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We study the problem of coverage in planar heterogeneous sensor networks. Coverage is a perfor-
mance metric that quantifies how well a field of interest is monitored by the sensor deployment.
To derive analytical expressions of coverage for heterogeneous sensor networks, we formulate the
coverage problem as a set intersection problem, a problem studied in Integral Geometry. Com-
pared to previous analytical results, our formulation allows us to consider a network model where,
sensors are deployed according to an arbitrary stochastic distribution; sensing areas of sensors
need not follow the unit disk model but can have any arbitrary shape; sensors need not have an
identical sensing capability. Furthermore, our formulation does not assume deployment of sensors
over an infinite plane and, hence, our derivations do not suffer from the border effect problem
arising in a bounded field of interest. We compare our theoretical results with the spatial Pois-
son approximation that is widely used in modeling coverage. By computing the Kullback-Leibler
and Total Variation distance between the probability density functions derived via our theoreti-
cal results, the Poisson approximation, and the simulation, we show that our formulas provide a
more accurate representation of the coverage in sensor networks. Finally, we provide examples of
calculating network parameters such as the network size and sensing range in order to achieve a
desired degree of coverage.

Categories and Subject Descriptors: C.2 [Computer System Organization]: Computer - Com-
munication Networks; C.2.1 [Network Architecture and Design]: Distributed networks—
Network topology

General Terms: Algorithm, Design, Performance
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1. INTRODUCTION

Sensor networks are becoming an attractive solution for many commercial and mil-
itary applications due to their low cost, ease of deployment, unattended operation,
and wealth of useful information that they can collect. Typical applications in-
clude emergency rescue, ambient control, environmental monitoring, home health
care and surveillance networks [Akyildiz et al. 2002; Mainwaring et al. 2002].

One of the primary tasks of sensor networks is to monitor a Field of Interest
(FoI). Sensors may monitor physical properties such as temperature, humidity, air
quality, or track the motion of objects moving within the FoI. In many cases sensor
networks may initiate an automated reaction to the observed events (actuation
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networks). As an example, motion detection sensors may trigger the lights to
turn on after motion has been detected, or sensors monitoring a patient’s blood
stream may automatically increase the intake of sugars in the event of low sugar
level detection. In actuation networks, in order to guarantee the robustness of the
decision mechanism, it is critical to improve the accuracy and reduce the probability
of false alarm.

While robustness may be achieved by pursuing a multimodal approach that in-
volves multiple consistency checks before any actuation decision is made, robustness
depends, to a high degree, on the availability of monitoring information. In order to
evaluate a specific event, one needs to have sufficient observations of the event. On
the other hand, the number of available observations is directly related to the num-
ber of sensors able to sense a particular event. Hence, to improve the robustness of
the system, one needs to increase the availability of the collected information.

The availability of monitoring information can be measured by computing the
coverage of the FoI, achieved by the sensor network deployment. Coverage quan-
tifies how well a FoI is monitored1. The coverage problem has been studied under
different objectives, depending on the requirements and constraints of the appli-
cations. If the location of the deployed sensors can be pre-selected, the coverage
problem reduces to the problem of finding the optimal placement for sensors such
that a target coverage is met [Kar and Banerjee 2003; Poduri and Sukhatme 2004].

However, for large sensor networks, it is impractical to perform deterministic
coverage of the FoI, since the number of sensors that need to be placed is often
prohibitively large. Instead, sensors are deployed in the field of interest according
to a pre-selected distribution. For stochastically deployed sensor networks, the
coverage problem quantifies how well the FoI is monitored when a number of
sensors is deployed according to a known distribution. This problem is also known
as the stochastic coverage problem [Koushanfar et al. 2001; Meguerdichian et al.
2001; Liu and Towsley 2004; Miorandi and Altman 2005; Xing et al. 2005]. In this
article, we analyze the following stochastic coverage problem. Given a planar FoI
and N sensors deployed according to a known distribution, compute the fraction
of the FoI that is covered by at least k sensors (k ≥ 1). The problem can also be
rephrased as, given a FoI and a sensor distribution, how many sensors must be
deployed in order for every point in the field of interest to be covered by at least k
sensors with a probability p (k-coverage problem) [Xing et al. 2005].

1.1 Our Contributions

In this article, we make the following contributions. We formulate the problem of
coverage in sensor networks as a set intersection problem. We use results from Inte-
gral Geometry to derive analytical expressions quantifying the coverage achieved by
stochastic deployment of sensors into a planar field of interest. Compared to previ-
ous analytical results [Liu and Towsley 2004; Poduri and Sukhatme 2004, Miorandi
and Altman 2005], our formulation allows us to consider a heterogeneous sensing
model, where sensors need not have an identical sensing capability. In addition, our

1Once the information has been collected by the sensors, an additional mechanism known as
data aggregation [Krishnamachari et al. 2002], is required to timely communicate the available
information for processing. We do not address the aggregation problem in this article.
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approach is applicable to scenarios where the sensing area of a sensor does not fol-
low the unit disk model, but has any arbitrary shape. To the best of our knowledge,
only [Miorandi and Altman 2005] considers a heterogeneous sensing model, though
obtaining results that eventually only incorporate the mean value of the sensing
range in the coverage computation. Furthermore, the formulation in [Miorandi and
Altman 2005] considers only uniformly deployed sensors. In our approach, sensors
can be deployed according to any distribution.

We provide formulas for k-coverage in the case of heterogeneous sensing areas,
as well as the simplified forms in the case of identical sensing areas. We verify
our theoretical results by performing extensive simulations that show an almost
exact match between our theoretical derivation and simulation. We compare our
analytical formulas with previous analytic results [Liu and Towsley 2004; Poduri
and Sukhatme 2004, Miorandi and Altman 2005] by computing the Kullback-Leibler
distance [Cover and Thomas 1991] and illustrate that our expressions provide a
higher accuracy, since they do not suffer from the border effects [Bettstetter and
Krause 2001; Bettstetter and Zangl 2002]. Finally, we provide examples on how to
use our analytical expressions to compute the number of sensors that need to be
deployed, in order to cover a FoI with a desired probability.

The rest of the article is organized as follows. In Section 2, we present related
work. In Section 3, we state our network model and formulate the coverage problem
as a set intersection problem. In Section 4, we derive analytical expressions for
coverage for both heterogeneous and homogeneous sensor networks. In Section 5,
we validate our analytical expressions, by computing coverage via simulation, and
provide examples of computing the coverage in randomly deployed sensor networks.
Section 6 presents our conclusions.

2. RELATED WORK

In this section we describe previous work related to the coverage problem in wire-
less sensor networks. The coverage problem in wireless sensor networks has been
studied under different objectives and metrics. The characteristic attributes that
classify different approaches to the coverage problem are, deterministic or stochastic
sensor deployment, homogeneous or heterogeneous sensing area, additional design
constraints such as energy efficiency, minimum number of sensors that need to be
deployed, or network connectivity. Based on the objective, the coverage problem
formulation varies to reflect the different assumptions and objectives.

