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Abstract—We present a new class of network attacks, referred
to as flow-jamming attacks, in which an adversary with multiple
jammers throughout the network jams packets to reduce traffic
flow. We propose a linear programming framework for flow-
jamming attacks, providing a foundation for the design of
future protocols to mitigate flow-jamming. We propose metrics to
evaluate the effect of a flow-jamming attack on network flow and
the resource expenditure of the jamming adversary. We develop,
evaluate, and compare a variety of flow-jamming attacks using
the proposed metrics and the linear programming formulation.
In addition, we formulate a distributed flow-jamming attack
algorithm for a set of jammers operating without centralized
control and compare the performance to the centralized attacks
using the linear programming formulation.

I. INTRODUCTION

The nature of wireless communication using an open and
shared physical medium makes it vulnerable to denial-of-
service (DoS) attacks [1]. A jamming adversary can perform a
variety of DoS attacks, such as transmitting wide-band noise,
high-power narrow-band pulses, or interfering waveforms [2].
Anti-jamming communication systems typically rely on the
use of spread-spectrum techniques, forcing the adversary to
jam a wider frequency band and significantly increasing the
jamming power [2], [3]. Such techniques are especially effec-
tive against resource-constrained jamming adversaries, as the
required energy to jam each bit is drastically increased.

A resource-constrained jamming adversary can, however,
counteract the impact of an anti-jamming system such as
spread-spectrum by incorporating information of higher-layer
communication or networking protocols. For example, intel-
ligent jamming techniques have recently been developed for
DoS attacks targeting certain wireless link layer and MAC
protocols [4]–[6] and link layer error correction protocols [7],
leading to significant energy savings over continuous jamming.

We suggest that DoS attack efficiency can be further im-
proved by incorporating network layer information. Since a
single packet traverses multiple wireless network links, the
adversary can choose to jam each packet when minimal
energy is required, effectively jamming the traffic flow [8]. An
adversary in control of multiple jammers can thus balance the
total energy expenditure required to jam network flows over
the jammers, optimizing an objective function such as the total
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energy and prolonging jammer lifetime. Hence, the efficiency
of the attack can be optimized by intelligent assignment of
jammers to flows. We refer to this efficient DoS attack as a
flow-jamming attack.

The first step toward defending against flow-jamming at-
tacks is the ability to model them in the context of network
protocol design. To the best of our knowledge, incorporating
the effects of jamming into network protocol design is a new
research area. We make the following contributions toward this
problem.

• We show that flow-jamming attacks can be formulated
using a linear programming framework, often used for
network resource allocation problems.

• As the basis of our formulation, we propose metrics to
evaluate the effect of flow-jamming attacks on network
traffic flows and the resource expenditure of the jamming
adversary with respect to a finite resource constraint.

• We develop, evaluate, and compare a variety of flow-
jamming attacks which are optimal with respect to the
proposed metrics.

• We propose a distributed flow-jamming attack algorithm
for a set of jammers without centralized control and com-
pare the performance of the distributed and centralized
attacks.

The remainder of this work is outlined as follows. In Sec-
tion II, we state our assumptions about the wireless network
and jamming adversary and propose evaluation metrics for
flow-jamming attacks. In Section III, we formulate optimal
centralized flow-jamming attacks using linear programming.
In Section IV, we develop a distributed algorithm for flow-
jamming in the absence of a centralized adversary. In Sec-
tion V, we evaluate the performance of the centralized and
distributed flow-jamming attacks using the proposed metrics.
In Section VI, we summarize our results.

II. MODEL ASSUMPTIONS

In this section, we state our assumptions and provide
notation and definitions for the wireless network and jamming
adversary. In addition, we provide metrics for the evaluation
of flow-jamming attacks. A summary of notation is provided
in Table I.



TABLE I
A SUMMARY OF NOTATION IS PROVIDED.

