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A promising solution for trust establishment in wireless sensor networks is the assignment of
cryptographic seeds (keys, secrets, etc.) to sensor nodes prior to network deployment, known as key
predistribution. In this article, we propose a canonical seed assignment model for key predistribu-
tion characterizing seed assignment in terms of the probability distribution describing the number
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sampling framework for seed assignment algorithms in the canonical model. We propose a prob-
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determine the average or worst-case connectivity or resilience to node capture for a key predistri-
bution scheme. Furthermore, we demonstrate the design of new key predistribution schemes and
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scheme.
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1. INTRODUCTION

Advances in sensor technology suggest that large-scale wireless sensor net-
works (WSNs) can provide sensing and distributed processing using low-cost,
resource-constrained sensor nodes [Asada et al. 1998] for commercial, indus-
trial, and military applications such as disaster relief and recovery, medical
patient monitoring, smart homes, mechanical system monitoring, and target
detection and tracking. As data integrity, authentication, privacy, and confiden-
tiality are often important concerns in such applications, secure communication
protocols are required. However, the ad-hoc nature of WSNs require minimal
interaction with base stations or a central authority, so trust establishment for
secure communication is a critical task [Anderson 2001; Eschenauer and Gligor
2002]. Furthermore, random sensor deployment and the physical communica-
tion constraints of sensor nodes make trust establishment a very challenging
problem in WSNs.

The resource constraints of sensor nodes are the limiting factor in the type
of cryptographic primitives that can be implemented. There have been recent
efforts to implement public-key cryptography in wireless sensor networks [Hill
et al. 2000; Gura et al. 2004; Gupta et al. 2005; Gaubatz et al. 2005; Du et al.
2005]. However, such protocols cannot yet be implemented on all sensor nodes.
Hence, many of the current solutions to key establishment rely on the use of
symmetric key cryptography.

A promising solution for the establishment of secure communication in
WSNs using symmetric keys is the use of key predistribution [Eschenauer
and Gligor 2002; Chan and Perrig 2005; Liu et al. 2005]. A key predistribu-
tion scheme can be described in two primary phases: seed assignment and
link-key establishment. In the seed assignment phase, cryptographic seeds
(e.g., hashed master keys [Leighton and Micali 1993], cryptographic keys
[Eschenauer and Gligor 2002], or polynomial shares [Liu and Ning 2003]) are
assigned to sensor nodes prior to network deployment. In the link-key establish-
ment phase, executed after network deployment, neighboring nodes compute
link-keys as a function of assigned seeds in order to establish secure one-hop
links.

We discuss some of the prominent key predistribution schemes in Section 2.
While many of these schemes provide novel approaches for the link-key estab-
lishment phase of key predistribution, the scope of seed assignment techniques
is limited.

In this article, we make the following contributions:

—We provide a canonical model of seed assignment for key predistribution in
WSNs. In the canonical model, seed assignment schemes are characterized in
terms of the discrete probability distribution of the number of nodes sharing
each seed and the seed assignment algorithm. The canonical model allows
the scheme designer to explicitly control the probability distribution and limit
the effects of the tails of the distribution.

—We present a sampling framework for randomized seed assignment algo-
rithms for use in the canonical seed assignment model. Seed assignment
algorithms are classified according to the selection method used to realize
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a given probability distribution, and a representative algorithm from each
class is illustrated.

—We develop a model for probabilistic network k-connectivity for randomly
deployed secure WSNs in which communication is restricted by radio range
and the existence of shared seeds. The result is based on spatial statistics
[Cressie 1993] and the asymptotic properties of geometric random graphs
[Penrose 1999; Bettstetter 2002].

—We demonstrate how the worst-case analysis of any key predistribution
scheme can be performed using the canonical model. Such analysis has not
been available in the related literature. We also show that the average case
analysis can be performed as in existing works.

—We use the canonical model to characterize the effect of network extension
via node addition.

—Apart from describing and analyzing existing work using our canonical
seed assignment model, we illustrate the design of new key predistribution
schemes with desirable tail effects.

The remainder of this article is organized as follows. We briefly discuss re-
lated work in key predistribution in Section 2. Section 3 provides motivation
for our work and formally states the problem addressed. In Section 4, we state
our adversarial and network models and propose a model for probabilistic k-
connectivity of the secure WSN. We propose a canonical model of seed assign-
ment for key predistribution in Section 5. In Section 6, we present a general
analysis for seed assignment in the canonical model in terms of the probability
of sharing seeds, probabilistic network connectivity, and resilience to node cap-
ture. Section 8 illustrates the use of the canonical model in deriving existing
key predistribution schemes. In Section 9, we analyze the effect of adding nodes
to an existing secure WSN. Finally, we summarize our results in Section 10.

2. RELATED WORK

The problem of trust establishment in resource-constrained WSNs is an ac-
tive research problem. Stajano and Anderson [1999] provide an overview of the
issues involved in establishing trust in WSNs and propose a solution for mo-
bile sensors based on establishing physical contact with a trusted device. The
physical constraints of existing sensors were extensively evaluated by Carman
et al. [2000]. Based on the challenges set forth by the decentralized and physi-
cally constrained nature of WSNs, a significant number of key predistribution
schemes have been proposed.

Blom [1984] proposed the use of threshold secret-sharing for key predistribu-
tion. In the proposed scheme, each of the N nodes receives a row of the matrix
(DG)T where D is a K × K random symmetric matrix and G is the K × N public
generator matrix of a maximum-distance separable error-correcting code over
a finite field Fq . Any pair of nodes can compute a unique pairwise key as a func-
tion of the corresponding rows of (DG)T and G. The pairwise keys computed in
the scheme remain secure until either K nodes collude or an adversary recovers
K rows of (DG)T by capturing nodes. This approach was generalized by Blundo
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et al. [1992] as a group key establishment scheme using secret symmetric poly-
nomials over Fq .

Mitchell and Piper [1988] proposed the use of combinatorial block designs
for key predistribution, mapping a set of seeds assigned to a node to a block in
the design.

Gong and Wheeler [1990] proposed a key predistribution scheme in which
N = m2 keys are arranged on the grid points of an m-by-m grid. Each of the N
nodes is mapped to a grid point and assigned the (2m − 1) keys in the row and
column corresponding to the grid point.

Leighton and Micali [1993] proposed the use of a one-way hash function h to
establish keys as a function of global secrets X 1, . . . , X K . Each node receives a
random ID αi, 0 ≤ αi < L, and a seed hαi (X i) for i = 1, . . . , K , where hn(x) =
h(hn−1(x)) for n > 1 and h1(x) = h(x). A pair of nodes that publicly exchange
identifiers αi and βi for i = 1, . . . , K can compute a pairwise key as a function
of the mutually computable values hmax(αi ,βi )(X i) for i = 1, . . . , K .

Dyer et al. [1995] proposed randomized and derandomized methods of sub-
set assignment for key predistribution that guarantee the existence of schemes
with certain collusion resistance properties using the probabilistic method, sim-
ilar to the techniques of Erdös et al. [1982, 1985] and Alon [1991].

In their seminal work, Eschenauer and Gligor [2002] proposed the use of
random key predistribution for securing WSNs. In the proposed scheme, each
node is assigned a randomly selected subset of K seeds from a set of P � K
seeds. Any pair of nodes sharing at least one of the assigned seeds can establish a
secure link. Ramkumar et al. [2003], Di Pietro et al. [2003], and Zhu et al. [2003]
independently proposed similar methods using pseudo-random identity-based
functions for key predistribution. Chan et al. [2003] proposed the q-composite
scheme as a modification of random key predistribution [Eschenauer and Gligor
2002]. In the q-composite scheme, a pair of nodes are required to share at least
q ≥ 1 seeds, and all shared seeds are used in link-key establishment. In addition
to the q-composite scheme, Chan et al. [2003] proposed the random pairwise
scheme in which unique pairwise keys are assigned to a fraction of the node
pairs in the network.

Du et al. [2003] and Liu and Ning [2003] simultaneously proposed the com-
bination of random key predistribution [Eschenauer and Gligor 2002] with the
threshold secret-sharing schemes of Blom [1984] and Blundo et al. [1992], re-
spectively. In the scheme of Du et al. [2003], each node is assigned a share from
each of a random selection of K of the P matrices (DiG)T , i = 1, . . . , P where
Di and G are similar to those of Blom [1984]. In the scheme of Liu and Ning
[2003], each node is assigned a share from each of a random selection of K of
the P secret symmetric polynomials similar to those of Blundo et al. [1992].

Çamtepe and Yener [2004] proposed the use of combinatorial block designs
for key predistribution. In this scheme, each node is assigned a block of K
seeds given by the entries of a block in a combinatorial design. Furthermore,
to allow for flexibility in parameters, Çamtepe and Yener [2004] proposed a
hybrid combinatorial scheme. In the proposed scheme, each node is assigned
m < K seeds corresponding to one of the b < N blocks of a combinatorial design
and a randomly selected subset of (K − m) entries of one of the b blocks of the
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complementary combinatorial design. Lee and Stinson [2004] further discuss
the use of combinatorial block designs and propose an identity-based one-way
function scheme in which seeds are assigned according to a strongly regular
graph such that each graph vertex represents L sensor nodes. Each of the L
nodes ui, i = 1, . . . , L, represented by a graph vertex u is assigned a common
key ku. In addition, each ui is assigned the hashed values h(kv‖ID(ui)) for each
graph vertex v joined to u by an edge.

Ramkumar and Memon [2004] proposed a combination of their identity-
based scheme [Ramkumar et al. 2003] with the one-way hash function scheme
of Leighton and Micali [1993]. For each node j , K global secrets X j1 , . . . , X jK

are selected from a pool of P � K secrets. The node is assigned the hashed
values hαi (X ji ) for i = 1, . . . , K as proposed by Leighton and Micali [1993].

Chan and Perrig [2005] proposed the PIKE protocol in which the nodes are
arranged in a K -dimensional hyper-grid, extending the scheme of Gong and
Wheeler [1990]. A common seed is assigned to the set of sensors sharing each
coordinate in the hyper-grid. Liu et al. [2005] proposed a hyper-grid seed as-
signment scheme, effectively combining the methods of Chan and Perrig [2005]
and Blundo et al. [1992], such that nodes which share a grid coordinate receive
shares of a common secret polynomial.

3. MOTIVATION AND PROBLEM STATEMENT

Various properties of a key predistribution scheme can be analyzed in terms of
the number of nodes sharing each seed as a result of seed assignment. Hence,
the behavior of a key predistribution scheme is analyzed with respect to the
probability that a given seed is shared by exactly λ of the N nodes in the WSN.

