei = R] + µ · Pr[Ei = F ] (6)
= µ. (7)
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Figure 5. An illustration of interval distinguishability
in the current approach. Real events are transmitted
sooner than what is determined by the probabilistic
distribution, while the transmission following the real
event is later than what is determined by the probabilistic
distribution to fix the mean of the pre-defined distribu-
tion.

Therefore, by equations (2) and (7), shorter inter-
transmission times followed by longer inter-transmission
times are most likely to occur in real intervals than fake in-
tervals. This suggests the following strategy to distinguish
between fake and real intervals: given two time intervals
I0 and I1, in which one of them is real and the other
one is fake, the adversary counts the number of short
followed by long inter-transmission times, simply called
short-long patterns for the remainder of the paper. (An
inter-transmission time is said to be short if its length is
shorter than the mean µ, and is said to be long if it is
longer than µ.) The interval that has more counts of short-
long patterns is the real interval. Figure 5 illustrates the
pattern of short-long inter-transmission times.

4.3. Case Study

In this section, we study the scheme appeared in [7],
an instance of the EI-based approachs, and evaluate its
anonymity using the proposed model. In the scheme of [7],
inter-transmission times between fake transmissions are iid
Exponentials with mean µ. The Anderson-Darling (A-D)
goodness of fit test [15] is used to determine the time for
transmitting real events without violating the exponential
distribution of fake transmissions.3 Similarly, the A-D test
is also used to implement the mean recovery algorithm.
The authors of [7] used different statistical tests, such as
the Kolmogorov-Smirnov (K-S) test [18], to show that their
design satisfies event indistinguishability.

3. The Anderson-Darling goodness of fit test is a statistical test that,
given a sequence of data samples and a desired degree of accuracy,
determines whether the samples follow a certain probabilistic distribution
with a certain parameter, within the specified degree of accuracy, or not.

4.3.1. Experimental Setup. For a reliable analysis of [7],
we use the same parameters appeared in their paper. The
inter-transmission times between fake message transmis-
sions are set to be iid exponentials with mean 20 seconds.
Real events arrive according to a Poisson Arrival process
with mean 1/20. The two parameters of the A-D test are
the significance level of the test and the allowed deviation
from the mean which are set to 0.05 and 0.1, respectively.

The experiment was run for 10, 000 independent trials.
Each trial consists of two intervals, a real one IR and a
fake one IF . Every trial starts with a “warmup” period,
where 200 iid exponential random variables with mean 20
are drawn to constitute a backlog to be used in the A-D
goodness of fit test. Then real events start arriving and they
are transmitted according to procedure described earlier
(please refer to [7] for detailed description and algorithms).
Each real interval consists of 50 real events. After the 50th

real event has been transmitted, the fake interval starts for
the same amount of time the real interval lasted.

4.3.2. Simulation Results. After running the above ex-
periment for 10, 000 trials, and comparing the number
of short-long patterns in fake and real intervals for each
trial, the following results were found. Out of the 10, 000
trials, real intervals have more short-long patterns than
fake intervals in 6, 818 trials; real intervals have less short-
long patterns than fake intervals in 2, 076 trials; and real
intervals have the same number of short-long patterns as
fake intervals in 1, 106 trials.

4.3.3. Λ-anonymity Interpretation. Recall that, by equa-
tions (2) and (7), a short-long pattern is most likely to
occur in real intervals than fake ones. Consequently, real
intervals are likely to have more short-long patterns than
fake intervals. Indeed, our simulation results coincide with
equations (2) and (7).

Consider Game 1 for analyzing interval indistinguisha-
bility. Given two intervals I0 and I1 at which one of them
is real and one is fake, let the adversary’s strategy for
deciding which is which is as follows. Count the number
of short-long patterns in each interval. If both intervals
have the same number of short-long patterns, the adversary
decides randomly. If one interval has more short-long
patterns than the other, the adversary chooses it as the real
interval. With this strategy, given the simulation results
provided above, the adversary’s probability of correctly
identifying real intervals, without resorting to complicated
statistical tests, is 0.737. That is, the anonymity of the
system is only Λ = 0.526.

5. New Direction to Improve Anonymity

So far, we have shown, in Section 4, that EI-based
designs, although shown to provide location privacy under
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existing models, do not provide high anonymity when
analyzed under the proposed model. In this section, we
suggest a new general method for designing transmission
algorithms that can improve the anonymity of sensor
networks. We will start by describing an overview of
our approach. Then, we will provide a concrete example
on how to apply the proposed approach on the EI-based
scheme analyzed in the previous section and quantitatively
compare the anonymity of the original design with the
improved one. The example is not meant to be a proposed
solution,4 it merely illustrates how the new direction can
be applied to an existing EI-based design and quantifies
the improvement in anonymity that can be achieved.