Symbol Definition
N Set of wireless network nodes
F Collection of network flows
rf Flow rate of flow f ∈ F

J Set of jammers
cj Jamming resource supply for jammer j ∈ J

cjf Cost per unit flow rate for j ∈ J and f ∈ F

xjf Jammer-to-flow assignment for j ∈ J and f ∈ F

xj Jammer-to-flow assignment vector for jammer j ∈ J

xf Jammer-to-flow assignment vector for flow f ∈ F

x Jammer-to-flow assignment vector
λj(xj) Resource expenditure of jammer j ∈ J

Λ(x) Vector of resource expentiture variables
I(x) Jamming impact, see Definition 1
E(x) Jamming efficiency, see Definition 2
V (x) Jamming resource variation, see Definition 3

A. Network Model

The wireless network consists of a set of nodes N . Data
traffic between source and destination nodes in N is modeled
by a set of flows F . We let rf denote the flow rate of each
flow f ∈ F . We assume that the nodes in N are fixed and
the flows in F are fixed for the duration of the flow-jamming
attack. We further assume that the flows in F do not interfere
with each other.

B. Adversarial Model

We let J denote the set of jammers deployed throughout the
wireless network. We assume that each jammer is constrained
by a finite energy supply and can jam a given packet with
minimum energy expenditure by appropriately adjusting its
transmission power or waveform. The minimum transmission
power required to jam a packet can be computed as a func-
tion of the Jamming-power to Signal-power Ratio (JSR) [2],
yielding the required power to increase the bit-error rate to a
sufficient threshold. The JSR is computed as a function of the
transmitter and jammer power, the network topology, and the
antenna properties of each node and jammer. For simplicity,
we ignore the randomness in channel variation and assume
that the jamming power computed using the JSR is sufficient
to jam each packet with probability one.

Each jammer j ∈ J can thus compute the JSR for each
packet transmission along a flow f and determine the receiving
node at which the packet can be jammed with minimum
resource expenditure. We let cjf denote the associated resource
cost per unit flow rate to jam flow f , yielding a total resource
cost of cjfrf to jam every packet in flow f . However, since it
is not necessary for a single jammer j to jam every packet in a
flow f , we define the jammer-to-flow assignment xjf ∈ [0, 1]
as the fraction of packets in flow f assigned to jammer j. A
sample assignment of flows to jammers is illustrated in Fig. 1.
We denote the vector of jammer-to-flow assignment variables

�������������	
����

�
��

�������������	
����

�
��

��
��������
��	
����

�
��

��
��������
��	
����

�
��

Fig. 1. A sample assignment of flow to jammers is illustrated for two network
flows. In this example, jammer B completely jams the flow on channel 1, and
jammers A and B collaboratively jam the flow on channel 2 by jamming
packets at corresponding receivers requiring minimum resource expenditure.

xjf for all jammers j and flows f by x, for a single jammer
j by xj and for a single flow f by xf . Letting cj denote the
total resource availability for jammer j, we define the resource
expenditure λj(xj) as the fraction

λj(xj) = c−1
j

∑

f∈F

cjfrfxjf (1)

of total resources exhausted in the flow-jamming attack. We
let Λ(x) denote the vector of resource expenditure variables
for j ∈ J . For a given set of costs cjf and rates rf , the
flow-jamming attack is uniquely specified by the vector x and
the schedule of specific packets to be jammed by individual
jammers. We claim that the packet jamming schedule has little
effect on the impact of the flow-jamming attack and do not
further address the scheduling issues which may arise. We note
that the assumption of non-interfering flows essentially means
that the schedule for each flow can be arranged independently.

We note that if the jammers in J are controlled by a
centralized adversary, the adversary can leverage the costs
cjf and rates rf for all jammers j ∈ J and flows f ∈ F
to optimize the jammer-to-flow assignment x as a resource
allocation problem [9]. However, if the set of jammers J
operates with no centralized control, each jammer j ∈ J must
compute the corresponding jammer-to-flow assignment xj

using a distributed protocol based on local information. These
attack formulations are respectively addressed in Sections III
and IV for various evaluation metrics.

C. Evaluation Metrics

We define metrics to evaluate the effect of a flow-jamming
attack on traffic flows and the resource expenditure of the
jammers. We let ‖ · ‖1 denote the `1 vector sum norm [10].

Definition 1: The jamming impact I(x) of a flow-jamming
attack with jammer-to-flow assignment x is defined as the
average fraction of jammed flow rate over all flows in F ,
given by

I(x) = |F|−1‖x‖1.

The metric of jamming impact reflects the overall effect of
the flow-jamming attack on the network flows in F and can



be used to determine the worst-case flow-jamming attack on
the network flows.

Definition 2: The jamming efficiency E(x) of a flow-
jamming attack with jammer-to-flow assignment x is defined
as the ratio of jamming impact to average resource expendi-
ture, given by

E(x) =
|F|−1‖x‖1
|J |−1‖Λ(x)‖1

.