Kar and Banerjee [2003] studied the problem of deterministic node placement
in order to achieve connected coverage, that is, sense the FoI with the minimum
number of sensors, while keeping the sensor network connected. Kar and Banerjee
[2003] model the sensing area after the unit disk model and consider sensors with
identical sensing range. The problem of connected coverage has also been recently
studied by Xing et al. [2005]. The authors provide a geometric analysis that relates
coverage to connectivity and defines the necessary conditions for a network covering
a FoI to be connected. The conditions for coverage and connectivity are derived
based on the assumptions that the sensing area of each node is identical and circular,
and the location of the nodes is known. The authors extend their algorithms for
the case of probabilistic deployment, and also relax their assumptions to non-unit
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Reference Sensor Deployment Sensing Model

[Kar and Banerjee 2003] Deterministic Unit Disk

[Xing et al. 2005] Known Location Unit Disk

[Poduri and Sukhatme 2004] Deterministic Unit Disk

[Meguerdichian et al. 2001] Known Location Any

[Koushanfar et al. 2001] Known Location Any

[Liu and Towsley 2004] Random Any

[Li et al. 2003] Known Location Any

[Miorandi and Altman 2005] Random Any

Our work Stochastic Any

Reference Heterogeneous Model Additional Constraints

[Kar and Banerjee 2003] No Connectivity

[Xing et al. 2005] No Connectivity

[Poduri and Sukhatme 2004] No K-connectivity

[Meguerdichian et al. 2001] Yes Worst Coverage

[Koushanfar et al. 2001] Yes Best, Worst Coverage

[Liu and Towsley 2004] No None

[Li et al. 2003] Yes Best, Worst Coverage

[Miorandi and Altman 2005] Yes None

Our work Yes None

Table I. Comparison of the related work on the coverage problem for sensor networks, in terms of
assumptions and constraints. Sensor deployment refers to the deployment method, deterministic
or stochastic as well as the prior knowledge about the location of the sensors. Sensing model refers
to the assumptions about the sensing areas. Heterogeneous model refers to whether the analysis
supports sensors with heterogeneous sensing capabilities. Additional constraints refers to other
objectives set, such as connectivity, energy efficiency or minimization of the number of sensors
deployed.

disk sensing areas, by approximating the real sensing area with the biggest possible
circular area included in the real sensing area.

Poduri and Sukhatme [2004] study the problem of deterministic coverage under
the additional constraint that each sensor must have at least k neighbors. They
propose a deployment strategy that would maximize the coverage while the degree
of each node is guaranteed to be at least k, under the assumption that the sensing
range of the sensors is isotropic.

Meguerdichian et al. [2001] study the problem of coverage, as a path exposure
problem. Using a generic sensing model and an arbitrary sensor distribution, they
propose a systematic method for discovering the minimum exposure path, that is
the path along which the network exhibits the minimum integral observability2.
Koushanfar et al. [2001] investigate the problem of best- and worst-case coverage.
In their formulation of the coverage problem, given the location of the sensors and
a generic sensing model where the sensing ability of each sensor diminishes with
distance, the authors use Voronoi diagrams and Delaunay triangulation to compute
the path that maximizes the smallest observability (best coverage) and the path
that minimizes the observability by all sensors (worst coverage). [Li et al. 2003]
provide a decentralized and localized algorithm for calculating the best coverage.

2The integral observability is defined as the aggregate of the time that a target was observable by
sensors while traversing a sensor network.
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Liu and Towsley [2004] study the problem of stochastic coverage in large scale
sensor networks. For a randomly distributed sensor network, the authors provide
the fraction of the FoI covered by k sensors, the fraction of nodes that can be
removed without reducing the covered area as well as the ability of the network
to detect moving objects. The results presented by Liu and Towsley [2004] hold
only for randomly (uniformly) deployed networks and under the assumption that
the sensing area of each sensor is identical. Furthermore, the analysis presented
by Liu and Towsley [2004] suffers from the border effects problem, illustrated in
[Bettstetter and Krause 2001; Bettstetter and Zangl 2002]. The results hold as-
ymptotically under the assumption that the FoI expands infinitely in the plane,
while the density of the sensor deployment remains constant.

Miorandi and Altman [2005] study the stochastic coverage problem in ad hoc
networks in the presence of channel randomness. For a randomly deployed sensor
network, the authors analyze the effects of shadowing and fading to the connectivity
and coverage. They show that the in the case of channel randomness, the coverage
problem can still be modeled with the assistance of the spatial Poisson distribution,
by using expected size of the sensing area of sensors. While the results by Miorandi
and Altman [2005] are applicable to heterogeneous sensor networks they hold only
for randomly deployed networks, and are impacted from the border effects problem
[Bettstetter and Krause 2001; Bettstetter and Zangl 2002], as noted by Miorandi
and Altman [2005].

Gupta et al. [2003] study the problem of selecting the minimum number of sensors
from a set of sensors that are randomly (uniformly) deployed such that the FoI is
covered, and the selected sensors form a connected network. The authors provide
centralized and decentralized heuristic algorithms that perform within a bound
from the optimal solution. The authors assume that the sensing area of the sensors
can have any convex shape, and sensors can have heterogeneous capabilities. As a
requirement, the position as well as the shape and size of each sensing area must
be known after deployment.

Compared to previous work that derives analytical coverage expressions [Liu and
Towsley 2004; Poduri and Sukhatme 2004; Miorandi and Altman 2005], our for-
mulation allows us to consider a network model where, (a) sensors can be deployed
according to any distribution, (b) sensors can have a sensing area of any arbitrary
shape, (c) sensors can have heterogeneous sensing areas. Furthermore, our formu-
lation does not suffer from the border effects problem. Table 2 summarizes the
different assumptions and objectives of previous works.

3. NETWORK MODEL, PROBLEM FORMULATION & BACKGROUND

3.1 Network model

In many wireless sensor network applications, it is not practical to deploy the
sensors deterministically due to the large number of sensors that need to be deployed
and/or the type of environment where they are deployed. As an example, sensors
may be dropped off an aircraft into a forest in order to monitor environmental
parameters such as humidity, temperature, air quality etc. Furthermore, in many
applications, sensors do not remain static, even after they have been placed in
the FoI. Environmental changes, such as air, rain, river streams etc., may move
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Fig. 1. (a) A two-dimensional Gaussian distribution with mean value E(X,Y ) =
[0, 0], (b) projection of the Gaussian distribution into the planar field.

sensors over time [Szewczyk et al. 2004]. For these types of applications the relevant
coverage question that quantifies the availability of monitoring information is how
many sensors do we need to deploy in order to achieve the desired coverage with a
probability higher than a threshold value.

Furthermore, sensors may not be deployed according to a random distribution
over the FoI. As an example, a subset of points in the FoI may be of greater interest
than other points and, hence, must be monitored by a larger number of sensors. In
such a case, more sensors may be deployed around the critical subset of points. For
example, a desired heterogeneous coverage may be achieved by deploying sensors
according to a two-dimensional Gaussian distribution. In figure 1(a), we show
the probability density function for a two-dimensional Gaussian distribution with
mean value equal to E(X, Y ) = [0, 0]. In figure 1(b), we show the projection of the
Gaussian probability density function into the planar field.

Since the sensor deployment distribution may vary, it is desirable to have ana-
lytical coverage results that can incorporate any arbitrary sensor distribution. In
our analysis, we study the stochastic coverage problem when sensors are deployed
according to any distribution and derive analytical results even in the case of non-
uniform sensor distribution.