3.1 Motivation

The impact of the number of nodes λ sharing a given seed is investigated for
the following metrics: the probability that a pair of nodes share at least one
seed, the probability that no pair of nodes sharing a given seed are within radio
range, and the potential number of secure links established using a given seed.

Intuitively, if the number of nodes λ that share a given seed is small, the
probability that one of the λ nodes will share the seed with a neighboring node
will be very small. This statement can be justified by estimating the probability
that a neighboring node shares the given seed. Since exactly λ of the N nodes in
the network hold the given seed, the probability that a neighboring node shares
the seed is approximately λ

N . Given a node with K seeds shared by λ1, . . . , λK

nodes, the probability that a neighboring node shares at least one key can thus
be estimated as

Pr[at least one seed shared] = 1 −
(

1 − λ1

N

)
× · · · ×

(
1 − λK

N

)
. (1)

Furthermore, if λ is small and the area within the radio range of a node is
significantly less than the deployment area of the network, the probability that
a seed shared by λ nodes will not be used to establish a secure link, referred to
as the key wastage probability, will be large. This statement can be similarly
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justified by estimating the key wastage probability as follows. Assuming the
sensor nodes are randomly distributed over a region A, the probability that a
given pair of nodes are not within a distance r is given by

nr = 1 − πr2

|A| . (2)

The key wastage probability w(λ) can be estimated as

w(λ) ≈ n(λ

2)
r =

(
1 − πr2

|A|
)(λ

2)
, (3)

noting that equality does not hold because the
(
λ

2

)
events are not independent.

Hence, the key wastage probability decreases exponentially in λ, and a seed
shared by a small number of nodes λ will be unused with high probability.

If the number of nodes λ which share a given seed is large, the number of
secure links established using the seed is potentially large. An adversary with
the seed can thus compromise a large number of secure links. This statement
can be similarly justified by estimating the number of secure links that can
be established using the given seed. Given λ nodes that share the seed, there
can be as many as

(
λ

2

)
secure links formed using the given seed, increasing

quadratically in λ.
Quantifying the above metrics as a function of λ also allows for the worst-

case analysis with respect to each metric. Let P(λ) denote the probability that a
given seed is shared by λ nodes and H(λ) = PP(λ) denote the expected number
of seeds shared by exactly λ nodes, where P is the total number of seeds. P
and H thus denote the probability distribution and expected histogram of λ,
respectively. The expected worst case for each metric can thus be quantified as
a function of the expected histogram H.

The expected worst-case probability of sharing seeds and key wastage prob-
ability can be computed as a function of λmin, defined as the minimum λ such
that H(λ) ≥ 1. The expected worst-case number of compromised links can sim-
ilarly be computed as a function of λmax, defined as the maximum λ such that
H(λ) ≥ 1. The deviation of each metric due to variation in λ can thus be quan-
tified by comparing the values at λmin and λmax to that at the average value μ

of the distribution P.
As an example, the above metrics are evaluated for the random key predis-

tribution scheme of Eschenauer and Gligor [2002]. In this scheme, each node
is assigned a random subset of K seeds from a pool of P � K seeds. When a
subset of K seeds is selected for one node, a particular seed is selected with
probability K

P , which can be modeled as a Bernoulli random variable. Hence,
the probability distribution P(λ) is the binomial distribution B(N , K

P ) such that
P(λ) is given by

P(λ) =
(

N
λ

) (
K
P

)λ (
1 − K

P

)N−λ

(4)
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Fig. 1. The expected histogram H(λ), representing the number of seeds shared by exactly λ nodes,
is illustrated for Example 3.1 with vertical axis in (a) linear scale and (b) logarithmic scale.

with average value μ = NK
P , and the values of the histogram H are given by

H(λ) = P
(

N
λ

) (
K
P

)λ (
1 − K

P

)N−λ

. (5)

The following example illustrates the effect of this binomial distribution on the
metrics of interest.

Example 3.1. Let a WSN of N = 10, 000 nodes be assigned seeds according
to the key predistribution scheme of Eschenauer and Gligor [2002] with K =
200 and P = 102, 881, where P is chosen to guarantee network connectivity
with probability 0.999 for an average of d = 50 nodes within radio range. The
average number of nodes sharing a given seed is μ = NK

P = 10,000×200
102,881 ≈ 20. The

expected histogram H and the simulated histogram are provided in Figure 1.
For the given parameters, the condition H(λ) ≥ 1 is satisfied for all λ between
λmin = 4 and λmax = 40.

The variation in the probability of sharing seeds is quantified by computing
the probability given in (1) for λ1, . . . , λK all equal to the values λmin, μ, and λmax,
yielding 0.0769, 0.3224, and 0.5514, respectively. The expected worst-case prob-
ability of sharing seeds can alternatively be defined as a function of the K small-
est values λ

(1)
min, . . . , λ

(K )
min which occur according to the expected histogram H.

The variation in the key wastage probability is quantified by computing the
probability given in (3). Since the network is randomly deployed, the quantity
πr2

|A| is approximately equal to d
N = 0.005. Hence, the key wastage probability for

the values λmin, μ, and λmax is equal to 0.9704, 0.3858, and 0.0200, respectively.
The variation in the number of potential compromised links is similarly

computed for the values λmin, μ, and λmax, yielding 6, 190, and 780 links,
respectively.
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3.2 Problem Statement

Example 3.1 shows that the use of random key predistribution [Eschenauer and
Gligor 2002] induces a binomial distribution B(N , K

P ) on the number of nodes
that share each seed. As demonstrated, the induced distribution can lead to
undesirable tail-effects related to the seeds that are shared by very few or very
many nodes in the WSN. The natural question which arises is whether key
predistribution schemes can be designed to induce other distributions which do
not suffer from the undesirable tail-effects. Moreover, the secondary question
which arises is whether it is possible to design universal algorithms for seed
assignment which can be used to realize a wide variety of distributions, leading
to a general class of application-dependent key predistribution schemes. To
the best of our knowledge, there are no existing key predistribution schemes
which can address these questions. In fact, any scheme derived from random
key predistribution [Eschenauer and Gligor 2002] results in the same binomial
distribution and tail-effects as in Example 3.1.

Hence, we aim to characterize the distribution on the number of nodes shar-
ing each seed and the algorithms that can be used to assign seeds to nodes
in the WSN. The goal of this characterization is to decouple the distribution
from the algorithm used to assign seeds, leading to a class of algorithms that
can be used to realize a wide variety of distributions which avoid undesirable
tail-effects, thus addressing both of the questions of interest.

4. NETWORK AND SECURITY MODELS

In this section, we state our models and assumptions about the capabilities of
adversaries and the deployment of the sensor network.

4.1 Adversarial Model

We assume that adversaries are able to eavesdrop and record transmissions
throughout the WSN. Furthermore, we assume that adversaries are able to
physically capture sensor nodes and access all information stored within them.
We are primarily concerned with adversaries attempting to capture a sufficient
number of nodes to compromise a given fraction of the secure links in the WSN.
Hence, we do not consider attacks on other network protocols (e.g., node repli-
cation, sleep deprivation attacks, wormhole attacks, etc.). We assume that the
adversary can capture sensor nodes in any part of the network, and we further
assume, as in many recently published works [Eschenauer and Gligor 2002; Liu
et al. 2005] that the captured nodes are chosen randomly and independently.

4.2 Network Model

Each sensor is assumed to be equipped with an omni-directional radio with fixed
communication range r.1 Furthermore, a pair of nodes that are within distance
r can establish a secure link only if sufficient assigned seeds are shared between

1Due to the use of spatial statistics, the area covered by the radio range of a node need not be circular.
Hence, this assumption is only necessary to guarantee bidirectional communication between sensor
nodes.
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them. The wireless network is made up of N sensor nodes deployed randomly
(uniformly) over a region A ⊆ R

2, and the resulting location of node i is given
by xi ∈ A for i = 1, . . . , N . The connectivity of the resulting secure WSN is
determined with respect to Definition 4.1 as follows.

Definition 4.1. The connectivity κ(G) of a graph G is defined as the min-
imum number of vertices that leave a disconnected graph when removed. A
graph G with κ(G) ≥ k is said to be k-connected.

A geometric random graph [Penrose 1999; Bettstetter 2002], as given by
Definition 4.2, is used to model the physical radio restrictions on the nodes of the
sensor network. Furthermore, the shared-seed relation between sensor nodes
is modeled using a logical graph as given by Definition 4.3. The combination of
the geometric random graph and the logical graph yields a graph-theoretical
model for the secure WSN in the form of the restricted network graph as given
by Definition 4.4.

Definition 4.2. A (Euclidean) geometric random graph G g (N , A, r) is the
result of random distribution of N vertices in the region A such that a pair of
vertices i and j are adjacent if and only if the (Euclidean) distance between
them is no more than r.

Definition 4.3. A logical graph GL(N , R) models a logical relationship be-
tween each pair of sensors such that a pair of nodes i and j are adjacent if and
only if the pairwise relation R is satisfied.

Definition 4.4. The restricted network graph G(N , A, r, R) represents a
WSN of N nodes deployed over a region A such that sensors i and j can com-
municate if and only if they are within distance r and the relation R is satisfied.
The graph G is given by the edgewise intersection of a geometric random graph
G g (N , A, r) and a logical graph GL(N , R).

We provide the following results relating to the node degree and the con-
nectivity of the restricted network graph. Theorem 4.7 provides a probabilistic
connectivity model which can be used to provide parameters to yield sufficient
network connectivity with a desired probability.

LEMMA 4.5. Given a node u with degree D in the logical graph GL(N , R),
the probability Pr[du ≥ k] that u has degree at least k in the graph G(N , A, r, R)
is given by

Pr[du ≥ k] = 1 − e−ρ D+1
N πr2

k−1∑
i=0

(
ρ D+1

N πr2
)i

i!
.

PROOF. The vertex density of the geometric random graph G g (N , A, r) is
given by ρ = N

|A| . The vertices are distributed according to a two-dimensional
Poisson point process with rate ρ, so the probability distribution of the number
of nodes within distance r of a node is a Poisson distribution [Cressie 1993].
Hence, the probability that the degree d g of a node is at least k in G g (N , A, r)
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Fig. 2. The radio range of a node in the WSN required for a connected network increases when
considering only neighboring nodes which share seeds.

is given by

Pr[d g ≥ k] = 1 − e−ρπr2
k−1∑
i=0

(ρπr2)i

i!
. (6)

Given that a vertex u has degree D in GL(N , R), du is at least k in G(N , A, r, R)
if and only if at least k of the D neighbors in GL(N , R) are within distance r
of u. Since the neighbors of u in GL(N , R) are determined independently of the
neighbors of u in G g (N , A, r), the neighbors of u in G(N , A, r, R) are uniformly
distributed in the region A. Hence, the neighbors of u in GL(N , R) form a
geometric random graph Gu

g (D + 1, A, r), represented by a Poisson point process
with rate D+1

|A| = ρ D+1
N . Hence, replacing ρ by ρ D+1

N in (6) completes the proof.