The metric of jamming efficiency relates the effect of the
flow-jamming attack on the network flows to the resource
expenditure of the jammers. We also note that the ratio
I(x)/E(x) is the average resouce expenditure, so this metric
is expressable using those already defined. The normalization
in Definition 2 thus allows for the following interpretation,
independent of the number of flows |F| and jammers |J |. If
a jamming impact of I(x) = 1 is achieved with E(x) ≥ 1,
the jammers in J are able to completely jam the flows in
F using a fraction E(x)−1 of the available resources. If a
jamming impact of I(x) < 1 is achieved with E(x) = 1, the
jammers in J exhaust the maximum available resources in
order to jam an average fraction I(x) of each flow.

Definition 3: The jamming resource variation V (x) of a
flow-jamming attack with jammer-to-flow assignment x is
defined as the relative difference between the maximum and
minimum resource expenditure, given by

V (x) = 1−
minj Λ(x)

maxj Λ(x)
.

The jamming resource variation measures the balance in
resource expenditure over the set of jammers. If the resource
variation is large, i.e. near 1, some jammers will fully exhaust
their battery energy and be unable to participate in the flow-
jamming attack, thus degrading the lifetime of the attack. In,
on the other hand, the resource variation is small, i.e. near 0,
then the minimum jammer lifetime will be maximized, thus
prolonging the duration of the flow-jamming attack.

III. CENTRALIZED FLOW-JAMMING ATTACKS

In this section, we formulate flow-jamming attacks which
are optimal with respect to the evaluation metrics proposed
in Section II-C. We first present the maximum impact flow-
jamming attack, using the jamming impact I(x) as the primary
optimization metric and the jamming efficiency E(x) as a
secondary optimization metric. We next present the efficient
flow-jamming attack, using the jamming efficiency as the
primary optimization metric. We then present the balanced
flow-jamming attack, using the jamming resource variation
V (x) as the primary optimization metric and the jamming
impact I(x) as the secondary optimization metric. Each flow-
jamming attack is formulated as an optimization problem, and
each is solved using linear programming techniques.

The jammer-to-flow assignment x corresponding to any
flow-jamming attack must satisfy the following constraints.
The resource expenditure λj(xj) for each jammer j ∈ J , as

defined in (1), must satisfy the supply constraint

λj(xj) ≤ 1, (2)

as each jammer cannot exhaust more than the available re-
sources. The assignment of jammers to each flow f ∈ F must
additionally satisfy the flow constraint

‖xf‖1 ≤ 1, (3)

as the jammers cannot jam more flow than is present.

A. Maximum Impact Flow-Jamming Attacks

The maximum impact flow-jamming attack primarily max-
imizes the jamming impact I(x) and secondarily maximizes
the jamming efficiency E(x). We develop an algorithm for
maximum impact flow-jamming attacks by deriving a linear
program corresponding to each of two cases: I(x) = 1 and
I(x) < 1.

The case of I(x) = 1 corresponds to the ability to achieve
equality in the flow constraint in (3) for all f ∈ F . If
this condition can be achieved for the given resource supply
variables cj for j ∈ J and network and jammer topology,
the jamming efficiency is maximized by minimizing the total
resource expenditure ‖Λ(x)‖1 subject to the supply constraint
in (2). The formulation of this flow-jamming attack is stated in
Fig. 2(a) as a linear program. We note that the flow-jamming
attack in this case is representative of the Hitchcock problem
[9] for minimum cost resource allocation, where the flow
constraint is interpreted as a resource demand.

The case of I(x) < 1 corresponds to the inability to achieve
equality in the flow constraint in (3) for all f ∈ F . In this case,
we note that each jammer j ∈ J will contribute as much of
the available resource supply as possible to the subset of F of
flows f with cost cjf < ∞. Hence, the jamming impact and
efficiency are simultaneously maximized by maximizing the
total fraction of jammed flow rate ‖x‖1 subject to the supply
constraint in (2) and the flow constraint in (3). The formulation
of this flow-jamming attack is stated in Fig. 2(b) as a linear
program.