In addition, it is desirable to develop analytical coverage formulas that hold not
only for homogeneous, but also for heterogeneous sensor networks. Heterogeneity
in the sensing area of sensors may be due to the following reasons. First, the
manufacturing process for sensors does not guarantee that sensors are equipped
with identical hardware, able to produce an identical sensing model. Furthermore,
the heterogeneity of the environment where the sensors are deployed distorts the
sensing capabilities of the sensors measured in an ideal environment. Finally, the
sensor network may consist of sensors with different sensing capabilities by design
(hierarchical sensor networks). We analyse the coverage problem adopting a general
sensing model that captures the heterogeneity in the sensing capabilities of sensors.

In this article we adopt the following network model.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 2. (a) A heterogeneous sensor network with randomly deployed sensors covering
an FoI A0, (b) The sensing area Ai of a sensor si.

- Field of Interest (FoI): Let A0 denote the Field of Interest (FoI) we want to
monitor, with area F0 and perimeter L0. We assume that the FoI is planar and
can have any arbitrary shape.

- Sensing area: Let Ai denote the sensing area of each sensor si, i = 1 . . . N,
with Fi, Li denoting the size of the area and perimeter of Ai. The sensing area
can have any arbitrary shape.

- Sensor deployment: We assume that N sensors are deployed according to a
distribution Y (A0) and in such a way that they sense some part of the FoI. For
sensing, it is not necessary that the sensors are located within the FoI. Instead,
we require that sensors can monitor some part of the FoI even if they are located
outside of it.

3.2 Problem Formulation

We study the following stochastic coverage problem.

Stochastic coverage problem: Given a FoI A0 of area F0 and perimeter L0,
sensed by N sensors with each sensor si having a sensing area Ai of size Fi and
perimeter Li deployed in the plane according to a distribution Y (A0), compute the
fraction of A0 that is sensed by at least k sensors, i.e. the fraction that is k-covered.

This problem is equivalent to computing the probability that a randomly selected
point P ∈ A0 is sensed by at least k sensors. The stochastic coverage problem can
be mapped to the following set intersection problem.

Set intersection problem: Let S0 be a fixed bounded set defined as a collection of
points in the plane, and let F0 and L0 denote the area and perimeter of S0. Let N
bounded sets Si (i = 1 . . . N) of size Fi and perimeter Li be dropped in the plane of
S0 according to a distribution Y (S0) and in such a way that every set Si intersects
with S0. Compute the fraction of S0 where at least k out of the N sets Si intersect.
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In the mapping of the stochastic coverage problem to the set intersection problem,
the fixed bounded set S0 corresponds to the FoI A0. The N bounded sets dropped
according to the distribution Y (S0) correspond to the sensing areas of the N sensors
deployed according to the distribution Y (A0). By computing the fraction of the set
S0, where at least k out of N sets Si intersect, we equivalently compute the fraction
of the FoI that is k-covered3. In figure 2(a), we show a sensor network randomly
deployed over a FoI. In figure 2(b), we show the sensing area of a sensor si. Note
that our formulation does not require the FoI to be infinitely extending in the plane.
Instead, the FoI has to be a bounded region and, hence, our formulation does not
suffer from the border effects problem [Bettstetter and Krause 2001; Bettstetter
and Zangl 2002].

The set intersection problem has been a topic of research of Integral Geometry
and Geometric Probability [Santalo 1936; Santalo 1976; Miles 1969; Stoka 1969;
Filipescu 1971]. In the following section, we show that the results obtained for the
set intersection problem can be used to analyse the coverage problem in wireless
sensor networks. Before we provide analytical coverage expressions based on our
formulation, we present relevant background.

3.3 Background on Integral Geometry

In this section, we present relevant background on Integral Geometry that we use
in Section 4 for deriving analytical coverage expressions based on our formulation.
Interested reader is referred to [Santalo 1936; Santalo 1976; Miles 1969; Stoka 1969;
Filipescu 1971], as reference to Integral Geometry. We first introduce the notion of
motion for a point P in the plane, defined as follows [Santalo 1976]:

Definition 3.1. Motion in the Plane: Let P (xi, yi) denote a point in the
Euclidean plane, where xi, yi denote Cartesian coordinates. A motion is defined as
a transformation T : P (xi, yi) → P ′(x′i, y

′
i) such that,

x′i = xi cos φ− yi sin φ + x, y′i = xi sin φ + yi cosφ + y

−∞ < x < ∞, −∞ < y < ∞, 0 ≤ φ ≤ 2π. (1)

Any motion of a point P or a set of points4 A, is characterized by the horizontal
displacement α, the vertical displacement β and the rotation φ. A group of motions
M denotes a collection (set) of transformations in the Euclidean plane, i.e. the
respective range for the 3-space (α, β, φ).

To quantify a group of motions M in the plane, we must define an appropriate
measure for the set of transformations of A determined by M. Such a measure is
called the kinematic measure and it must be invariant to the initial position of A,
invariant under translation as well as invariant under inversion of the motion. The
need for such invariance will become clear in the example following the definition
of the kinematic measure.

To define the kinematic measure we must introduce the notion of kinematic den-
sity for the group of motions M of a point P (x, y) or set of points A in the plane.

3Due to their equivalence, A0 and S0 as well as the terms sensing area and set are used inter-
changeably in the rest of the article.
4In the case of a set of points, the set can be represented by a single point O based on which all
other points are determined.
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(a) (b)

Fig. 3. (a) Set A1 is free to move within the plane in such a way that it intersects
with fixed set A0. (b) Fixed set A0 has a different initial orientation and position.
The measure of the set of positions of A1 such that it intersects A0, expressed via
the kinematic density, is the same regardless of the initial configuration of the two
sets. The measure is invariant to translations and rotations of any of the two sets.

The kinematic density expresses the differential element of motion of a set of points
in the plane, and is defined as follows [Santalo 1976].

Definition 3.2. Kinematic Density–The kinematic density dA for a group of
motions M in the plane for the set A, is defined as the differential form:

dA = dx ∧ dy ∧ dφ, (2)

where ∧ denotes the exterior product used in exterior calculus [Flanders 1963;
Flanders 1967] [Santalo 1976].

The above definition of the kinematic density, using the exterior product form,
is the only form up to a constant factor invariant under translation and inversion
of motion. Integrating the kinematic density of a set A over a group of motions M
in the plane, yields a measure for the set of motions M.

Definition 3.3. Kinematic measure–The kinematic measure m of a set of mo-
tions M in the plane is defined by the integral of the kinematic density dA over
M :

m =
∫

M
dA. (3)

To provide intuition behind the definition of the kinematic measure and the prop-
erties of the kinematic density consider figure 3(a) showing a fixed set A0 and a set
A1 free to move within the plane. We want to measure the set of motions (transfor-
mations) T such that T (A1)

⋂A0 6= ∅, that is, measure the set of transformations
T (A1) such that the two sets intersect. This measure is the integral of dA1 over all
points P ′(x, y) and all angles φ such that T (A1)

⋂A0 6= ∅.
The invariant under translation property states that for any transformation

T ′(A0), the measure of the set of motions T such that T (A1)
⋂

T ′(A0) 6= ∅, must be
equal to the measure of the set of motions such that T (A1)

⋂A0 6= ∅. Similarly the
ACM Journal Name, Vol. V, No. N, Month 20YY.
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measure must be invariant to any translations of set A1. Furthermore, the measure
is invariant to the order by which we consider the possible motions of the set A1,
or the initial positioning of sets A0,A1[Santalo1976]. Figure 3(b) shows a different
positioning and orientation of the fixed set A0 that could be due to the application
of a translation or a different initial positioning.