As suggested in the proof of Lemma 4.5, a decrease in the density of a ge-
ometric random graph requires an increase in the radio range r in order to
guarantee that the degree du of a node u in the graph GL(N , R) is sufficiently
high. This increase in radio range is illustrated in Figure 2. In what follows, we
prove that the probability given by Lemma 4.5 is independent for every pair of
nodes.

LEMMA 4.6. In a geometric random graph G g (N , A, r), the probability that
each of a pair of nodes has degree at least k is independent, i.e., for nodes u and v

Pr[du ≥ k, dv ≥ k] = Pr[du ≥ k]Pr[dv ≥ k].

PROOF. Let du\v denote the number of nodes in the region Ru\v that is within
radius r of node u but not within radius r of node v. Similarly, let du,v denote
the number of nodes in the region Ru,v that is within radius r of both u and v.
The joint probability Pr[du ≥ k, dv ≥ k] can be decomposed as

Pr[du ≥ k, dv ≥ k] =
∑
i≥k

Pr[du ≥ k|dv = i]Pr[dv = i] (7)

=
∑
i≥k

(
1 −

∑
j<k

Pr[du = j |dv = i]

)
Pr[dv = i]. (8)
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Noting that i > j in (8), the probability Pr[du = j |dv = i] can be expressed as

Pr[du = j |dv = i] =
j∑

n=0

Pr[du = j |dv = i, du,v = n]Pr[du,v = n] (9)

=
j∑

n=0

Pr[du\v = j − n|dv = i, du,v = n]Pr[du,v = n] (10)

=
j∑

n=0

Pr[du\v = j − n]Pr[du,v = n] (11)

=
j∑

n=0

e−ρ|Ru\v| (ρ|Ru\v|) j−n

( j − n)!
e−ρ|Ru,v| (ρ|Ru,v|)n

n!
(12)

= e−ρπr2 ρ j

j !

j∑
n=0

(
j
n

)
(πr2 − |Ru,v|) j−n|Ru,v|n (13)

= e−ρπr2 (ρπr2) j

j !
= Pr[du = j ]. (14)

Under the spatial Poisson point process model, the number of points that appear
in disjoint regions of A are independently distributed. Hence, in the above for-
mulation, (11) follows from the fact that the region Ru\v is disjoint from both the
region Ru,v and the region within radio range r of node v. The Poisson process
model further allows substitution of the identically distributed probabilities in
(12). Equation (13) follows by substituting |Ru\v| = πr2 − |Ru,v| and collecting
terms, and (14) is obtained by applying the binomial theorem and again using
the properties of the Poisson point process. Substituting (14) into (8) completes
the proof.

THEOREM 4.7. The restricted network graph G(N , A, r, R) resulting from the
edgewise intersection of a logical graph GL(N , R) with average node degree D
and a geometric random graph G g (N , A, r) with node density ρ = N

|A| is k-
connected with probability PG(k) given by

PG(k) =
(

1 − e−ρ D+1
N πr2

k−1∑
i=0

(
ρ D+1

N πr2
)i

i!

)N

.

PROOF. Applying Lemma 4.6 to each geometric random graph on (D + 1)
nodes with density ρ = D+1

|A| as in Lemma 4.5, the minimum node degree dmin

in the graph G(N , A, r, R) is given by

Pr[dmin ≥ k] = Pr[d1 ≥ k, . . . , dN ≥ k] = Pr[d ≥ k]N . (15)

As r increases, a geometric random graph becomes k-connected, asymptotically,
as soon as the minimum vertex degree is k with high probability [Penrose 1999].
Hence, the probability of connectivity is given by PG(k) = Pr[dmin ≥ k] =
Pr[d ≥ k]N .

Theorem 4.7 provides the model for probabilistic k-connectivity used
throughout this paper. Several papers on key predistribution have used a
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connectivity model based on the assumption that the underlying logical graph is
given by a random graph with independent edge probability p. In Corollary 4.8,
we show that this random graph model can be approximated by a special case
of the model given by Theorem 4.7.

COROLLARY 4.8. If GL(N , R) is a random graph with independent edge prob-
ability p, the probability PG(1) given by Theorem 4.7 can be approximated by
the result given by Eschenauer and Gligor [2002].

PROOF. The average vertex degree in a random graph on N vertices with
independent edge probability p is given by D = p(N −1), so Theorem 4.7 yields
a connectivity probability of

PG(1) =
(
1 − e−ρ

p(N−1)+1
N πr2

)N
(16)

≈ e−Ne−ρ
p(N−1)+1

N πr2

(17)

≈ e−Ne−ρpπr2

(18)

where (17) follows from the approximation 1 − x ≈ e−x for |x| 
 1 and (18)
follows by noting that p(N−1)+1

N ≈ p for N � 1. The probability of connectivity
stated by Eschenauer and Gligor [2002] using the random graph approach can
be expressed as

Pc = e−Ne− N
N−1 p(ρπr2−1)

(19)

≈ e−Ne−ρpπr2

(20)

where (20) follows by noting that N
N−1 p(ρπr2 − 1) ≈ pρπr2 since N

N−1 ≈ 1 and
p 
 1. Hence, the connectivity probabilities PG(1) and Pc are approximately
equal for all practical purposes.

5. SEED ASSIGNMENT FOR KEY PREDISTRIBUTION

In this section, we provide a canonical seed assignment model for key pre-
distribution. We discuss the assignment of seeds to nodes in a WSN and the
properties of such seed assignment in terms of a bipartite graph process. Based
on the graph-theoretic interpretation of seed assignment, we derive the canon-
ical seed assignment model and discuss the properties of the model. Based
on the graph-theoretical interpretation, we propose a sampling framework for
seed assignment in the canonical model which decomposes the space of seed
assignment algorithms into four classes. Finally, we propose a seed assignment
algorithm for each of the four classes.

5.1 Proposed Approach

The assignment of seeds to the nodes of a WSN can be seen as a process on a
bipartite graph g with vertex set V (g ) = N ∪S where the set N represents the
set of N nodes and the set S represents the set of P seeds. An edge (n, s) in the
edge-set E(g ) ⊆ N × S represents the assignment of the seed s to the node n.
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Fig. 3. Bipartite graph g representing the assignment of seeds to nodes in the WSN.

Figure 3 illustrates the use of a bipartite graph g for the assignment of seeds
to nodes in the WSN.

For such a bipartite graph g , we can describe the edge-set E(g ) in terms of
the degree deg(n) of each vertex n ∈ N and the degree deg(s) of each vertex
s ∈ S. Similarly, the assignment of seeds to nodes can be described in terms
of the number of seeds assigned to each node and the number of nodes which
share each seed. As in all schemes in Section 2, we assume that every node
receives exactly K seeds, corresponding to deg(n) = K for all n ∈ N , so the
number of edges in g is |E(g )| = NK. Hence, we can describe seed assignment
in terms of the degrees deg(s) for s ∈ S which result from the assignment of
seeds to nodes in the WSN. Specifically, we are interested in the probability
Pr[deg(s) = λ] that a seed s is assigned to exactly λ nodes in the network.

If a desired probability distribution Pr[deg(s) = λ], λ = 0, . . . , N , on the
set S is given, a graph algorithm is required in order to construct the graph g
such that the distribution is realized. However, due to the restriction that every
vertex in N must have degree K , such algorithms may not exist for all values of
N and K . An example that illustrates this fact for combinatorial design based
key predistribution schemes is discussed by Çamtepe and Yener [2004].

The graph-theoretical interpretation of seed assignment in WSNs is the basis
of our canonical seed assignment model. The canonical model is stated formally
by the following set of definitions in terms of the bipartite graph g . Table I
summarizes the notation for the canonical seed assignment model in WSNs in
terms of the graph-theoretical interpretation.

5.2 Canonical Seed Assignment Model

The canonical seed assignment model is primarily concerned with the probabil-
ity distribution on the degrees of the nodes in S, corresponding to the number
of nodes which share each seed. The set of nodes sharing each seed and the
probability distribution on the set sizes are defined formally in Definition 5.1
and Definition 5.2.
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Table I. Notation for the Canonical Seed Assignment Model in WSNs in Terms of the
Graph-Theoretical Interpretation

Bipartite Graph Process Canonical Model
g bipartite graph seed assignment in WSN
V (g ) vertex set of g set of nodes and seeds
N vertex partition set of V (g ) set of sensor nodes
N number of vertices in N number of nodes in WSN
S vertex partition set of V (g ) set of seeds
P number of vertices in S number of seeds assigned in WSN
E(g ) edge set of g , E(g ) ⊆ N × S seed assignment to nodes
deg(n) = K degree K of each vertex n ∈ N K seeds assigned to every node
S(s) {n : (n, s) ∈ E(g )} assignment set for seed s
deg(s) = |S(s)| degree of vertex s ∈ S number of nodes in assignment set S(s)
P distribution of deg(s), s ∈ S assignment distribution
� {deg(s) : s ∈ S} support of assignment distribution P
μ average vertex degree in S mean of distribution P

algorithm to construct g seed assignment algorithm
(P, ) — seed assignment scheme
d (λ, �) — boundary distance, min{|λ − ν| : ν ∈ �}

Definition 5.1. The set S(s) = {n ∈ N : (n, s) ∈ E(g )} of nodes that are
assigned the seed s ∈ S is the assignment set of seed s.

Definition 5.2. The discrete probability function P(λ) = Pr[|S(s)| = λ] spec-
ifying the probability that an assignment set S contains exactly λ nodes is the
assignment distribution. The support of an assignment distribution P is given
by � = {λ : P(λ) > 0} ⊆ {0, . . . , N }.

Given a desired assignment distribution, an algorithm must exist that can
realize the given distribution on the set S. Such an algorithm is defined formally
in Definition 5.3. The degree of imperfection of a seed assignment algorithm is
defined formally in Definition 5.5.

Definition 5.3. The seed assignment algorithm is used to realize an as-
signment distribution P, equivalently to construct a bipartite graph g with
degree distribution P on S.

Definition 5.4. A seed assignment scheme is given by the pair (P, ) of an
assignment distribution and a seed assignment algorithm.

Definition 5.5. A boundary set resulting from a seed assignment scheme
(P, ) is an assignment set S(s) of size λ /∈ �. The boundary distance of such a
boundary set is given by d (λ, �) = min{|λ − ν| : ν ∈ �}. Boundary sets result
from either the algorithm or the fact that there are only a finite number of
seeds s ∈ S with degree deg(s) distributed according to P, referred to hereafter
as the finite sampling effect.