The combination of the linear programs in Fig. 2 yields
the desired centralized algorithm for maximum impact flow-
jamming attacks. The first step of the algorithm is to at-
tempt to solve the linear program in Fig. 2(a), yielding the
jammer-to-flow assignment vector x which maximizes E(x)
for I(x) = 1. If a feasible solution to the first linear program
does not exist, a solution to the linear program in Fig. 2(b) is
computed. Since the algorithm involves computing solutions to
linear programs, it runs in polynomial time [9]. Furthermore,
a feasible solution is guaranteed, as the trivial solution x = 0
is feasible for the linear program in Fig. 2(b).

B. Efficient Flow-Jamming Attacks

The efficient flow-jamming attack aims to maximize the
jamming efficiency E(x) subject to the supply constraint in
(2) and the flow constraint in (3). The optimization problem
is formulated in Fig. 3(a). However, since E(x) is not a linear



min ‖Λ(x)‖1

s.t. λj(xj) ≤ 1 for all j ∈ J ,
‖xf‖1 = 1 for all f ∈ F ,
0 ≤ xjf ≤ 1 for all j ∈ J , f ∈ F .

(a)

max ‖x‖1

s.t. λj(xj) ≤ 1 for all j ∈ J ,
‖xf‖1 ≤ 1 for all f ∈ F ,
0 ≤ xjf ≤ 1 for all j ∈ J , f ∈ F .

(b)

Fig. 2. The maximum impact flow-jamming attack algorithm first attempts to solve the linear program in (a) with equality in the flow constraint (3). If no
solution is feasible, the linear program in (b) is solved.

max |F|−1‖x‖1

|J |−1‖Λ(x)‖1

s.t. λj(xj) ≤ 1 for all j ∈ J ,
‖xf‖1 ≤ 1 for all f ∈ F ,
0 ≤ xjf ≤ 1 for all j ∈ J , f ∈ F .

(a)

min |J |−1‖Λ(x)‖1 − ε−1|F|−1‖x‖1

s.t. λj(xj) ≤ 1 for all j ∈ J ,
‖xf‖1 ≤ 1 for all f ∈ F ,
0 ≤ xjf ≤ 1 for all j ∈ J , f ∈ F .

(b)

Fig. 3. The optimal efficient flow-jamming attack can be obtained by solving the non-linear optimization problem in (a). The linear approximation in (b)
yields a solution within an additive constant ε of the optimal solution.

function in the jammer-to-flow assignment variables, we pro-
vide a linear approximation in Fig. 3(b) which approximates
the optimal solution of the problem in Fig. 3(a) using a linear
objective function. The following result proves that the linear
approximation is tight.

Theorem 1: Let x
∗ denote the non-zero jammer-to-flow

assignment which maximizes E(x) and x̂ denote the non-zero
jammer-to-flow assignment which minimizes |J |−1‖Λ(x)‖1−
ε−1|F|−1‖x‖1 for a given ε > 0. Then 0 ≤ E(x∗)−E(x̂) ≤ ε.

Proof: Let g(x) = |J |−1‖Λ(x)‖1 and `(x) = |F|−1‖x‖1
such that E(x) = `(x)/g(x) and x

∗ is given by

x
∗ = arg max

x>0
E(x) = arg max

x>0

`(x)

g(x)

= arg min
x>0

g(x)

`(x)
= arg min

x>0
ε
g(x)

`(x)
− 1, (4)

where (4) holds because the optimal solution is not changed by
an affine transformation of the objective function. The solution
x̂ is similarly given by

x̂ = arg min
x>0

g(x)− ε−1`(x). (5)

Optimality of the corresponding solutions x
∗ and x̂ implies

the inequalities
`(x∗)

g(x∗)
≥

`(x̂)

g(x̂)
, (6)

g(x∗)− ε−1`(x∗)

ε−1`(x∗)
≤

g(x̂)− ε−1`(x̂)

ε−1`(x̂)
, (7)

g(x̂)− ε−1`(x̂) ≤g(x∗)− ε−1`(x∗). (8)
The combination of (7) and (8) yields the inequality `(x∗) ≥
`(x̂). This result and (8) yield the inequality

g(x∗)− g(x̂) ≥ ε−1 (`(x∗)− `(x̂)) ≥ 0. (9)

If g(x∗) = g(x̂) then E(x∗) = E(x̂), so the proof holds.
Hence, for the remainder of the proof, assume g(x∗) > g(x̂).