The quotient of the measure of a group of motions Z over the measure of a group
of motions M in the plane, where Z ⊆ M yields the probability p(Z) for that
group of motions to occur:

p(Z) =
m(Z)
m(M)

. (4)

The kinematic measure allows us to compute the geometric probability for a spe-
cific set configuration to occur, as depicted in (4). Equation (4), is used in our
formulation to derive the fraction of the FoI covered by a sensor deployment, as it
is illustrated in the following section.

4. ANALYTICAL EVALUATION OF COVERAGE IN HETEROGENEOUS SENSOR
NETWORKS

In this section, we derive analytical expressions for stochastic coverage in heteroge-
neous sensor networks. We first study the coverage problem for the case where only
one sensor is deployed, by studying the intersection of two sets in a plane. We ini-
tially consider a sensor with a sensing area of convex shape. When the sensing area
is convex, only the size and perimeter of the sensing area are required to compute
coverage. When the sensing area has a non-convex shape, additional information
such as the decomposition of the sensing area to a union of disjoint convex shapes
is required. In Section 4.3 extend our results for non-convex sensing areas.

We modify our analytical formulas for the case where the sensor is deployed
according to an arbitrary distribution. Using the results from the single sensor
deployment, we generalize for the case where multiple sensors are deployed and
compute the fraction of the FoI covered by at least k sensors, when a total of N
sensors are deployed. Finally, we show how we can derive previous analytical results
[Liu and Towsley 2004; Poduri and Sukhatme 2004] as specific cases of our model.

4.1 Random deployment of a single sensor

In this section, we analyze the simplest case where a sensor s1 is randomly deployed
in the plane. We assume that s1 has a convex sensing area A1 of size F1 and
perimeter L1. We want to compute the fraction of the FoI covered by the sensor
s1. The equivalent set intersection problem is as follows. Let A0,A1 denote two
sets in a plane with A0 being fixed, while A1 can move freely within the plane.
Assume that all positions of A1 are equiprobable (sensor si is deployed at random).
Compute the fraction of A0 covered by A1.

Let A01 denote the intersection between sets A0,A1. Since A0,A1 are convex,
A01 is also convex. The fraction fr(A0) of A0 covered by A1, is computed by
normalizing the size of the area of A01 over the size of A0. The intersection area
between the two sets A0,A1 can be computed with tools from integral geometry
[Santalo 1936; Santalo 1976;].
ACM Journal Name, Vol. V, No. N, Month 20YY.
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To compute fr(A0), we randomly select a point P ∈ A0. Let p(P ∈ A1) denote
the probability that P ∈ A1, that is, that point P belongs in the intersection
between the sets A0 and A1. Integrating p(P ∈ A1) over all P ∈ A0 yields the
probability that any point of A0 belongs to A1. Since all points are equiprobable,
integration of p(P ∈ A1) over all P ∈ A0 also computes the area F01 of the
intersection set between A0,A1. Normalizing F01 over the F0, yields the desired
fraction fr(A0). The following theorem holds for convex sets, and will be extended
in Section 4.3 for the case of non-convex sets [Santalo 1976].

Theorem 4.1. Let A0 be a fixed convex set of area F0 and perimeter L0, and
let A1 be a convex set of area F1 and perimeter L1, randomly dropped in the plane
in such a way that it intersects with A0. The probability that a randomly selected
point P ∈ A0 is covered by A1 is given by:

p(P ∈ A1) =
2πF1

2π(F0 + F1) + L0L1
. (5)

Proof. According to (4), in order to compute the probability that P is covered
by A1, we need to compute the quotient of the measure of all motions of A1 such
that P ∈ A1, over the measure of the set of motions of A1 such that A0

⋂A1 6= ∅.
The latter represents all possible positions where A1 can be dropped (recall that
as a constraint, we require that A1 always intersects A0). We now provide the
computation of the two measures, also sketched in [Santalo 1936; Santalo 1976]:

m(A1 : P ∈ A0

⋂
A1)

(i)
=

∫

P∈A0
TA1

dA1

(ii)
=

∫

P∈A1

dA1

(iii)
=

∫

P∈A1

dx ∧ dy

∫ 2π

0

dφ
(iv)
= 2πF1. (6)

In (i), we integrate the kinematic density dA1 of set A1 over all motions of A1 such
that P ∈ A0

⋂A1. Since by assumption P ∈ A0 and A0 is fixed, we only need to
integrate over all P ∈ A1. In (ii), we integrate dA1 over all motions of A1 such that
P ∈ A1. In (iii), we express the kinematic density as its differential product form,
and consider all possible rotations of A1 such that P ∈ A1. In (iv), the integral of
dx∧ dy over all P ∈ A1 is equal to the area F1 of A1. The integral of dφ over all φ
is equal to 2π since A1 can freely rotate around its reference point, leading to the
value of 2πF1.

The result in (6) is intuitive. Given a fixed point P the number of translation
motions of the set A1 that can include P, is equal to the area F1 of A1. For each
position of A1 that include P, we can rotate A1 a total of 2π positions before we
repeat the initial configuration. Hence, the measure of positions of A1 such that
P ∈ A1 under both rotation and translation is equal to 2πF1.

Let P be a randomly selected point of the fixed set A0. All possible positions of
A1 that include P can be obtained by translating A1 according to the vector v, and
rotating A1 by φ ∈ [0, 2π]. The measure of all translation is F1 while the measure
of all rotations is 2π, hence the measure of all positions such that P ∈ A1 is 2πF1.
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We now compute the measure of all motions of A1 such that A0

⋂A1 6= 0 :

m(A1 : A0

⋂
A1 6= ∅) (i)

=
∫

A0
TA1 6=∅

dA1

(ii)
=

∫

A0
TA1 6=∅

dx ∧ dy ∧ dφ

(iii)
=

∫ 2π

0

(F0 + F1 + 2F01) dφ

(iv)
= 2π(F0 + F1) + L0L1. (7)

In (i), we integrate the kinematic density dA1 of set A1 over all motions of A1

such that A0

⋂A1 6= ∅. In (ii), we write the kinematic density in its expanded
differential form as defined in (2). In (iii), we compute the area between A0,A1

which is called mixed area of Minkowski and integrate over all possible rotations.
The integration yields the desired result. Proofs of (iii), (iv) are provided in the
Appendix.

Given the two measures (6), (7) we can compute the probability p(P ∈ A1) as:

p(P ∈ A1) =
m(A1 : P ∈ A0

⋂A1)
m(A1 : A0

⋂A1 6= ∅) =
2πF1

2π(F0 + F1) + L0L1
. (8)

Note that p(P ∈ A1) is only dependent on the area and the perimeter of the
convex sets that intersect and not on the shape of those sets. Hence, there can be
sets of arbitrary shapes as long as they are convex. In Section 4.3, we will gener-
alize (8) for non-convex sets, corresponding to non-convex sensing areas. Based on
Theorem 4.1 we can now compute the fraction fr(A0) of A0 covered by A1, stated
in the following lemma.