We give a canonical seed assignment model in WSN in terms of the given
definitions. A seed assignment scheme (P, ) can be characterized entirely
by the assignment distribution P and the seed assignment algorithm . The
performance of a seed assignment scheme (P, ) can be described in terms of
the assignment distribution P, the given set of network parameters, and the
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boundary sets that result from the algorithm and the finite sampling effects.
The desired outcome for a seed assignment scheme (P, ) is a realization of the
assignment distributionP with no boundary sets. In other words, the histogram
representing the values |{s ∈ S : deg(s) = λ}| should be approximately equal to
the scaled assignment distribution P ·P(λ) for all λ ∈ �, and every node degree
deg(s), s ∈ S will be a member of �.

As illustrated by Example 3.1, the network connectivity and resilience to
node capture for a key predistribution scheme depend on the assignment dis-
tribution P. Hence, in order to discuss desirable properties and design an as-
signment distribution for a given application, the effects of the assignment
distribution on network connectivity and resilience to node capture must first
be investigated. This detailed analysis is presented in Section 6, and the design
of assignment distributions is thereafter discussed in Section 7.

As discussed in Section 3.2, we are interested in designing universal seed
assignment algorithms that can be used to realize a wide variety of assignment
distributions, depending on application requirements. In order to address this
problem, we propose a sampling framework for seed assignment algorithms. In
the sampling framework, an algorithm can realize a given assignment distri-
bution with minimal occurrence of boundary sets through repeated sampling of
the assignment distribution. Such a sampling framework ensures that the ana-
lytical characteristics of the seed assignment scheme depend only on the assign-
ment distribution as desired. Hence, in what follows, the sampling framework
for seed assignment algorithms is discussed in detail.

5.3 Sampling Framework for Seed Assignment Algorithms

In this section, we propose a sampling framework for seed assignment algo-
rithms. In the framework, the assignment distribution is repeatedly sampled
and assignment sets are constructed as a function of the samples of the assign-
ment distribution. We consider algorithms based on random selection using the
fundamental combinatorial methods of selection with and without replacement.
Furthermore, we consider algorithms of two types. The first type selects an as-
signment set from N for each seed subject to the constraint that deg(n) = K
for all n ∈ N . The second type selects a subset of K seeds from S for each
node subject to the constraint that the values of deg(s) for s ∈ S are distributed
according to the assignment distribution P. Hence, the sampling framework
consists of four classes of algorithms.

We provide an example from each of the four classes of seed assignment
algorithms in the sampling framework, each of which is named for the corre-
sponding class. The Seed Selection with Replacement (SSR) and Seed Selection
with No Replacement (SSNR) algorithms are examples from the classes of se-
lection with and without replacement, respectively, of subsets of S. The Node
Selection with Replacement (NSR) and Node Selection with No Replacement
(NSNR) algorithms are examples from the classes of selection with and without
replacement, respectively, of subsets of N . Table II illustrates the four classes
of seed assignment algorithms in the sampling framework and classifies each
of the four algorithms. In what follows, each algorithm is described in detail,
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Table II. The Four Classes of Seed Assignment Algorithms in the Sampling
Framework are Based on Whether the Algorithm is Based on Selection With or

Without Replacement and Whether the Algorithm Selects Subsets of S or Subsets of N
Selection With Replacement Selection Without Replacement

Subsets of S SSR SSNR
Subsets of N NSR NSNR

Fig. 4. Code for the SSR seed assignment algorithm.

and code and an illustration are provided for each of the four algorithms. In
the code for each algorithm, select(X , y) denotes uniform random selection of a
subset of y elements from the set X , and sample(P) denotes the generation of
a sample from an assignment distribution P.

5.3.1 Seed Selection with Replacement (SSR). The SSR algorithm per-
forms selection with replacement from a set 
 containing pairs (s, λ), where
s ∈ S and λ ∈ � is a sample of the assignment distribution P. The number of
seeds P = |S| = |
| must be sufficient to provide a total of NK edges in the
graph g . Hence, we require

∑
(s,λ)∈
 λ ≥ NK. Once 
 is constructed, seeds are

assigned to each node using random selection with replacement. For each of
the N nodes, a random selection of K elements of 
 are selected, and the seed
s of each selected pair (s, λ) is assigned to the node. The value λ in each selected
pair (s, λ) is decremented, and the pair is replaced back into 
 if λ > 0. Thus, as
the algorithm proceeds, |
| decreases. Near the termination of the algorithm,
it is possible that

∑
(s,λ)∈
 λ = K but |
| < K , leading to a case where no set of

K unique seeds can be assigned to a remaining node. Hence, if |
| = K0 < K ,
the (K − K0) remaining seeds must be selected from those which have already
been removed from 
. If any of the K0 seeds were initially assigned a sample
value of λmin = min{λ ∈ �}, these seeds will correspond to boundary sets of
size λmin − 1. Furthermore, if any of the (K − K0) seeds selected from those
that were already removed from 
 were initially assigned a sample value of
λmax = max{λ ∈ �}, these seeds will correspond to boundary sets of size λmax+1.
Code for the SSR algorithm is provided in Figure 4, and a graphic illustration
is provided in Figure 5.
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Fig. 5. SSR seed assignment algorithm with numbered steps: 1—select subset of seeds, 2—assign
seeds to node, 3—decrement λ for each seed, 4—replace seeds.

5.3.2 Seed Selection with No Replacement (SSNR). The SSNR algorithm
performs selection without replacement from a set 
 containing pairs (s, λ)
where s ∈ S and λ ∈ � is a sample of the assignment distribution P. The
number of seeds P = |S| = |
| must be sufficient to provide a total of NK edges
in the graph g . Hence, we require

∑
(s,λ)∈
 λ ≥ NK. Once 
 is constructed, seeds

are assigned to each node using random selection without replacement in a total
of λmax = max{λ ∈ �} rounds. In a single round, which continues as long as 
 is
nonempty, a random subset of K pairs (s, λ) in 
 is selected without replacement
for each subsequent node, and the value λ in each selected pair is decremented.
Pairs (s, λ) such that λ = 0 are permanently removed from 
 for all subsequent
rounds, so the initial size of 
 can decrease in every subsequent round. In a
given round, if K is not a factor of |
|, there will be K0 < K seeds remaining
for the last node of the round. These K0 seeds can be combined with a random
selection of (K − K0) seeds which have not been permanently removed from 
.
The (K − K0) selected pairs will then be excluded from the subsequent round
of the algorithm. If this occurs in the K th round, any of the (K − K0) selected
seeds which were initially assigned a sample value of λmax = max{λ ∈ �} will
yield a boundary set of size λmax + 1. Code for the SSNR algorithm is provided
in Figure 6, and a graphic illustration is provided in Figure 7.

5.3.3 Node Selection with Replacement (NSR). The NSR algorithm per-
forms selection with replacement from a set 
 containing pairs (n, c) where
n ∈ N and c ≥ 0 counts the number of seeds assigned to node n. For each
seed, a sample λ is generated from the assignment distribution P, and a set
of λ pairs (n, c) are selected from 
. The assignment set for the given seed
is composed of the n entries in the λ selected pairs. Each time a pair (n, c)
is selected, the counter c is incremented, and the pair is replaced back into

 only if c < K . Hence, |
| decreases as the algorithm proceeds. As soon
as |
| < λmax = max{λ ∈ �}, it is possible for the sampled value of λ to be less
than |
|, so the entire set 
 is selected. If |
| < λmin = min{λ ∈ �}, this will
lead to boundary sets that vary in size between 1 and λmin − 1. In simulation, a
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Fig. 6. Code for the SSNR seed assignment algorithm.

Fig. 7. SSNR seed assignment algorithm with numbered steps: 1—select subset of seeds, 2—assign
seeds to node, 3—decrement λ for each seed.

majority of the boundary sets which occur have size much smaller than λmin −1.
Code for the NSR algorithm is provided in Figure 8, and a graphic illustration
is provided in Figure 9.

5.3.4 Node Selection with No Replacement (NSNR). The NSNR algorithm
performs selection without replacement from the set 
, initially equal to N .
Assignment sets are generated using random selection without replacement in
a total of K rounds. In a single round, which continues as long as 
 is nonempty,
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Fig. 8. Code for the NSR seed assignment algorithm.

Fig. 9. NSR seed assignment algorithm with numbered steps: 1—select subset of nodes, 2—assign
seed to nodes, 3—increment c for each node, 4—replace nodes.

a sample λ is generated from the assignment distribution P, a set of λ nodes in

 is selected for each subsequent seed, and the seed is assigned to the selected
nodes. If the sample λ is such that |
| < λ, the seed is assigned to the |
|
remaining nodes and a random selection of (λ − |
|) other nodes, which are
then removed from the subsequent round. In the K th round, since we do not
want to assign (K + 1) seeds to any node, the final seed may be assigned to
less than λmin = min{λ ∈ �} nodes, resulting in a single boundary set of size
between 1 and λmin − 1. We note that if � = {λ} and λ is a factor of N , the
NSNR algorithm will not yield boundary sets, and the result of the algorithm
is equivalent to a deterministic seed assignment algorithm similar to those of
Çamtepe and Yener [2004] and Lee and Stinson [2004]. Code for the NSNR
algorithm is provided in Figure 10, and a graphic illustration is provided in
Figure 11.

The algorithms proposed herein yield a result that is essentially similar. The
primary differences are the behavior of the boundary sets that result and their
computational cost. Though these sets occur nondeterministically, their gen-
eral behavior can be characterized. Furthermore, there tends to be a trade-off
between the computational cost of an algorithm and the resulting boundary
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Fig. 10. Code for the NSNR seed assignment algorithm.

Fig. 11. NSNR seed assignment algorithm with numbered steps: 1—select subset of nodes, 2—
assign seed to nodes.

distance, in that the boundary distance can be decreased at the expense of
increased computation. Hence, the choice of algorithm may depend on the de-
sired boundary distance tolerance and the allowable computational cost.