Multiplying (6) through by g(x∗)g(x̂), subtracting the term
`(x∗)g(x∗), and rearranging non-zero terms yields the inequal-
ity

`(x∗)

g(x∗)
≤

`(x∗)− `(x̂)

g(x∗)− g(x̂)
. (10)

Combining the inequalities in (6), (9), and (10) yields
`(x̂)

g(x̂)
≤

`(x∗)

g(x∗)
≤ ε. (11)

Since both `(x̂)
g(x̂) and `(x∗)

g(x∗) are positive and bounded by ε, their
difference is also bounded by ε.

C. Balanced Flow-Jamming Attacks

The balanced flow-jamming attack primarily minimizes the
jamming resource variation V (x) and secondarily maximizes
the jamming impact I(x) and jamming efficiency E(x). We
develop an algorithm for balanced flow-jamming attacks by
deriving a linear program corresponding to each of two cases:
I(x) = 1 and I(x) < 1.

The case of I(x) = 1 corresponds to the ability to achieve
equality in the flow constraint in (3) for all f ∈ F . If
this condition can be achieved for the given resource supply
variables cj for j ∈ J and network and jammer topology,
the jamming resource variation is minimized with maximum
jamming impact by minimizing the variable λ = maxj Λ(x)
subject to the supply constraing in (2). In this case, minimizing
λ corresponds to maximizing the jamming efficiency E(x).
This flow-jamming attack can be formulated as a linear pro-
gram by aiming to maximize λ with the additional constraint
λj(xj) ≤ λ for all j ∈ J , a stronger constraint than the supply



min λ

s.t. λj(xj) ≤ λ for all j ∈ J ,
‖xf‖1 = 1 for all f ∈ F ,
0 ≤ xjf ≤ 1 for all j ∈ J , f ∈ F ,
0 ≤ λ ≤ 1.

(a)

max λ

s.t. λ ≤ λj(xj) ≤ 1 for all j ∈ J ,
‖xf‖1 ≤ 1 for all f ∈ F ,
0 ≤ xjf ≤ 1 for all j ∈ J , f ∈ F ,
0 ≤ λ ≤ 1.

(b)

Fig. 4. The balanced flow-jamming attack algorithm first attempts to solve the linear program in (a) with equality in the flow constraint (3). If no solution
is feasible, the linear program in (b) is solved.

constraint in (2). The formulation of this flow-jamming attack
is stated in Fig. 4(a) as a linear program.

The case of I(x) < 1 corresponds to the inability to achieve
equality in the flow constraint in (3) for all f ∈ F . In this
case, the resource variation V (x) is minimized with maximum
jamming impact I(x) and efficiency E(x) by maximizing
λ = minj Λ(x) subject to the supply constraint in (2) for
all j ∈ J and the flow constraint in (3) for all f ∈ F . This
flow-jamming attack can be formulated as a linear program
by maximizing λ subject to the additional constraint that
λ ≤ λj(xj), introducing a lower bound into the supply
constraint in (2) for each j ∈ J . The formulation of this
flow-jamming attack is stated in Fig. 4(b) as a linear program.

The combination of the linear programs in Fig. 4 yields
the desired centralized algorithm for balanced flow-jamming
attacks. The centralized algorithm is obtained using a similar
technique to that in Section III-A, first attempting to solve
the linear program in Fig. 4(a), solving that in Fig. 4(b) if
no solution is feasible. As previously discussed, the algorithm
runs in polynomial time and is guaranteed to have a feasible
solution.

IV. DISTRIBUTED FLOW-JAMMING ATTACKS

In this section, we develop a distributed flow-jamming
attack algorithm in which each jammer j uses local infor-
mation to compute the jammer-to-flow assignment xj . We
provide an algorithm which minimizes resource expenditure
and maximizes jamming impact I(x). We note that this ap-
proach may lead to a higher jamming efficiency E(x) than the
efficient flow-jamming attack in Section III-B and discuss this
phenomenon in Section IV-B. We assume that each jammer j
exchanges information with a subset Jj ⊂ J of neighboring
jammers and has knowledge of the subset Fj ⊆ F of flows for
which cjf < ∞. We assume the variables cjf/cj are distinct
for all j ∈ J and f ∈ F , noting that this assertion holds with
probability 1 if there is any source of randomness in cjf . We
address the distributed attack in general and discuss the impact
of the neighborhood size |Jj | on the algorithm performance. A
description of the algorithm and the heuristic used to develop
it are as follows, and the algorithm is given in Fig. 5.