Lemma 4.2. The fraction fr(A0) of a fixed convex set A0 of area F0 and perime-
ter L0 that is covered by a convex set A1 of area F1 and perimeter L1, when A1 is
randomly dropped in the plane in such a way that it intersects A0 is given by:

fr(A0) =
2πF1

2π(F0 + F1) + L0L1
. (9)

Proof. In Theorem 4.1 we showed the probability that a randomly selected
point P ∈ A0 also belongs to A1 when A1 is randomly dropped in the plane so
that it intersects with A0. Integrating (8) over all points P ∈ A0 provides the size
of the area FC covered by A1 :

FC =
∫

P∈A0

p(P ∈ A1)dP
(i)
= p(P ∈ A1)

∫

P∈A0

dP

(ii)
= p(P ∈ A1)F0

(iii)
=

2πF0F1

2π(F0 + F1) + L0L1
. (10)

In (i), the probability p(P ∈ A1) is independent of the coordinates of P. In (ii),
integrating dP over all P ∈ A0 yields the size F0 of A0. In (iii), we substitute
ACM Journal Name, Vol. V, No. N, Month 20YY.
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p(P ∈ A1) from (8). Normalizing FC by F0 yields:

fr(A0) =
FC

F0
=

2πF0F1

2π(F0 + F1) + L0L1

1
F0

= p(P ∈ A1). (11)

4.2 Deployment of a single sensor according to a distribution F (A0)

In this section, we consider the problem of computing the coverage achieved by a
single sensor, when the sensor deployment in the plane follows some non-uniform
distribution F (A0), with a probability density function f(x, y). As an example,
the distribution of the sensor may follow a zero-mean two dimensional gaussian
distribution around the center of A0, as illustrated in figure 1. This scenario may
apply for instance, when the sensors are dropped in groups above target points and
disperse around the target points.

In the case of a non-uniform sensor distribution the problem of coverage can also
be mapped to the set intersection problem. As in the case of a random distribution,
there is a fixed set A0 that represents the FoI, and a “free” set A1 that is dropped
into the plane according to the non-uniform distribution F (A0), and in such a way
that it intersects with A0. We want to calculate the fraction fr(A0) of A0 covered
by A1.

In order to compute fr(A0), in the case of a non-uniform distribution, we repeat
the same process as in the uniform distribution. First, we randomly select a point
P ∈ A0 and compute the probability that P also belongs to A1. This probability
is again computed as the quotient between the measures in (6) and (7). However,
these measures are now calculated as weighted functions of the probability density
function f(x, y).

Theorem 4.3. Let A0 be a fixed convex set of area F0 and perimeter L0, and let
A1 be a convex set of area F1 and perimeter L1, dropped into the plane according to
a distribution F (A0) and in such a way that it intersects with A0. The probability
that a randomly selected point P ∈ A0 is covered by A1 is given by:

p(P ∈ A1) =
2π

∫
P∈A1

f(x, y)dx ∧ dy∫
A0
TA1 6=∅ f(x, y)dx ∧ dy ∧ dφ

. (12)

Proof. The measure of all positions of set A1 that include point P is equal to:

m(A1 : P ∈ A0

⋂
A1)

(i)
=

∫

P∈A0
TA1

f(x, y)dA1

(ii)
=

∫

P∈A0
TA1

f(x, y)dx ∧ dy ∧ dφ

(iii)
=

∫

P∈A1

f(x, y)dx ∧ dy

∫ 2π

0

dφ

(iv)
= 2π

∫

P∈A1

f(x, y)dx ∧ dy. (13)

ACM Journal Name, Vol. V, No. N, Month 20YY.
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si

Ai

Non covered region

(a) (b)

Fig. 4. Non-convex sensing areas. (a) A rigid non-convex sensing area, (b) non-
convex sensing area with obstructed regions.

In (i), we integrate the kinematic density of A1 over all motions of A1 such that
P ∈ A1

⋂A0, weighted over the probability density function f(x, y), of the sensor
deployment. In (ii), we expand dA1 according to 2. In (iii), we integrate over all
angles φ, such that P ∈ A1

5. In (iv), we substitute the integral over all angles φ
with 2π. The measure of all positions of set A1 such that A0

⋂A1 6= ∅ is equal to:

m(A1 : A0

⋂
A1 6= ∅) (i)

=
∫

A0
TA1 6=∅

f(x, y)dA1

(ii)
=

∫

A1 6=∅
f(x, y)dx ∧ dy ∧ dφ. (14)

In (i), we integrate the kinematic density of A1 over all motions of A1 such
that A1

⋂A0 6= ∅, weighted over the probability density function f(x, y), of the
sensor deployment. In (ii), we expand dA1, according to 2. The probability that
p(P ∈ A1) is equal to the quotient of the two measures:

p(P ∈ A1) =
m(A1 : P ∈ A0

⋂A1)
m(A1 : A0

⋂A1 6= ∅) =
2π

∫
P∈A1

f(x, y)dx ∧ dy∫
A0
TA1 6=∅ f(x, y)dx ∧ dy ∧ dφ

. (15)

Based on Lemma 4.2, the fraction of A0 covered by A1 is equal to p(P ∈ A1).

We now derive expressions for coverage in the general case where sensors do not
have convex sensing areas.

4.3 Random deployment of Single Sensor with non-convex sensing area

In our analysis so far we have assumed the sensing area of the sensors deployed
has a convex shape and is bounded by a single curve. However, the shape of the
sensing area may not necessarily be convex, or it may consist of multiple separate

5Since P is selected from A0, P ∈ A0
TA1 is equivalent to P ∈ A1.
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regions due to obstacles, such as walls pillars, trees, etc. In figure 4(i), we show
the a non-convex sensing area bounded by a single curve. In figure 4(ii), we show a
sensing area with certain areas obstructed by obstacles. Such a non-convex sensing
region is bounded by more than one closed curves. In this section we compute the
coverage achieved by the random deployment of a single sensor with a non-convex6

sensing area.

Theorem 4.4. Let A0 denote the FoI bounded by a simple7 curve, and let A1

denote the sensing area of a sensor si, with A1 being the union of a finite number
of separate convex regions Ai

1, i = 1 . . . m, of total area F1 and total perimeter L1.
The probability that a randomly selected point P ∈ A0 is covered by A1 is given by:

p(P ∈ A1) =
2πF1

2π(mF0 + F1) + L0L1
. (16)

Proof. Theorem 4.4 is a special case of the fundamental kinematic formula of
Blaschke [Blaschke 1955] that measures a group of motions in the plane for the
case where non-convex areas intersect. In Theorem 4.4, the number of separate
convex sets m is defined by the number of closed curves required to bound A1, that
intersect with the FoI. When the sensing area A1 is bounded by a simple curve, as
in the case of a compact bounded set, or a convex set, (16) reduces to (5) [Santalo
1976] (pp. 116). Detailed proof of Theorem 4.4 is omitted here, but is provided in
[Santalo 1976] (pp. 113–118).