6. ANALYSIS OF SEED ASSIGNMENT SCHEMES

In this section, we provide general analysis for a seed assignment scheme (P, )
assuming the impact of any boundary sets is negligible. We compute the prob-
ability that a pair of nodes share a given number of seeds, the probability of
network connectivity, and the resilience to node capture. Each of the quantities
is provided in such a way that the worst case with respect to the assignment
distribution P can be easily determined. Furthermore, the average case is com-
puted for each quantity with respect to the assignment distribution P. The
average case is most helpful in determining sufficiency of network parameters,
while the worst case is most helpful in determining whether a given set of
parameters will result in undesirable tail-effects, as discussed in Section 3.1.
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6.1 Probability of Sharing Seeds

The average and worst-case analysis of a key predistribution scheme can be
performed with respect to the probability that a pair of nodes share any number
of seeds. In addition to performance analysis, this probability is important for
various applications based on local connectivity properties. For example, the q-
composite scheme of Chan et al. [2003] requires a pair of nodes to share at least
q keys for some q ≥ 1. We compute the probability ps(i) that a pair of nodes
share exactly i seeds as a function of the assignment set sizes λ corresponding
to the seeds in each node. We then compute the average probability taken over
the assignment distribution P.

LEMMA 6.1. A node u containing a seed s, such that λ = |S(s)| is known, will
share s with a node v with probability pλ = λ−1

N−1 .

PROOF. Given a node u containing s, exactly (λ−1) of the remaining (N −1)
nodes contain s. Hence, the probability that v is one of these (λ − 1) nodes is
λ−1
N−1 .

THEOREM 6.2. A node u containing seeds s1, . . . , sK , such that λ j = |S(sj )| for
j = 1, . . . , K are known, will share exactly i seeds with a node v with probability
ps(i, λ1, . . . , λK ) given by

ps(i, λ1, . . . , λK ) = 1
i!(K − i)!

∑
π

(
i∏

j=1

λπ j − 1
N − 1

×
K∏

j=i+1

N − λπ j

N − 1

)

where the summation is over all permutations π = (π1, . . . , πK ) of (1, . . . , K ).

PROOF. The event that v shares sj with u can be modeled as a Bernoulli trial
with success probability pλ j given by Lemma 6.1. Since the assignment sets
are chosen independently, the K events are independent. Hence, the number of
events i that occur is given by the sum of the K independent Bernoulli random
variables. The probability that exactly i of the K events occur is given by the
sum over all possible choices of i of the K events. For a given choice of i events,
the contribution to the overall probability is the product of pλ j for the i events
which occur multiplied by the product of 1 − pλ j for the (K − i) events which do
not occur. The term 1

i!(K −i)! is added to compensate for the i!(K −i)! permutations
that result in the same choice of i events.

THEOREM 6.3. A node u will share exactly i seeds with a node v with proba-
bility ps(i) given by

ps(i) =
(

K
i

) (
μ − 1
N − 1

)i (
N − μ

N − 1

)K −i

where μ is the average assignment set size according to the assignment distri-
bution P.

PROOF. The probability ps(i) can be computed by taking the expected value
of the probability ps(i, λ1, . . . , λK ) given in Theorem 6.2 with respect to the set
of samples λ1, . . . , λK . Hence, letting E[·] represent this expected value, ps(i) is
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given by

ps(i) = E
[

1
i!(K − i)!

∑
π

(
i∏

j=1

λπ j − 1
N − 1

K∏
j=i+1

N − λπ j

N − 1

)]
. (21)

Since the samples λ j are independent, this is equivalent to taking the expected
value with respect to each λ j . Moving the expected value within the summation
and using the independence of the λ j yields

ps(i) = 1
i!(K − i)!

∑
π

(
i∏

j=1

Eπ j [λπ j ] − 1
N − 1

×
K∏

j=i+1

N − Eπ j [λπ j ]
N − 1

)
. (22)

Identical distribution of the λ j suggests that each Eπ j [λπ j ] is equal to the mean
μ of the assignment distribution P. The product terms are thus independent of
the index j , and the summands are independent of the permutation π , so the
sum-of-products form is replaced by a single product of powers with coefficient

K !
i!(K −i)! . Replacing this coefficient with

(K
i

)
completes the proof.

Theorem 6.2 and Theorem 6.3 are useful in respectively determining the
worst-case and average probability of sharing seeds. Theorem 6.2 is particu-
larly applicable to the worst-case analysis in that it can be used to compute
the worst-case probability of sharing seeds regardless of how the worst case is
defined. For example, the designer of the key predistribution scheme can design
an assignment distribution based on a given tolerance to one minimal λ value
by bounding the probability 1− ps(0, λmin, μ, . . . , μ). The designer can similarly
design the key predistribution scheme based on the expected worst-case prob-
ability by bounding the probability 1− ps(0, λ

(1)
min, . . . , λ

(K )
min) where λ

(1)
min, . . . , λ

(K )
min

are order statistics similar to those discussed in Section 3.1.

6.2 Network Connectivity

The probability of connectivity of the secure WSN is given by Theorem 4.7 in
Section 4.2 as a function of the expected node degree D in the logical graph
GL(N , R). For simplicity, we assume the relation R is true if and only if the
given pair of nodes share at least one seed. Similar results can be derived for
the modified relations of schemes such as the q-composite scheme [Chan et al.
2003].

We note that there are two forms of randomness present in a seed assignment
algorithm. The number of nodes λ is sampled randomly from the assignment
distribution P, and the assignment set of λ nodes is selected randomly. We first
compute the expected degree d (u) of a node u assuming the sizes λ1, . . . , λK of
the K assignment sets corresponding to the seeds stored in node u are fixed
and known. This computation is performed using a combinatorial occupancy
problem in which each pair (u, v), for v ∈ N \ {u}, is represented by a bin
and a shared seed between nodes u and v is represented by a ball in the bin
representing the pair (u, v). The assignment of a seed sj to node u and (λ j −1) of
the (N − 1) other nodes thus corresponds to placing one ball in each of (λ j − 1)
of the (N − 1) bins. This occupancy problem is illustrated in Figure 12. The
degree d (u) of node u in the graph GL(N , R) is given by the number of bins
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Fig. 12. Seed assignment to nodes in the WSN is represented by a combinatorial occupancy prob-
lem where each pair of nodes (u, v) is represented by a bin, and a shared seed between nodes u and
v is indicated by a ball in the bin (u, v).

(u, v) which contain at least one ball. The expected node degree D is computed
by taking the expected value of the node degree d (u) over all possible values of
λ1, . . . , λK according to a given assignment distribution P.

LEMMA 6.4. A node u with seeds s1, . . . , sK , such that λ j = |S(sj )| for
j = 1, . . . , K are known, will not share a seed with e(u) nodes according to
the probability Pr[e(u) ≥ E] given by

Pr[e(u) ≥ E] =
N−1∑
m=E

(−1)m−E
(

m − 1
E − 1

)(
N − 1

m

) K∏
j=1

(N−1−m
λ j −1

)
(N−1
λ j −1

) .

PROOF. Placing (λ j − 1) balls in (N − 1) bins such that a given set of m bins
remain empty can be done in exactly

(N−1−m
λ j −1

)
ways. Thus, the number of ways

to assign K seeds in such a way that a particular set of m bins remains empty
is given by the product

∏K
j=1

(N−1−m
λ j −1

)
. The number of ways to select the m bins

to remain empty is
(N−1

m

)
. By the Inclusion-Exclusion Principle [Johnson 1980],

the number of ways M (E) that K subsets of bins can be chosen such that at
least E bins remain empty is given by

M (E) =
N−1∑
m=E

(−1)m−E
(

m − 1
E − 1

)(
N − 1

m

) K∏
j=1

(
N − 1 − m

λ j − 1

)
. (23)

Dividing M (E) by the total number of ways to choose the K subsets given by
M (0) yields the probability that at least E bins remain empty.

THEOREM 6.5. A node u with seeds s1, . . . , sK , such that λ j = |S(sj )| for
j = 1, . . . , K are known, will have expected degree E[d (u)] in the logical graph
GL(N , R) given by

E[d (u)] = (N − 1)

(
1 −

K∏
j=1

λ j − 1
N − 1

)
.
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PROOF. The expected number of empty bins E[e(u)] can be computed using
the fact that

E[e(u)] =
N−1∑
E=1

Pr[e(u) ≥ E] (24)

since e(u) is a nonnegative discrete random variable [Feller 1957]. Substitut-
ing the result of Lemma 6.4 into (24) provides an expression for E[e(u)]. The
expected degree E[d (u)] is then given by

E[d (u)] = N − 1 − E[e(u)] (25)

because each nonempty bin corresponds to an edge in the graph GL(N , R).
Replacing E[e(u)] with the result from Lemma 6.4 yields

E[d (u)] = N − 1 −
N−1∑
E=1

N−1∑
m=E

(−1)m−E
(

N − 1
m

)(
m − 1
E − 1

) K∏
j=1

(N−1−m
λ j −1

)
(N−1
λ j −1

) . (26)

The order of summation can be reversed by changing the limits of summation
to sum over m = 1, . . . , N − 1 and E = 1, . . . , m. Terms that are independent
of E can then be moved outside of the inner summation, yielding

E[d (u)] = N − 1 −
N−1∑
m=1

(
N − 1

m

) K∏
j=1

(N−1−m
λ j −1

)
(N−1
λ j −1

) m∑
E=1

(−1)m−E
(

m − 1
E − 1

)
. (27)

The binomial theorem suggests that

m∑
E=1

(−1)m−E
(

m − 1
E − 1

)
=

m−1∑
E=0

(−1)m−1−E
(

m − 1
E

)
= 0m−1. (28)

Since 00 = 1, the only nonzero term of the summation is when m = 1. Hence
the expected degree of node u is given by

E[d (u)] = N − 1 −
(

N − 1
1

) K∏
j=1

(N−2
λ j −1

)
(N−1
λ j −1

) (29)

= (N − 1)

(
1 −

K∏
j=1

(N − 2)!(λ j − 1)!(N − λ j )!
(λ j − 1)!(N − λ j − 1)!(N − 1)!

)
(30)

= (N − 1)

(
1 −

K∏
j=1

N − λ j

N − 1

)
. (31)

THEOREM 6.6. The expected node degree D in the logical graph GL(N , R) is
given by

D = (N − 1)

(
1 −

(
N − μ

N − 1

)K
)

.
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PROOF. The expected node degree D is computed by taking the expected
value of E[d (u)] given by Theorem 6.5 with respect to each of the set of random
variables λ1, . . . , λK . Denoting this expected value by E[·] yields

D = E
[

(N − 1)

(
1 −

K∏
j=1

N − λ j

N − 1

)]
. (32)

Since the samples λ1, . . . , λK are independent, this is equivalent to taking the
expected value with respect to each of the random variables λ j , denoted by E j [·].
This independence yields

D = (N − 1)

(
1 −

K∏
j=1

N − E j [λ j ]
N − 1

)
. (33)

Identical distribution of the λ j suggests that E j [λ j ] can be replaced by the mean
μ of the assignment distribution P completing the proof.