A. Heuristic for Efficient Flow-Jamming

We develop the distributed algorithm using a greedy heuris-
tic based on the following observations. First, given two flows
f1 and f2 and a single jammer j, the jamming efficiency
is maximized by assigning resources to the flow with lower
normalized cost cjf/cj before assigning resources to the other
flow. This allows the jammer j to maximize the jammed
flow rate at minimum resource expenditure. Second, given
two jammers j1 and j2 and a single flow f , the jamming
efficiency is maximized by assigning resources to the jammer
with lower normalized cost cjf/cj before assigning flow to
the other jammer.

We next apply the greedy heuristic to the case of an
arbitrary number of flows and jammers, computing a strict
partial ordering [11] on the set J ×F of ordered pairs (j, f)
and computing jammer-to-flow assignments according to the
ordering. In a local neighborhood, each jammer j ∈ J must
construct the sub-ordering on Jj×Fj and assign resources to
flows according to the sub-ordering. At a given instant during
the execution of the attack, each jammer j considers only the
single flow f∗ with minimum normalized cost cjf∗/cj , only
assigning resources to f∗ if there is no neighboring jammer
j′ for which cj′f∗/cj′ < cjf∗/cj .

To perform the heuristic algorithm, each jammer j must
know the normalized costs cj′f/cj′ for each neighboring
jammer j′ ∈ Jj and flow f ∈ Fj . The normalized costs
are constant, but can be updated to ∞ for any neighboring
jammer that will not contribute further to a flow. Furthermore,
in assigning resources to a flow f , jammer j must know the
fraction yf of flow which is already assigned to neighboring
jammers j′ ∈ Jj . The variables yf must be updated during
the attack to reflect to progressive assignment of flow to
neighboring jammers. Similarly, jammer j must notify the
neighboring jammers when each jammer-to-flow assignment
variable xjf is determined and when its resources have been
exhausted. The distributed flow-jamming attack algorithm is
presented in its entirety in Fig. 5.

If the flow f∗ with minimum normalized cost for jammer j
can be assigned to a neighboring jammer with lower normal-
ized cost, jammer j is required to wait for a notification. If
every jammer in J is simultaneously waiting for notifications,
however, the algorithm will stall indefinitely. Termination of



Distributed Flow-Jamming Attack for j ∈ J

xjf ← 0 for f ∈ Fj

yf ← 0 for f ∈ Fj

while λj(xj) < 1 and {f ∈ Fj : xjf = 0, yf < 1} 6= ∅

f∗ ← arg min
f∈Fj :xjf=0,yf <1

cjf/cj

if cjf∗/cj < cj′f∗/cj′ for all j′ ∈ Jj

xjf∗ ← min

(

1− yf ,
1−λj(xj)

c
−1

j
cjf∗rf∗

)

transmit (j, f∗, xjf∗)

else

wait for notification
if (j′, f, y) received

yf ← yf + y

cj′f ←∞

else if (j′,∞) received
cj′f ←∞ for each f ∈ Fj

end if

end if

end while

transmit (j,∞)

Fig. 5. This distributed algorithm approximates the efficient flow-jamming
attack algorithm given in Section III-B.

the distributed algorithm in finite time is guaranteed by the
following result.

Theorem 2: The distributed flow-jamming attack algorithm
in Fig. 5 terminates in finite time for all jammers j ∈ J .

Proof: The algorithm stalls indefiniately if every jammer
is simultaneously waiting for notifications. If a single jammer
is not waiting, the resulting notification will allow neighboring
jammers to progress. We thus show that there is always at least
one jammer that is not waiting. We prove the desired result
by constructing a directed graph G = (V,E) corresponding to
the partial ordering discussed above. The vertex set V of G
is given by the set J ×F . A directed edge ((j1, f1), (j2, f2))
is in the edge set E of G if and only if cj1f1

/cj1 < cj2f2
/cj2

and either f1 = f2 or j1 = j2. Since it is constructed from
the partial ordering, G is an acyclic graph [11], as otherwise
a cycle traversing the vertex (j1, f1) in G would represent
a sequence of strict inequalities beginning and ending with
cj1f1

/cj1 . Since G is a directed acyclic graph, there must be at
least one vertex (j∗, f∗) ∈ V with no incoming edge [11]. By
construction of the partial ordering, jammer j∗ will not wait for
any other jammer to compute the jammer-to-flow assignment
variable xj∗f∗ for flow f∗. As the algorithm progresses and
variables xjf are computed, the corresponding vertices (j, f)
are removed from G. Since any subgraph of a directed acyclic

graph is a directed acyclic graph, there always exists such a
vertex (j∗, f∗).