Theorem 4.4 allows us to compute the fraction of A0 covered by the deployment
of a single sensor, when the sensing area of the sensor is non-convex, by applying
Lemma 4.2. Note that to compute p(P ∈ A1) prior knowledge of a decomposition
of the sensing area to a union of disjoint convex areas is required.

4.4 Random Deployment of Multiple Sensors

In this section, we compute the coverage achieved by the random deployment of
N sensors, with each sensor si having a sensing area Ai of size Fi and perimeter
Li. As it is implied by our notations, sensors need not have the same sensing area
but can be heterogeneous. We derive formulas for randomly deployed sensors with
convex sensing areas. However, equivalent formulas can be obtained for any other
distribution and non-convex shapes by using the results of the coverage achieved
by a single sensor deployment, derived in Sections 4.2, 4.3.

We initially derive the probability p(S = k) that a randomly selected point
P ∈ A0 is covered by k sensors when N sensors are randomly deployed, using the
results from Section 4.1. We then compute the probability that P ∈ A0 is covered
by at least k sensors, as well as the fraction of A0 covered by at least k sensors.

We then simplify our expressions in the case where the sensing areas are identi-
cal, and provide formulas for the unit disk model commonly assumed in coverage
problems [Liu and Towsley 2004; Poduri and Sukhatme 2004]. Finally, we show
how our expressions can be reduced to formulas derived in [Liu and Towsley 2004;

6The boundary of the sensing area must be piecewise twice differentiatable.
7A simple curve is defined as a closed curve with no double points [Santalo 1976], pp. 113.
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Poduri and Sukhatme 2004] under the assumption that the FoI is infinite and the
deployment density remains constant.

Theorem 4.5. Let N sensors be randomly and independently deployed over a
FoI A0, of area F0 and perimeter L0. Let each sensor si have a sensing area Ai of
size Fi and perimeter Li. The probability p(S = k) that a randomly selected point
P ∈ A0 is covered by exactly k sensors is given by:

p(S = k) =





∏N
i=1

(
2πF0+L0Li

2π(F0+Fi)+L0Li

)
, k = 0P(N

k)
i=1 (Qk

j=1(2πFT (i,j))
QN−k

z=1 (2πF0+L0LG(i,z)))QN
r=1(2π(F0+Fr)+L0Lr)

, k ≥ 1.

(17)

where T is a matrix in which each row j is a “k-choice” of [1 . . . N ] (a vector of k
elements out of N), and G is a matrix in which each row j contains the elements
of [1 . . . N ], that do not appear in the jth row of T.

Proof. In order to prove Theorem 4.5, we map the problem of coverage to the
set intersection problem, as illustrated in our problem formulation in Section 3.2.
Consider first, the case where k = 0. When a single sensor si is deployed, the
probability that it covers a randomly selected point P ∈ A0 is given by Theorem
4.1. Hence, the probability p(P /∈ Ai) can be computed as:

p(P /∈ Ai) = 1− p(P ∈ Ai)

= 1− 2πFi

2π(F0 + Fi) + L0Li

=
2πF0 + L0Li

2π(F0 + Fi) + L0Li
. (18)

Given that fact that the N sensors are independently deployed in the plane so that
they cover some part ofA0, the probability p(S = 0) that none of theAi, i = 1 . . . N
covers point P is:

p(S = 0) = p(P /∈ A1, . . . , P /∈ AN )

(i)
=

N∏

i=1

p(P /∈ Ai)

(ii)
=

N∏

i=1

(
2πF0 + L0Li

2π(F0 + Fi) + L0Li

)
. (19)

Equality in (i) holds due to the independence in the deployment of the sensors si.
In (ii), we substitute p(P /∈ Ai) from (18).

In the case where k ≥ 1, we first need to compute the probability that P is
covered by exactly k specific sets. Let T denote a kx

(
N
k

)
matrix where each row j

is a k-choice of the vector [1 . . . N ], and let G denote a (N−k+1)x
(
N
k

)
matrix where

each row j contains the elements of [1 . . . N ], that do not appear in the jth row of
T. Consider for example, T (1) = [1 . . . k] and G(1) = [k + 1 . . . N ]. The probability
p(T (1)) that P is covered by exactly the sets with indexes in the first row of T is
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given by:

p(T (1))
(i)
= p(P ∈ A1, . . . , P ∈ Ak, P /∈ Ak+1, . . . , P /∈ AN )
(ii)
= p(P ∈ A1), . . . , p(P ∈ Ak)p(P /∈ Ak+1), . . . , p(P /∈ AN )
(iii)
=

2πF1

2π(F0 + F1) + L0L1
. . .

2πFk

2π(F0 + Fk) + L0Lk

2πF0 + L0Lk+1

2π(F0 + Fk+1) + L0Lk+1
. . .

2πF0 + L0LN

2π(F0 + FN ) + L0LN

=

∏k
j=1(2πFi)

∏N
z=k+1(2πF0 + L0Lz)∏N

r=1 (2π(F0 + Fr) + L0Lr)

=

∏k
j=1

(
2πFT (1,j)

) ∏N−k
z=1

(
2πF0 + L0LG(1,z)

)
∏N

r=1 (2π(F0 + Fr) + L0Lr)
. (20)

In (i), we show which k sets include point P. Due to the independence in the set
deployment, in (ii), the intersection of the events in (i) becomes a product of the
individual events. In (iii), we substitute the individual probabilities from (8), (18).
In the general case, the probability that the sets with indexes of the ith row of T
cover point P is given by:

p(T (i)) =

∏k
j=1

(
2πFT (i,j)

) ∏N−k
z=1

(
2πF0 + L0LG(i,z)

)
∏N

r=1 (2π(F0 + Fr) + L0Lr)
. (21)

Since we are not interested in a specific choice of sets to cover point P, the
probability that p(S = k) is a summation of p(T (i)) for all possible k-choices.
Summing p(T (i)) over all i yields (17):

p(S = k) =
(N

k)∑

i=1

p(T (i))

=
(N

k)∑

i=1

(∏k
j=1

(
2πFT (i,j)

)∏N−k
z=1

(
2πF0 + L0LG(i,z)

)
∏N

r=1 (2π(F0 + Fr) + L0Lr)

)

=

∑(N
k)

i=1

(∏k
j=1

(
2πFT (i,j)

) ∏N−k
z=1

(
2πF0 + L0LG(i,z)

))

∏N
r=1 (2π(F0 + Fr) + L0Lr)

. (22)

Once we have computed p(S = k), we can derive the probability that the ran-
domly selected point P is covered by at least k sensors.

Lemma 4.6. Let A0 be a FoI of size F0 and perimeter L0, and let N sensors
with sensing area Ai of size Fi and perimeter Li be independently and randomly
deployed over A0. The probability that a randomly selected point of A0 is covered
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by at least k sensors is given by:

p(S ≥ k) =





1 k = 0,

1−∑k−1
l=0

P(N
l )

i=1 (Ql
j=1(2πFT (i,j))

QN−l
z=1 (2πF0+L0LG(i,z)))QN

r=1(2π(F0+Fr)+L0Lr)
k ≥ 1.

(23)

Proof. Lemma 4.6, holds by observing:

p(S ≥ k) = 1−
k−1∑

l=0

p(l = i), (24)

and substituting (17) to (24).