The result of Theorem 6.6 can then be used in conjunction with Theorem 4.7
to yield the probability PG(k) that the restricted network graph G(N , A, r, R) is
k-connected. Hence, given the number N of sensors in the network, seed storage
K , desired connectivity k, deployment density ρ, and radio range r, the mean
μ of the assignment distribution P can be chosen to guarantee k-connectivity
with the desired probability.

6.3 Resilience to Attacks

Since every seed is assigned to multiple nodes, a seed may be used to establish
many secure links throughout the network. Thus, an adversary who randomly
captures nodes may be able to decrypt secure communication links between un-
captured nodes, referred to as link compromise. The average probability of link
compromise f (x) due to the capture of x nodes often depends on the underlying
structure of the key predistribution scheme. Hence, for generality, our primary
security metric is the probability p(m, x) that exactly m of the x captured nodes
contain a given seed. Similar to the results of Section 6.1, we first compute the
results when the assignment set size λ of the given seed is fixed and known,
and then compute the average probability as a function of the assignment dis-
tribution P.

LEMMA 6.7. Given uncaptured nodes u and v that share a seed s such that
λ = |S(s)| is known, the probability p(m, x, λ) that exactly m of the x captured
nodes contain s is given by

p(m, x, λ) =
∑

I

(
m∏

j=1

λ − j − 1
N − I j − 1

×
∏
i /∈I

N − λ − i + mi + 1
N − i − 1

)

where the summation is taken over all vectors I = (I1, . . . , Im) such that 1 ≤
I1 < · · · < Im ≤ x and mi = max{h : Ih < i}.
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PROOF. Each successive node capture can be modeled as a Bernoulli trial
that is successful if an additional copy of the seed s is contained in the captured
node. The success probability of the xth trial, however, depends on the num-
ber of previously successful trials because the maximum number of successful
trials is fixed at λ. Hence, the Bernoulli trials are not independent. Letting
I = (I1, . . . , Im) represent the indices of the m successful trials out of the x
attempts. In trial i, given that mi nodes containing s have been captured, the
probability that one of the λ − 2 − mi nodes containing the seed s was selected
randomly from the (N − 2) − (i − 1) nodes remaining in the network is given
by λ−2−mi

N−i−1 . The number of previously captured nodes mi is given by the num-
ber of indices Ih in I with h < i, i.e., mi = max{h : Ih < i}. The contribution
p(m, x, λ, I ) for a given vector I is thus equal to the product of the success prob-
abilities for the m trials I1, . . . , Im and the failure probabilities for the (x − m)
remaining trials given by

p(m, x, λ, I ) =
∏
i∈I

λ − 2 − mi

N − i − 1
×

∏
i /∈I

N − λ − i + mi + 1
N − i − 1

. (34)

For I j ∈ I , the value of mIj is simply given by the number of prior successes
( j − 1). Hence, the contribution p(m, x, λ, I ) for a given vector I is given by

p(m, x, λ, I ) =
m∏

j=1

λ − j − 1
N − I j − 1

×
∏
i /∈I

N − λ − i + mi + 1
N − i − 1

. (35)

The final result is obtained by summing over all possible I .

LEMMA 6.8. Given uncaptured nodes u and v that share a seed s such that
λ = |S(s)| is known, if x 
 N − 2 and m 
 λ − 2, the probability p(m, x, λ) that
exactly m of the x captured nodes contain s can be approximated as

p(m, x, λ) ≈
(

x
m

) (
λ − 2
N − 2

)m (
N − λ

N − 2

)x−m

.

PROOF. If x 
 N and m 
 λ − 2 and mi = max{h : Ih < i} as in Lemma 6.7,
then the approximations

(λ − 2) − (mi − 1)
(N − 2) − (x − 1)

≈ λ − 2
N − 2

(36)

(N − 2) − (λ − 2 − mi) − (x − 1)
(N − 2) − (x − 1)

≈ (N − 2) − (λ − 2)
N − 2

= N − λ

N − 2
(37)

can be substituted into the result of Lemma 6.7, yielding

p(m, x, λ) =
∑

I

(
m∏

j=1

λ − 2
N − 2

×
∏
i /∈I

N − λ

N − 2

)
. (38)

Each product term is independent of the indices i and j , so the result reduces
to

p(m, x, λ) =
∑

I

(
λ − 2
N − 2

)m (
N − λ

N − 2

)x−m

. (39)
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Furthermore, the summand is independent of the index I , so the summation
over I can be replaced by the summand multiplied by

( x
m

)
corresponding to the

number of possible vectors I .

THEOREM 6.9. Given uncaptured nodes u and v that share a seed s, the prob-
ability p(m, x) that exactly m of the x captured nodes contain s can be approxi-
mated as

p(m, x) ≈
(

x
m

) (
μ − 2
N − 2

)m (
N − μ

N − 2

)x−m

where μ is the mean of a given assignment distribution P.

PROOF. This result is an approximation to the result of Lemma 6.8 obtained
by replacing the λ by the mean μ of the random variable λ with respect to the
assignment distribution P.

The approximations in Lemma 6.8 and Theorem 6.9 are useful in respectively
approximating the worst-case and average probability of link compromise. The
average probability of link compromise f (x) is dependent on the application and
the link-key establishment protocol, though it is typically a function of p(m, x)
approximated by Theorem 6.9. Since p(m, x) depends only on the mean μ of the
assignment distribution P, the network size N , and the number of captured
nodes x, it can be a useful metric in designing the assignment distribution P.

The probability of link compromise f (x, λ) for a link secured by a seed shared
by λ nodes is also application- and protocol-dependent, though it is typically a
function of p(m, x, λ) approximated by Lemma 6.8. The worst-case probability
of link compromise can thus be computed as f (x, λmax) where λmax is similar to
that discussed in Section 3.1. Since p(m, x, λmax) depends only on the maximum
value λmax in the support of the assignment distribution P, the network size N ,
and the number of captured nodes x, it can be a useful metric in designing the
assignment distribution P.

7. ASSIGNMENT DISTRIBUTIONS

Because the algorithms in the sampling framework presented in Section 5.3
can realize a given assignment distribution P with negligible occurrence of
boundary sets, the assignment distributions can be designed independently
of the seed assignment algorithms. Hence, assignment distributions can be
designed with respect to the analytical results in Section 6 in terms of average
and worst-case network connectivity and resilience to node capture. However,
the finite sampling effects described in Definition 5.5 must still be considered
in the design of an assignment distribution.

In general, the design of an assignment distribution depends highly on the
application requirements and link-key establishment scheme. Furthermore,
the average network connectivity and resilience to node capture depend only
on the mean μ of the assignment distribution P. Hence, the optimal assignment
distribution is application specific.

The design of an assignment distribution P can be broken into two pri-
mary steps. The first step is to determine the support � of the assignment
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distribution, and the second step is to determine the probability mass P(λ) for
every λ ∈ �.

7.1 Assignment Distribution Support

In order to compensate for finite sampling effects, the size of the support � of
the assignment distribution P should be larger than 1. In contrast, however,
the size of � should be as small as possible to avoid the undesirable tail-effects
discussed in Section 3.1. Though not a requirement, we assume the support
� is a contiguous subset of {0, . . . , N }, i.e., if λ1, λ2 ∈ � then λ ∈ � for all
λ ∈ {0, . . . , N } such that λ1 ≤ λ ≤ λ2. Furthermore, � should contain the
values nearest to the average value μ of the assignment distribution P required
for sufficient network connectivity as given by Theorem 4.7 and Theorem 6.6.
Hence, the design of the support � is equivalent to determination of λmin =
min{λ ∈ �} and λmax = max{λ ∈ �} such that λmin ≤ μ ≤ λmax.

In order to determine the value of λmin, we consider the worst-case proba-
bility of sharing seeds ps(i, λmin, . . . , λmin) as given by Theorem 6.2. Similarly,
to determine the value of λmax, we consider the worst-case resilience to node
capture in terms of the probability p(m, x, λmax) as given by Lemma 6.7 and ap-
proximated by Lemma 6.8. Furthermore, we must consider the finite sampling
effects that arise due to the choice of λmin, λmax, and the seed assignment algo-
rithms. For the SSR and SSNR algorithms, only boundary sets with distance
1 can occur, so the finite sampling effects can be seen as negligible. However,
for the NSR and NSNR algorithms, boundary sets with distance between 1 and
λmin−1 may occur. Hence, for the NSR and NSNR algorithms, we are interested
in minimizing the boundary distance of the resulting boundary sets. Through
simulation, we note that as the value |�| = λmax − λmin + 1 decreases, the
distance of boundary sets due to finite sampling effects tends to increase. Thus,
to avoid boundary sets with large distance, λmax should be increased and λmin

should be decreased. Hence, there exists a trade-off among improving the worst-
case probability of sharing seeds, improving the worst-case resilience to node
capture, and minimizing the boundary distance of boundary sets which occur
due to finite sampling effects. Therefore, determining the optimal values of λmin

and λmax is application-dependent.

7.2 Probability Mass on �

Once the support � of the assignment distribution P is determined, the prob-
ability mass P(λ) for each λ ∈ � must be determined. However, if |�| > 1,
there are an uncountably infinite number of possible assignment distributions
for given values of μ, λmin, and λmax, leading to a high degree of freedom in
determining the assignment distribution P.

As worst-case probability of sharing seeds and the worst-case resilience to
node capture are best mitigated by an assignment distribution with trivial
support |�| = 1, we approximate this performance by placing more probability
mass on the values of λ nearest to μ, resulting in an assignment distribution
which is peaked near μ and decreases as |μ − λ| increases.
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7.3 Illustration of Assignment Distribution Design

We provide the following example to illustrate the design of an assignment
distribution for a given link-key establishment scheme and set of network
parameters.

Example 7.1. Let a WSN of N = 5, 000 nodes with K = 100 seeds per
node and a radio range of r = 40m be deployed over a region A of area |A| =
0.5km2 such that 2-connectivity is desired with probability 0.99. We assume
that any nodes sharing at least one seed can establish a link-key as a function
of the shared seeds and a link can be compromised as soon as the seeds used
to compute the link-key are captured. Furthermore, we assume that the value
λmin must be such that the worst-case probability of sharing seeds is within
20% of the average probability of sharing seeds, and the value λmax must be
such that the worst-case probability of link compromise is within 20% of the
average probability of link compromise for x = 50 captured nodes.