5.1. Overview

As can be seen from the analysis of the EI-based
approach [7] in Section 4, inter-transmission times during
fake intervals are iid’s, while inter-transmission times
during real intervals are neither independent nor identi-
cally distributed. This observation was the main factor
behind increasing the adversary’s chances in distinguishing
between fake and real intervals in EI-based approaches.
In theory, the only way to guarantee that a sequence of
random variables is statistically indistinguishable from a
given iid sequence is to generate it as an iid sequence with
the same distribution. This implies that the only EI-based
solution that guarantees absolute anonymity is the trivial
solution of transmitting every real event in place of its
successive scheduled fake message. As discussed earlier,
however, the trivial solution does not minimize latency for
arbitrarily distributed arrival of real events.

The notion of interval indistinguishability, apart from
being the key point enabling the analysis of EI-based
approaches, suggests a different approach for the design
of anonymous sensor network systems. Observe that Def-
inition 2 of interval indistinguishability does not impose
any requirement, such as iid, on the distribution of inter-
transmission times during fake intervals. That is, the inter-
transmission times during fake intervals can have any
arbitrary distribution. Therefore, designing fake intervals
with the distribution that is easiest to emulate during real
intervals is the most logical solution. In fact, since the
arrival distribution of real events is generally not iid, it is
only natural to design fake intervals with non iid inter-
transmission times. This idea opens the door for more
solutions as it gives more flexibility for system designers.

We suggest the following method for transforming EI-
based designs into II-based to improve their anonymity.
Instead of designing the transmission algorithm of real
events based on a pre-fixed distribution for fake intervals,

4. The proposal of an efficient anonymous system based on our
framework will be the focus of a future work.

the system can be designed as follows: given the desired
algorithm for handling real events, fake intervals can be
designed accordingly. That is, we suggest introducing the
same correlation of inter-transmission times during real
intervals to inter-transmission times during fake intervals.
In what follows, we give a detailed example of how to
apply this approach on the system analyzed in Section 4.3.

5.2. Concrete Example

Consider the same algorithm for real event transmission
appeared in [7]. That is, when real events occur, their
transmission time is computed as the minimum value that
passes the A-D goodness of fit test. Furthermore, the
transmission following a real event is delayed to adjust
the ensemble mean. The fundamental problem here is that
inter-transmission times in real intervals are correlated by
design, and the example in Section 4.3 illustrates how this
correlation can be exploited to reveal location information.

Therefore, as opposed to the scheme of [7], we design
fake intervals to be as close as possible to real intervals.
We suggest the generation of “dummy events” during fake
intervals that are to be handled as if they are real events.
That is, dummy events are generated independently from
fake messages and, upon their arrival, their transmission
times are determined according to the used statistical test.
The purpose of this procedure is to introduce the same
correlation of inter-transmission times during real intervals
to the inter-transmission times during fake intervals.

However, recall that if the distribution of the arrival
of real events is known, it is easy to design anonymous
systems. Therefore, it is critical that the generation of the
dummy events is independent of the distribution of real
events. That is, the suggested approach must be doable
without prior knowledge of the distribution of real events.
The example below shows how the same tool used to
design EI-based schemes, statistical goodness of fit tests,
can be utilized to implement the suggested approach.

5.2.1. Setup. We adopted the same real interval transmis-
sion algorithm and parameters of [7] described in Section
4.3. That is, real events arrive according to a Poisson
process with mean 1/20 and the inter-transmission times
between fake messages are iid exponentials with mean
20 seconds. During fake intervals, fake messages are also
scheduled as iid exponentials with mean 20 seconds.

To resemble real intervals, however, we generated
dummy events according to iid Gaussian inter-arrival times
with mean 10 seconds and a variance of 150. Note the
distinction between fake messages and dummy events.
Fake messages are the ones transmitted to hide the ex-
istence of real transmissions, while dummy events are the
ones generated, during fake intervals only, to resemble the
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Table 2. A quantitative comparison of the three schemes, the EI-based approach of [7], our II-based application of [7], and
the trivial solution of sending real events instead of their successive scheduled fake transmissions. IR > IF denotes more
short-long patterns in real intervals, IR < IF denotes more short-long patterns in fake intervals, while IR = IF denotes
equal short-long patterns in real and fake intervals. The simulation results are obtained from 10, 000 independent trials.

IR > IF IR < IF IR = IF Anonymity of the system (Λ)
EI-based approach 6, 818 2, 076 1, 106 0.526

Our II-based approach 4, 566 4, 272 1, 162 0.971
Trivial solution 4, 385 4, 318 1, 297 0.993

existence of real events. Furthermore, note that the inter-
arrival distribution of dummy events is purposely different
than the inter-arrival distribution of real events to count
for the general case of unknown distribution of real events
inter-arrival times.