Lemma 4.6, allows us to compute the fraction fr(A0) covered by at least k sets.

Theorem 4.7. The fraction fr(A0) of a FoI A0 of area F0 and perimeter L0

that is covered by at least k sensors when N sensors of sensing area Ai of size Fi

and perimeter Li, are randomly and independently deployed in the plane in such a
way that they cover some part of the FoI is given by:

fr(A0) =





1 k = 0,

1−∑k−1
l=0

P(N
l )

i=1 (Ql
j=1(2πFT (i,j))

QN−l
z=1 (2πF0+L0LG(i,z)))QN

r=1(2π(F0+Fr)+L0Lr)
k ≥ 1.

(25)

Proof. By mapping the coverage problem to the set intersection problem, the
size FC of the area covered by at least k sensors can be computed by integrating
the probability that a randomly selected point P ∈ A0 is covered by at least k sets,
over all points P :

FC =
∫

P∈A0

p(S ≥ k)dP = p(P ≥ k)
∫

P∈A0

dP = p(P ≥ k)F0. (26)

Normalizing FC by F0 yields the result of Theorem 4.7.

The fraction fr(A0) covered by at least k sensors is equal to the probability that
a randomly selected point P is covered by at least k sensors.

Corollary 4.8. The fraction of A0 that is not covered by any sensor when N
sensors are randomly deployed is given by:

p(S = 0) =
N∏

i=1

(
2πF0 + L0Li

2π(F0 + Fi) + L0Li

)
. (27)

Proof. The Corollary follows from Theorem 4.5, for k = 0.

4.5 Coverage in the case of Homogeneous Sensing Areas

The analytic expressions derived in Section 4.4 hold for heterogeneous sensor net-
works where the sensing areas of the sensors are of different size and perimeter.
In the case of homogeneous sensor networks where for each sensor si, i = 1 . . . N
Fi = F and Li = L, the coverage expressions can be simplified to expressions
involving binomials.
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Corollary 4.9. The fraction fr(A0) of a FoI A0 of area F0 and perimeter
L0 that is covered by at least k sensors when N sensors of sensing area Ai of size
Fi = F and perimeter Li = L are randomly and independently deployed in the plane
in such a way that they cover some part of FoI is given by:

fr(A0) =





1 k = 0,

1−∑k−1
l=0

(
(N

l )(2πF )l(2πF0+L0L)N−l

(2π(F0+F )+L0L)N

)
k ≥ 1.

(28)

Proof. The corollary holds by substituting FT (i,j) = F, LG(i,j) = L in (25).

Note that so far in our computations, the FoI is a bounded region. Previous
analytical results for homogeneous sensor networks require that the FoI of interest
is infinitely expanding in the plane [Liu and Towsley 2004; Poduri and Sukhatme
2004, Miorandi and Altman 2005], and provide asymptotic formulas of coverage.
Under the same assumption and using Corollary 4.9, we can derive the same as-
ymptotic results expressed in the following Corollary.

Corollary 4.10. Let N sensors of sensing area Ai of size Fi = F and perime-
ter Li = L be randomly and independently deployed in the plane, in such a way
that they cover some part of a FoI A0 of size F0 and perimeter L0. If A0 expands
in the whole plane in such a way such that the sensor density remains a constant
( N

F0
→ ρ), the fraction fr(A0) covered by at least k sensors is given by:

fr(A0) →
{

1 k = 0,

1−∑k−1
l=0

(
(ρF )l

k! e−ρF
)

, k ≥ 1.
(29)

Proof. Let us first compute the probability that exactly k sets intersect in a
randomly selected point P ∈ A0. Substituting Fi = F, Li = L in (17) yields:

p(S = k) =
(

N

k

)(
2πF

2π(F0 + F ) + L0L

)k (
2πF0 + L0L

2π(F0 + F ) + L0L

)N−k

=
(

N

k

)
qk (1− q)N−k

, (30)

where q = 2πF
2π(F0+F )+L0L . The binomial distribution can be approximated by a

Poisson distribution when N goes to infinity:

lim
N→∞

p(S = k) =
(Nq)k

k!
e−Nq. (31)

As F0 → ∞, F
F0

→ 0 and if the sensor deployment density N
F0

→ ρ where ρ is
constant, Nq asymptotically tends to:

lim
F0→∞, N

F0
→ρ

(Nq) = lim
F0→∞, N

F0
→ρ

(
2πNF

2π(F0 + F ) + L0L

)

= lim
F0→∞, N

F0
→ρ


 2πNF

2πF0

(
1 + F

F0
+ L0L

2πF0

)



=
NF

F0
= ρF, (32)
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since L0
F0
→ 0 regardless of the shape of A0 [Santalo 1976]. Substituting (32) into

(31), yields:

p(S = k) → (Nq)k

k!
e−Nq =

(N F
F0

)k

k!
e−N F

F0 =
(ρF )k

k!
e−ρF . (33)

Hence, the fraction fr(A0) of A0 covered by at least k sensors with identical sensing
area Ai, when sensors are deployed randomly with a constant density ρ, as A0

expands in the whole plane is given by:

lim
N→∞

fr(A0) = lim
N→∞

(
1−

k−1∑

l=0

p(S = k)

)

= 1− lim
N→∞

(
k−1∑

l=0

p(S = k)

)
= 1−

k−1∑

l=0

(
lim

N→∞
p(S = k)

)

=

{
1 k = 0,

1−∑k−1
l=0

(
(ρF )l

l! e−ρF
)

, k ≥ 1.
(34)

We now validate our theoretical results via simulation.

5. VALIDATION OF THE THEORETICAL RESULTS

In this section, we validate our theoretical results via simulation. We also compare
our results with the approximation formulas derived in [Liu and Towsley 2004;
Poduri and Sukhatme 2004, Miorandi and Altman 2005]. Our evaluation is done
in terms of the Kullback Leibler distance (KL-distance) of the probability density
functions (pdfs), which provides a performance comparison in the average sense.
Considering the pdf obtained via simulation to be the desired distribution q, we
compute the KL-distance of our theoretical formulas and the approximations pro-
vided in [Liu and Towsley 2004; Poduri and Sukhatme 2004, Miorandi and Altman
2005]. The KL-distance for two distributions p, q, when q is the desired distribution
and p is the true distribution is defined as follows [Cover and Thomas 1991],

Definition 5.1. Kullback Leibler distance–The Kullback Leibler distance between
a desired distribution q and a true distribution p is equal to:

KL(p, q) =
∑
pi

pi log2

pi

qi
, (35)

where pi, qi denote the discrete values of the distributions p, q respectively.

We also compare theory, simulation and approximation results with respect to
the total variation distance (TV-distance), a metric that reflects the worst case
performance and is defined as follows.

Definition 5.2. Total variation distance–The total variation distance between
two distributions q, p is the maximum difference between the probabilities that can
be assigned to the same event,

TV (p, q) = sup
i
{|pi − qi|}. (36)
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Fig. 5. Fraction fr(A0) of A0, that remains non-covered as a function of the number
of sensors N that are deployed to monitor the FoI.

We validate our formulas for homogeneous networks (sensors have identical sensing
area) as well as heterogeneous networks (sensors have different sensing areas).