Theorem 4.7 yields a minimum average vertex degree of D = 1, 813 in the
logical graph GL(N , R). Theorem 6.6 yields a minimum average assignment
set size of μ ≥ 23.47. The average probability of sharing at least 1 seed is given
by Theorem 6.3 as (1 − ps(0)) = 0.3627. Hence, the value of λmin must result in
(1 − ps(0, λmin, . . . , λmin)) ≥ 0.3. Theorem 6.2 yields λmin ≥ 19. The value of λmax

must result in 1 − p(0, 50, λmax) ≤ 0.25. Lemma 6.8 yields λmax ≤ 30. Hence,
we choose the support � = {19, . . . , 28} and the symmetric probability mass
function P given by

P(λ) =

⎧⎪⎪⎨
⎪⎪⎩

λ−18
30 , λ ∈ {19, . . . , 23}

29−λ
30 , λ ∈ {24, . . . , 28}

0, else

(40)

resulting in average assignment set size μ = 23.5 ≥ 23.47. Figure 13 displays
the boundary sets that occur as a result of finite sampling effects for the assign-
ment distribution given in (40) when each of the four algorithms in Section 5.3
is used.

8. MODELING EXISTING SCHEMES

In this section, we demonstrate that many existing key predistribution schemes
can be modeled and analyzed using the canonical model of seed assignment. The
schemes addressed in this section are those that were addressed in Section 2
and are briefly summarized in Table III in terms of the canonical model.

The threshold secret-sharing schemes of Blom [1984] and Blundo et al.
[1992] can be described in the canonical model by the seed assignment scheme
(Ptss, tss) where the assignment distribution has support �tss = {N }. The al-
gorithm tss is the trivial algorithm which assigns a matrix row or polynomial
share to each node.

The one-way hash function scheme of Leighton and Micali [1993] can sim-
ilarly be modeled by the seed assignment scheme (Pohf, ohf) where the as-
signment distribution has support �ohf = {N }. The algorithm ohf randomly
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Fig. 13. Occurrence of boundary sets for Example 7.1 using (a) SSR algorithm (b) SSNR algorithm
(c) NSR algorithm (d) NSNR algorithm.

generates identifiers αi and assigns the identifiers and hash values hαi (X i) for
each node.

The random key predistribution scheme of Eschenauer and Gligor [2002] can
be described in the canonical model by the seed assignment scheme (Prkp, rkp)
where Prkp is the binomial distribution given by (4) in Section 3.1. The assign-
ment algorithm rkp assigns a random subset of K keys to each node from a
total of P � K keys. The published result for resilience to node capture [Chan
et al. 2003] can be obtained from Theorem 6.9 by noting that the average of a
binomial distribution is μ = NK

P .
The schemes of Chan et al. [2003], Ramkumar et al. [2003], Ramkumar and

Memon [2004], Di Pietro et al. [2003], Zhu et al. [2003], Du et al. [2003], Liu and
Ning [2003], and Liu et al. [2005] can be described by the same seed assignment
scheme (Prkp, rkp) because the modifications to the schemes do not affect the
seed assignment. The resilience of these schemes can be computed as a function
of the result of Theorem 6.9 using the specifics of each scheme.
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Table III. Existing Key Predistribution Schemes are Described in the Canonical Model (A single
value for the assignment distribution corresponds to the fixed size of assignment sets resulting
from the scheme, and B(n, p) corresponds to a binomial distribution with parameters n and p)

Reference Assignment Distribution Algorithm
[Blom 1984] N secret share
[Blundo et al. 1992] N secret share
[Leighton and Micali 1993] N hashed secret
[Eschenauer and Gligor 2002] B(N , K

P ) subset of seeds
[Ramkumar et al. 2003] B(N , K

P ) subset of seeds
[Chan et al. 2003] B(N , K

P ) subset of seeds
[Chan et al. 2003] 2 seeds to random pairs
[Du et al. 2003] B(N , K

P ) subset of secret shares
[Liu and Ning 2003; Liu et al. 2005] B(N , K

P ) subset of secret shares
[Çamtepe and Yener 2004] λ combinatorial design
[Çamtepe and Yener 2004] m + B(N − b − m, m

b ) combinatorial design
[Lee and Stinson 2004] λ combinatorial design
[Lee and Stinson 2004] rL + 1 strongly regular graph
[Ramkumar and Memon 2004] B(N , K

P ) subset of seeds
[Chan and Perrig 2005] K√N hyper-grid arrangement
[Liu et al. 2005] K√N hyper-grid arrangement

The random pairwise scheme of Chan et al. [2003] can be described in the
canonical model by the seed assignment scheme (Prp, rp) where the assign-
ment distribution has support �rp = {2}. The assignment algorithm rp assigns
a total of K unique pairwise keys to each node. The perfect resilience of the ran-
dom pairwise scheme is reflected in the result of Theorem 6.9.

The deterministic seed assignment schemes of Çamtepe and Yener [2004]
and Lee and Stinson [2004] based on combinatorial block designs can be de-
scribed in the canonical model by the seed assignment scheme (Pcbd, cbd)
where the assignment distribution has support �cbd = {λ}. The assignment al-
gorithm cbd assigns a common seed to each node in a block of the corresponding
combinatorial block design. Such schemes assume that N

L is an integer.
Hybrid symmetric block designs of Çamtepe and Yener [2004] can be de-

scribed in the canonical model by the seed assignment scheme (Phs, hs) where
Phs is the distribution corresponding to the sum of a constant m and a binomial
random variable with parameters N − b − m and m

b . This is derived by noting
that each seed is contained in exactly m of the b blocks of the combinatorial
design and (b − m) of the b blocks of the complementary combinatorial design.
The algorithm hs assigns a block of the design and a subset of a randomly
selected block from the complementary design.

The ID-based one-way scheme of Lee and Stinson [2004] can be described
in the canonical model by the seed assignment scheme (Pios, ios) where the
assignment distribution has support �ios = {rL+1}. The assignment algorithm

ios assigns to each node ui, i = 1, . . . , L represented by the graph vertex u in
the strongly regular graph a key ku and the values h(kv‖ID(ui)) for each vertex
v adjacent to u in the strongly regular graph. This scheme assumes that N

L is
an integer.

Hyper-grid seed assignment schemes such as those of Chan and Perrig [2005]
and Liu et al. [2005] can be described in the canonical model by the seed
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assignment scheme (Phg, hg) where the assignment distribution has support
�hg = { K

√
N }. The assignment algorithm hg arranges the N nodes on the grid-

points of a K -dimensional hyper-grid and assigns a common seed or share of
a common secret to the K

√
N nodes which share a hyper-grid coordinate. Such

schemes assume that K
√

N is an integer.

8.1 Analysis of Selected Existing Schemes

In what follows, the worst-case resilience to random node capture is analyzed for
selected existing key predistribution schemes using the results of Section 6. The
schemes of interest are the random key predistribution scheme of Eschenauer
and Gligor [2002], the q-composite scheme of Chan et al. [2003], and the random
polynomial-pool scheme of Liu and Ning [2003].

The worst-case resilience is computed in this example for a network of N =
5, 000 nodes with storage for 100 key-length quantities per node, a radio range
of r = 40m, a region A of size |A| = 0.5km2, and a desired probability of 2-
connectivity of PG(2) ≥ 0.99. According to Theorem 4.7, the sensor network in
each of the following examples will be 2-connected using only secure single-hop
links with probability at least 0.99 if the average vertex degree D in the logical
graph satisfies D ≥ 1, 813.

8.1.1 Random Key Predistribution. Theorem 6.6 with K = 100 thus im-
plies that the mean μ of the assignment distribution must satisfy μ ≥ 23.47.
Due to the binomial assignment distribution, this condition is equivalent to
NK
P ≥ 23.47 or P ≤ 5,000×100

23.47 = 21, 303.79. Hence, to achieve the desired prob-
ability of connectivity with maximum average resilience to node capture, the
total number of keys P is chosen as P = 21, 303.

The average probability of link compromise due to random node capture can
then be approximated using Theorem 6.9 as f (x) = 1 − p(0, x) = 1 − ( 4,976.53

4,998 )x .
The expected worst-case probability of link compromise due to random node
capture can be approximated using Lemma 6.8 by computing the value of λmax

as given in Section 3.1, yielding λmax = 43. Hence, the expected worst-case prob-
ability of link compromise due to random node capture can be approximated as
f (x, 43) = 1 − p(0, x, 43) = 1 − ( 4,957

4,998 )x .
The impact of this worst-case analysis can be seen by comparing f (x) and

f (x, 43) as given in Figure 14(a).

8.1.2 q-Composite Scheme. In this case, a pair of nodes must share at least
q keys. The expected node degree D given by Theorem 6.6 can be generalized
using a binomial assumption, leading to the result that

D = (N − 1)

(
1 −

q−1∑
i=0

(
K
i

) (
μ − 1
N − 1

)i (
N − μ

N − 1

)K −i
)

(41)

for any q ≥ 1. Letting q = 3 for this example, the above result yields the
condition μ ≥ 108.18 to guarantee the desired probability of connectivity. Due
to the binomial assignment distribution, this condition is equivalent to NK

P ≥
108.18 or P ≤ 5,000×100

108.18 = 4, 621.92. Hence, to achieve the desired probability
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Fig. 14. The probability of link compromise is plotted for average and expected worst case for (a)
random key predistribution in Section 8.1.1, (b) q-composite scheme in Section 8.1.2, (c) random
polynomial-pool scheme in Section 8.1.3, and (d) Example 7.1 revisited in Section 8.2.

of connectivity with maximum average resilience to node capture, the total
number of keys P is chosen as P = 4, 621.

The average probability of link compromise due to random node capture can
then be approximated using Theorem 6.9 and methods of Chan et al. [2003] as

f (x) =
K∑

i=q

(1 − p(0, x))i ps(i)
ps( j ≥ q)

, (42)

where ps( j ≥ q) is the probability that a pair of nodes share at least q keys.
Substituting the values of ps(i) using Theorem 6.3 and inserting all given pa-
rameters yields the average probability of link compromise due to random node
capture.

The expected worst-case probability of link compromise due to random node
capture can be approximated similarly using Lemma 6.8 by computing the
value of λmax as given in Section 3.1, yielding λmax = 142. Hence, the expected
worst-case probability of link compromise due to random node capture can be
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approximated as f (x, 142) by replacing 1 − p(0, x) with 1 − p(0, x, 142). Note
that the expected worst-case probability ps(i, λ1, . . . , λK ) according to Theo-
rem 6.2, where λ1, . . . , λK are as given in Section 3.1, can be further substituted
for the average probability ps(i) given by Theorem 6.3.

The impact of this worst-case analysis can be seen by comparing f (x) and
f (x, 142) as given in Figure 14(b).

8.1.3 Random Polynomial-Pool Scheme. For the polynomial based scheme
of Liu and Ning [2003], the value K is equal to the number of (t − 1)-degree
polynomial shares assigned to each node. The requirement for 100 key-length
quantities assigned to each node thus corresponds to the requirement that
tK ≤ 100. Letting t = 5 for this example yields K = 20.