We note that the algorithm presented in this section assumes
that each jammer j knows the flow rate rf of each flow
f ∈ Fj . However, these parameters may not be available to the
jammer j, especially if jammers are not exchanging informa-
tion between neighborhoods. Hence, in this case, each jammer
j must compute an estimate r′jf of the residual throughput
that has not been jammed by upstream jammers. Moreover,
the algorithm does not account for over-provisioning of jam-
ming resources between distant neighborhoods in the jammer
network, so basing the attack on the residual flow r′jf and
updating this quantity over time may reduce over-provisioning
and reduce jamming resource expenditure. However, such an
approach assigns a higher fraction of flow rate to jammers
near the flow sources.

B. Impact of Neighborhood Size

We expect the number of neighboring jammers |Jj | that
exchange information with a jammer j ∈ J to significantly
influence the performance of the distributed attack algorithm.

If the neighborhood size |Jj | is very large, the local sub-
ordering of the strict partial ordering constructed by the
heuristic algorithm consists of nearly the entire set J × F .
Hence, jammers may have to wait for a long period of time
before computing jammer-to-flow variables. In addition, we
note that the heuristic with global information can achieve a
greater jamming efficiency E(x) than the centralized efficient
flow-jamming attack in Section III-B. However, this out-
performance is achieved by decreasing both the jamming
impact I(x) and the resource expenditure ‖Λ(x)‖1, so the
effect of the attack on the network traffic flows is reduced.
The heuristic is able to achieve this greater jamming efficiency
by effectively ignoring jammer-to-flow assignment variables
xjf for which the corresponding normalized cost cjf is large
enough to significantly increase resource expenditure for a
negligible increase in jamming impact. We finally note that
the communication overhead required to exchange with a large
neighborhood size may be quite large, especially since every
jammer may be required to wait for an extended period of
time.

Alternatively, if the neighborhood size is small, there may
be insufficient exchange of information such that the computed
jammer-to-flow assignment xf with respect to a single flow
f satisfies ‖xf‖1 > 1. In this case, multiple jammers are
assigning resources to jam the same packets, leading to an
increase in resource expenditure with no associated increase in
impact. However, a smaller neighborhood size may allow the
algorithm to conclude more rapidly and require significantly
lower communication overhead to exchange information with
neighboring jammers.

In the extreme case of Jj = ∅, jammers do not ex-
change information, either to avoid revealing information to
the network or to conserve resource expenditure required for
communication. We note that the distributed algorithm in
Fig. 5 can still be used, though many of the statements are
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Fig. 6. We compare the maximum impact, efficient, and balanced flow-jamming attacks in Section III in terms of the (a) jamming impact, (b) jamming
efficiency, and (c) jamming resource variation for the low-energy case and the specified network and jamming parameters.

vacuous. The distributed algorithm is equivalent in this case
to the assignment of resources to the flows Fj increasing order
of cjf until either λj(xj) = 1 or xj = 1.

V. PERFORMANCE EVALUATION

In this section, we compare the jamming impact, efficiency,
and resource variation for various flow-jamming attacks. We
first compare the performance of the maximum impact, effi-
cient, and balanced centralized flow-jamming attacks using the
linear program formulations in Section III. We then compare
the performance of the centralized efficient flow-jamming
attack in Section III-B to that of the distributed flow-jamming
attack using the algorithm in Section IV.

The simulated network in both cases consists of |N | = 200
randomly deployed nodes with |F| = 50 shortest-path flows
between randomly selected source and destination nodes. The
jammers in J are randomly deployed, and each cost cjf is
proportional to the minimum distance from jammer j to any
non-source node participating in the flow f . The cost cjf is
infinite if the minimum distance is beyond a fixed threshold
equal to twice the communication range of the nodes in N .
The total jamming resources

∑

j∈J cj are held constant and
equally distributed to the jammers, effectively distributing the
resources more evenly over the network as |J | increases. We
perform two sets of simulations for each case to illustrate
the effect of the total jamming resource, referring to these
simulation sets as the low-energy and high-energy cases. In
the low-energy case, the total resources are computed as that
required to completely jam 10 flows of rate rf = 1 using the
maximum finite cost cjf . In the high-energy case, the total
resources are twice as much as in the low-energy case. Finally,
each plotted curve illustrates an average over 100 simulated
network instances to capture the average performance of the
flow-jamming attacks.