Dummy events are handled as if they are real events.
That is, in fake intervals, fake messages are transmitted
according to iid exponential inter-transmission times and,
upon the arrival of a dummy event, its transmission time
is determined to satisfy the A-D goodness of fit test for a
sequence of iid exponentials with mean 20 seconds.

Remark 1: As we mentioned earlier, this example is not
meant to be a practical solution to the anonymity problem
as it requires nodes to perform the A-D test even in the
absence of real events. The example merely illustrates how
one can transform the EI-based schemes of [7] into an II-
based. In fact, the A-D test is proposed in the EI-based ap-
proach of [7] to make the overall transmission statistically
similar to the iid distribution of pure fake transmissions.
Since in our model fake intervals are not restricted to
be iid, we believe that real and fake intervals can be
similar without resorting to computationally cumbersome
statistical tests.

Therefore, we do not provide thorough simulation anal-
ysis showing the effect of different distributions of dummy
events. However, there is a supporting evidence suggesting
that changing the distribution of dummy events will not
have a considerable effect on anonymity of the system. To
see this, recall that it has been shown in [7] that using
statistical goodness of fit tests to handle real events trans-
missions make the overall transmission indistinguishable
from the desired pre-specified distribution, regardless of
the distribution of inter-arrival times of real events.

5.2.2. Simulation Results. After running the above ex-
periment for 10, 000 trials, and comparing the number
of short-long patterns in fake and real intervals for each
trial, the following results were found. Out of the 10, 000
trials, real intervals have more short-long patterns than
fake intervals in 4, 566 trials, real intervals have less short-
long patterns than fake intervals in 4, 272 trials, and real
intervals have the same number of short-long patterns as
fake intervals in 1, 162 trials.

To serve as a reference point for our anonymity com-
parison, we also simulated the trivial solution, where real
events are transmitted instead of their successive scheduled
fake messages. Out of the 10, 000 trials, real intervals
have more short-long patterns than fake intervals in 4, 385
trials, real intervals have less short-long patterns than fake
intervals in 4, 318 trials, and real intervals have the same
number of short-long patterns as fake intervals in 1, 297
trials.

5.2.3. Λ-anonymity Interpretation. Consider Game 1 of
analyzing interval indistinguishability. Given two intervals
I0 and I1 at which one of them is real and one is fake,
let the adversary’s strategy for deciding which is which
be as described in Section 4.3.3. With this strategy, given
the simulation results provided above, the anonymity of
the improved II-based approach is Λ = 0.971, while it
is Λ = 0.993 in the trivial solution. That is, an adversary
basing her decision on the count of short-long patterns will
be successful 51.5% of the time in the improved approach,
with about 0.3% margin of error. Table 2 summarizes the
performances of the three schemes.

Remark 2: Event indistinguishability is not included in
the simulation since it follows from the A-D test. That is,
transmitting dummy and real events according to the A-
D test guarantees that inter-transmission times of each
interval (fake or real) are statistically indistinguishable
from the desired exponential distribution of fake messages
only.

Observe the increased anonymity from 0.526 in the
original EI-based approach of [7] to 0.971 in the improved
II-based approach. This is obviously the desired behavior
since it translates to lower probability of location detection.
The way the improved II-based approach translates to
higher anonymity is by increasing the number of short-
long patterns in the fake interval, whereas the original EI-
based approaches can only attempt to lower the confidence
by decreasing the number of short-long patterns in the real
interval, since fake intervals are fixed.

Remark 3: Observe that the notion of short-long pat-
terns is merely a way of representing the class of correla-
tion attacks to distinguish between real and fake intervals.
Observe further that the improved approach does not
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increase anonymity by directly increasing the number of
short-long patterns in fake intervals. The anonymity is
improved by trying to induce the same correlation between
the inter-transmission times of real intervals to the inter-
transmission times in fake intervals. This indirectly leads
to more short-long patters in fake intervals and, ultimately,
to improved indistinguishability.

6. Conclusion and Future Work

In this paper, source anonymity is wireless sensor
network is addressed. We provided a statistical framework
for modeling, analyzing, and evaluating anonymity in
sensor networks. We introduced the notion of interval
indistinguishability, proved that it implies the currently
adopted model (event indistinguishability), and showed
that it captures the source of information leakage that
was not captured by event indistinguishability. Thus, the
proposed anonymity model is stronger than existing mod-
els and allows for more rigorous anonymity analysis.
We analyzed an EI-based approach, which was shown to
provide anonymity under event indistinguishability, and
quantified its information leakage when analyzed under
our proposed model. Finally, we proposed a new direction
for designing transmission algorithms that can improve
source anonymity in sensor networks, applied our approach
to an existing scheme, and quantified the improvement in
anonymity that can be achieved.

Future extensions to this work include taking advantage
of the key point that fake intervals are not restricted to
have iid inter-transmission times to design an efficient
system that satisfies the notion of interval indistinguisha-
bility, without resorting to computationally cumbersome
statistical tests.
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