Theorem 6.6 with K = 20 thus implies that the mean μ of the assignment
distribution must satisfy μ ≥ 112.34. Due to the binomial assignment distri-
bution, this condition is equivalent to NK

P ≥ 112.34 or P ≤ 5,000×20
112.34 = 890.1.

Hence, to achieve the desired probability of connectivity with maximum aver-
age resilience to node capture, the total number of polynomials P is chosen as
P = 890.

The average probability of link compromise due to random node capture can
then be approximated using Theorem 6.9 as

f (x) = 1 −
t−1∑
m=0

p(m, x). (43)

The expected worst-case probability of link compromise due to random node
capture can be approximated using Lemma 6.8 by computing the value of λmax

as given in Section 3.1, yielding λmax = 140. Hence, the expected worst-case
probability of link compromise due to random node capture can be approxi-
mated as

f (x, 140) = 1 −
t−1∑
m=0

p(m, x, 140). (44)

The impact of this worst-case analysis can be seen by comparing f (x) and
f (x, 140) as given in Figure 14(c).

8.2 Analysis of Scheme in Example 7.1

In what follows, the random key predistribution scheme of Eschenauer and
Gligor [2002] as analyzed in Section 8.1.1 is compared to that developed in
Example 7.1 using the model proposed in this article.

Under the assignment distribution provided in (40), the mean μ of the as-
signment distribution is given by μ = 23.5 ≥ 23.47, thus yielding the de-
sired probability of 2-connectivity. The average probability of link compro-
mise due to random node capture can be approximated using Theorem 6.9 as
f (x) = 1 − p(0, x) = 1 − ( 4,976.5

4,998 )x . The expected worst-case probability of link
compromise due to random node capture can be approximated using Lemma 6.8
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using λmax = 28 given by (40). Hence, the worst-case probability of link com-
promise can be approximated as f (x, 28) = 1 − p(0, x, 28) = 1 − ( 4,972

4,998 )x .
The impact of this worst-case analysis can be seen by comparing f (x) and

f (x, 28) as given in Figure 14(d). The impact of the proposed model can thus be
seen by comparing the expected worst-case probability in Figure 14(a) to that
in Figure 14(d).

9. DEPLOYMENT OF ADDITIONAL NODES IN THE WSN

In many applications, it may be necessary to deploy additional sensor nodes to
replace those that have a depleted energy supply or to increase the coverage of
an existing WSN. If the link-key establishment method is such that addition
of nodes to the WSN does not require a prohibitive amount of communication
overhead, the incorporation of the additional sensor nodes into the secure WSN
can be described in terms of the canonical model. However, if a sufficient number
of nodes are to be deployed into an existing WSN, the seed assignment scheme
for the subsequent deployment might be very different from that of the original
deployment. We investigate such scenarios using the canonical model of seed
assignment schemes assuming that N nodes have been deployed using the
seed assignment scheme (P, ) and M additional nodes are to be deployed into
the existing WSN. We provide a general approach for deployment of additional
nodes and give an example which yields a well-known result.

In deploying M additional nodes into an existing WSN, it is highly desirable
for the N + M nodes to act as a single secure WSN, so the M additional nodes
must be assigned seeds which can be used to establish link-keys with any of
the N + M nodes. Furthermore, if M is sufficiently large, a subset of the seeds
assigned to the M additional nodes can be fresh. The exact proportion of fresh
and existing seeds used in seed assignment for the additional nodes is applica-
tion dependent, though it is computed as a function of N and M . For simplicity,
we assume that a fraction f of the seeds assigned to the M additional nodes
are fresh, and the remaining fraction (1 − f ) of the seeds are chosen randomly
from the set of existing seeds.

The seed assignment scheme (P ′, ′) used to assign seeds to the M additional
nodes can be designed as a function of the seed assignment scheme (P, ), the
parameters N , M , and f , the total total number of seeds P assigned to the N
nodes in the existing WSN, and the total number of seeds P ′ to be assigned to
the M additional nodes. The overall assignment distribution Q for the network
of N + M nodes assigned seeds using assignment distributions P and P ′ is
given by the following theorem.

THEOREM 9.1. Given N + M nodes such that N nodes are assigned a total of
P seeds using the assignment distribution P and M nodes are assigned a total
of P ′ seeds using the assignment distribution P ′ where a fraction f of the P ′

seeds are fresh, the overall assignment distribution Q is given by

Q(λ) = P − (1 − f )P ′

P + f P ′ P(λ) + (1 − f )P ′

P + f P ′ (P ∗ P ′)(λ) + f P ′

P + f P ′P
′(λ),
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where P ∗ P ′ is the discrete convolution of the assignment distributions P and
P ′ given by

(P ∗ P ′)(λ) =
∑
ν∈�

P(ν)P ′(λ − ν).

PROOF. The probability that a seed s is assigned only to the M additional
nodes is equal to the number of fresh seeds divided by total seeds, f P ′

P+fP′ . The
probability that s is assigned only to the N existing nodes is equal to the number
of existing seeds divided by total seeds, P−(1− f )P ′

P+fP′ . The probability that s is
assigned to both existing and additional nodes is then (1− f )P ′

P+fP′ . The probability
that s is assigned to λ1 existing nodes and λ2 additional nodes can then be
written in terms of P, P ′, and P ∗P ′ using the above probabilities as weights.

The parameters of the assignment distribution P ′ can be chosen in a similar
way to the methods described in Section 7 and the relationship between the
expected value μ of P, μ′ of P ′, and γ of Q given by

γ = P − (1 − f )P ′

P + fP′ μ + (1 − f )P ′

P + fP′
(
μ + μ′) + fP′

P + fP′ μ
′ (45)

= P
P + fP′ μ + P ′

P + fP′ μ
′. (46)

We note that, if 0 < f < 1, the support of the distribution Q is necessarily
larger than the support of either distribution P or P ′. Hence, the addition of
nodes to the network with 0 < f < 1 causes the assignment distribution to
spread. This tends to increase the value of λmax of the assignment distribution
Q compared to that of either P or P ′, thus increasing the worst-case probability
estimated by Lemma 6.8.

In both Theorem 9.1 and (46), the number of seeds P ′ assigned to the M
additional nodes may be unknown prior to seed assignment, but it can be ap-
proximated by its expected value P ′ = MK

μ′ . We consider the following examples
of deployment of additional nodes into a WSN.

Example 9.2. Consider an existing network of N nodes, each of which is
assigned K randomly selected seeds from a set of P seeds using the random
key predistribution scheme of Eschenauer and Gligor [2002]. The assignment
distribution P is thus given by the binomial distribution B(N , K

P ) with mean
μ = NK

P . In order to replace depleted nodes and reinforce the WSN, M addi-
tional nodes with K seeds per node are to be added to the existing network.
To paraphrase Eschenauer and Gligor [2002], since a sufficient number of the
K seeds stored in each node are not used to establish link-keys in the existing
network, the same set of P seeds can be used in the random key predistribu-
tion scheme for the M additional nodes. Hence, P ′ = P and the distribution P ′

is given by the binomial distribution B(M , K
P ) with mean μ′ = MK

P . Since the
same P seeds are used, and the trial probability for the binomial distributions
of P and P ′ are the same, this situation is equivalent to deploying a network of
N + M nodes with assignment distribution Q given by the binomial distribu-
tion B(N + M , K

P ) with mean γ = μ + μ′ = (N+M )K
P . This result corresponds to
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the result of Theorem 9.1 with the given distributions P and P ′, P = P ′, and
f = 0.

The result of Theorem 9.1 is far more general, however, than is illustrated
by Example 9.2. The following example demonstrates the generality of Theo-
rem 9.1.

Example 9.3. Similar to Example 9.2, consider an existing network of N
nodes, each of which is assigned K randomly selected seeds from a set of P seeds
using the random key predistribution scheme of Eschenauer and Gligor [2002]
with assignment distribution P given by the binomial distribution B(N , K

P ).
The additional M nodes are assigned K seeds each from a total of P ′ = P
seeds, such that a given fraction f of the P ′ seeds are fresh, and a fraction
(1 − f ) are randomly selected from the initial set of P seeds. For this example,
we assume the assignment distribution P ′ is given by the a symmetric peaked
distribution similar to that of (40) with � = {λ ∈ {0, . . . , N } : |λ−μ′| ≤ 5} where
μ′ is a given value for the mean of the assignment distribution P ′. Hence, the
overall assignment distribution Q corresponding to the N + M nodes is given
by Theorem 9.1. The mean of the distribution Q is given by (46) as

γ = P
P + fP′ μ + P ′

P + fP′ μ
′ (47)

= 1
1 + f

(μ + μ′). (48)

Since 1
2 ≤ 1

1+ f ≤ 1, the maximum value of γ is μ + μ′, and the minimum value of
γ is μ+μ′

2 . Hence, choosing f = 0 (as in Example 9.2) maximizes the connectivity
of the resulting network, as given by Theorem 4.7, but also maximizes the
probability p(m, x) approximated by Theorem 6.9. Since the original network
parameters were specified to guarantee network connectivity, the maximum
value of γ given by f = 0 is a secondary concern to the significant reduction in
resilience to node capture. Hence, choosing f � 0 in this example can maintain
the connectivity of the network without sacrificing resilience to node capture.
Furthermore, the choice of P ′ with support of size at most |�| = 11 yields an
overall support set of size at most N + 11. If M > 11, this choice of P ′ results
in a significant improvement in the worst-case probability of sharing seeds as
given by Theorem 6.2 and the worst-case resilience to node capture given by
Lemma 6.7 or Lemma 6.8 compared to the resulting assignment distribution
in Example 9.2.

10. CONCLUSION

We proposed a canonical seed assignment model for key predistribution
schemes in WSNs based on the probability that a seed is shared by a given
number of nodes and the algorithm for assignment of seeds to nodes. We pro-
posed a sampling framework for seed assignment algorithms for use in the
canonical model and a model for probabilistic connectivity of secure WSNs re-
stricted by radio range and the existence of shared seeds. We analyzed key pre-
distribution schemes in the canonical model in terms of network connectivity
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and resilience to node capture, reflecting the worst-case probabilities for each
metric. We demonstrated the design of new key predistribution schemes using
the canonical model while paying particular attention to the worst-case seed-
sharing probability and resilience to node capture. We have shown that many
existing key predistribution schemes can be modeled and analyzed using the
canonical model. Finally, we presented an approach to analyze the effect of
adding nodes to an existing secure WSN. This approach enables the design of
assignment distributions that can tightly match the security requirements of a
given application.
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