A. Comparison of Centralized Attacks

We simulate the three centralized flow-jamming attacks
to compare the metrics of jamming impact, efficiency, and
resource variation. Intuitively, we expect the jamming impact
to be greatest for the maximum impact attack, followed by

that of the efficient attack and the balanced attack. This is
due to the fact that jamming impact is a secondary metric
for the efficient and balanced attacks, and the balanced attack
effectively imposes an additional constraint on the efficient
attack. Similarly, we expect the jamming efficiency to be great-
est for the efficient attack, followed by that of the maximum
impact attack and the balanced attack. Finally, we expect
the jamming resource variation to be least for the balanced
attack, followed by the two remaining attacks, leading to the
added benefit of a longer jammer lifetime under the balanced
flow-jamming attack. Figs. 6 and 7 compare the jamming
impact, efficiency, and resource variation for the centralized
flow-jamming attack formulations in the low-energy and high-
energy cases, respectively.

B. Comparison of Centralized and Distributed Attacks

We simulate the centralized efficient flow-jamming attack
presented in Section III-B and the distributed flow-jamming
attack presented in Section IV to compare the metrics of
jamming impact, efficiency, and resource variation. We expect
the jamming impact resulting from the centralized attack to be
greatest with that of the distributed attack increasing with the
neighborhood size. We expect the jamming efficiency resulting
from the distributed attack to similarly increase with the neigh-
borhood size, and in some cases to out-perform the jamming
efficiency of the centralized attack. However, we note that
the distributed attack requires a significantly lower resource
expenditure to achieve a lower jamming impact, achieved
by ignoring high-cost flows as discussed in Section IV-B.
We further expect the jamming resource variation to increase
with neighborhood size. When the neighborhood size is large,
the larger amount of information distributed throughout the
network increases the chance that a distant jammer can jam
a flow at a lower cost, so the well-positioned jammers in the
network are likely to do a majority of the jamming. When
the neighborhood size is small, each jammer exhaust a higher
fraction of the available resources, though resources may be
wasted. Figs. 8 and 9 compare the jamming impact, efficiency,
and resource variation for the attacks of interest in the low-
energy and high-energy cases, respectively.
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Fig. 7. We compare the maximum impact, efficient, and balanced flow-jamming attacks in Section III in terms of the (a) jamming impact, (b) jamming
efficiency, and (c) jamming resource variation for the high-energy case and the specified network and jamming parameters.
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Fig. 8. We compare the centralized efficient flow-jamming attack in Section III-B to the distributed attack in Section IV in terms of the (a) jamming
impact, (b) jamming efficiency, and (c) jamming resource variation for the low-energy case and the specified network and jamming parameters. The jamming
neighborhood size is specified as the average percentage of |J | − 1.
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Fig. 9. We compare the centralized efficient flow-jamming attack in Section III-B to the distributed attack in Section IV in terms of the (a) jamming
impact, (b) jamming efficiency, and (c) jamming resource variation for the high-energy case and the specified network and jamming parameters. The jamming
neighborhood size is specified as the average percentage of |J | − 1.



We emphasize the fact that the distributed attack with
sufficiently large neighborhood size out-performs the efficient
flow-jamming attack in terms of jamming efficiency, as seen
in Figs. 8(b) and 9(b). This is due to the reduction in jamming
impact, as seen in Figs. 8(a) and 9(a) and the corresponding
reduction in resource expenditure.

VI. CONCLUSION

We presented and modeled the efficient flow-jamming attack
in which an adversary selectively jams packets in network
traffic flows. We proposed the evaluation metrics of jam-
ming impact, efficiency, and resource variation and formulated
optimal flow-jamming attacks with respect to these metrics
using linear programming. We demonstrated the ability for
a resource-constrained adversary to perform flow-jamming at-
tacks efficiently with a significant impact on the network traffic
flows. Furthermore, we showed that efficient flow-jamming
attacks can be performed using a distributed algorithm in the
absence of centralized control of the jammers.
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