5.1 Homogeneous Sensor Network- Unit Disk Sensing Area

In our first experiment, we randomly deployed a variable number of sensors with
identical sensing area in a circular FoI of radius R = 100m. All sensors had a
circular sensing area of radius r = 10m. We repeated the random deployment of
sensors 100 times and averaged the results. In figure 5(a), we show the fraction
fr(A0) of A0, that remains non-covered as a function of the number of sensors N
that are deployed to monitor the FoI. The theoretical formula that computes that
desired fraction is obtained from Corollary 4.8 and is equal to:

fr(A0) = p(S = 0) =
N∏

i=1

2πF0 + L0Li

2π(F0 + Fi) + L0Li
=

N∏

i=1

2πF0 + L0L

2π(F0 + F ) + L0L

=
(

2πF0 + L0L

2π(F0 + F ) + L0L

)N

,(37)

where F0 = πR2, L0 = 2πR, F = πr2, L = 2πr. The Poisson approximation of the
fraction of A0 that is non-covered is given by [Liu and Towsley 2004; Poduri and
Sukhatme 2004, Miorandi and Altman 2005]:

fr′(A0) = p′(S = 0) = e−
NF
F0 . (38)

We observe that the simulation results verify our theoretical expression, while the
Poisson approximation deviates from the simulation results. In figure 6(a), we show
the pdf of the fraction fr(A0) covered by exactly k sensors when N = 300 sensors
with identical sensing area are randomly deployed. The equivalent sensor density
is equal to ρ = 0.0095 sensors/m2. The same graphs for N = 500, N = 1, 000
(densities ρ = 0.016 sensors/m2, ρ = 0.032 sensors/m2) are provided in figures 6(c)
and 7(a), respectively. According to Theorem 4.7, fr(A0) is equal to the pdf of the
probability that a randomly selected point P is covered by exactly k sensors. Our
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Fig. 6. (a) The pdf of the fraction fr(A0) covered by exactly k sensors when
N = 300 sensors with identical sensing area are randomly deployed. (b) The
fraction fr(A0) covered by at least k sensors when N = 300 sensors with identical
sensing area are randomly deployed. (c) The pdf of the fraction fr(A0) covered by
exactly k sensors when N = 500 sensors with identical sensing area are randomly
deployed. (d) The fraction fr(A0) covered by at least k sensors when N = 500
sensors with identical sensing area are randomly deployed.

analytical derivation in Section 4.5, yields:

fr(A0) = p(S = k) =

(
N
k

)
(2πF )k(2πF0 + L0L)N−k

(2π(F0 + F ) + L0L)N
. (39)

The Poisson approximation of the fraction of A0 that is covered by exactly k sensors
is equal to [Liu and Towsley 2004],

fr′(A0) = p′(S = k) =
(NF

F0
)k

k!
e−

NF
F0 . (40)

For the pdf of the number of sensors covering exactly a fraction of the FoI, we
computed the KL-distance and TV-distance between the theoretical pdf in (39)
from the simulated pdf as well as KL-distance and TV-distance of the Poisson
approximated pdf in (40) from the simulated pdf. In Table II, we summarize the
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Fig. 7. (a) The pdf of the fraction fr(A0) covered by exactly k sensors when
N = 1000 sensors with identical sensing area are randomly deployed. (b) The
fraction fr(A0) covered by at least k sensors when N = 1000 sensors with identical
sensing area are randomly deployed.

comparison of the theoretical pdf and its Poisson approximation. We observe a
deviation of the Poisson approximated formula from the simulated results, mainly
due to the border effects [Bettstetter and Zangl 2002]. On the other hand, our
theoretical pdf is almost identical to a real pdf (the KL-distance is equal to zero
when the two distribution compared are identical), showing that our analytical
derivation accurately predict the coverage achieved by the sensor deployment.

We also observe that the KL-distance for the Poisson approximation increases
with the increase of N. This is due to the fact that as the number of sensors
increases, more sensors will be deployed at the border of the deployment region,
and, hence, the border effect becomes more significant. On the other hand no such
pattern occurs for the KL-distance for our theoretical result. In terms of the worst
case performance, the TV-distance using (39) is significantly smaller compared to
the TV-distance between the simulation the Poisson approximation in (40).

In figure 6(b), we show the fraction of A0 covered by at least k sensors when N =
300. The same graphs for N = 500, N = 1, 000 are provided in figures 6(d) and 7(b),
respectively. For all graphs in figures 6, 7 we show the theoretical result according
to our expressions, the simulation values as well as the Poisson approximation.

5.2 Homogeneous Sensor Networks - Triangular sensing area

In our second experiment, we studied the impact of the shape of the sensing area
of the sensor to coverage. We randomly deployed 500 sensors in a circular FoI
of radius 100m. Each sensor had a triangular sensing area with each side of the
triangle being equal to r = 10m. The size of the sensing area of each sensor is equal
to F = r2

√
3

4 while the perimeter is equal to L = 3r. We repeated the experiment
100 times, computed the coverage probability and averaged the results.

We then repeated the same experiment with sensors having a circular sensing
area of size equal to the triangular one, and compute the achieved coverage. for the
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Theoretical Result in (39) Poisson Approximation in (40)

Number of Nodes (N) KL dist. TV dist. KL dist. TV dist.
(x10−3) (x10−3) (x10−3) (x10−3)

300 0.56 14.3 4.2 34.4

500 0.11 6.4 5.9 58.5

700 0.062 4.4 7.1 48.0

1000 0.096 3.6 9.4 52.1

1500 0.01 2.8 13.4 40.6

R = 100m, r = 10m, F0 = πR2, L0 = 2π, F = πr2, L0 = 2πr

Table II. Comparison of the KL-distance and TV-distance of our theoretical pdf p(S = k) with
the spatial Poisson approximation p′(S = k) for varying number of sensors with identical sensing
areas, randomly deployed in the FoI. The pdf in (39) provides an almost exact match to the
desired distribution (the KL-distance is very close to zero), while the pdf in (40) has a higher
KL-distance from the desired distribution that grows as N increases. The TV-distance in also
significantly smaller using our exact formula compared to the Poisson approximation.
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Fig. 8. (a) The pdf of the fraction fr(A0) covered by exactly k sensors when
N = 1000 sensors with identical sensing area are randomly deployed. (b) The
fraction fr(A0) covered by at least k sensors when N = 1000 sensors with identical
sensing area are randomly deployed.

circular sensing area, the equivalent radius is equal to rc = r 3
1
4√
4π

. In figure 8(a),
we compare the pdf of the fraction of A0 covered by exactly k sensors obtained via
theoretical computation as well as the simulation outcome, for both triangular and
circular sensing areas. In figure 8(b) we show fraction of A0 covered by at least k
sensors obtained via theoretical computation as well as the simulation outcome, for
both triangular and circular sensing areas.

We observe that independent of the shape of the sensing area the theoretical
computation using triangular sensing areas is almost equal to the theoretical com-
putation using circular sensing areas. This result shows that if the number of
sensors deployed is relatively large, the coverage achieved does not depend on the
shape of the sensing area, but only on the size of the sensing area. Though the
circular and the triangular sensing areas have a different perimeter, they achieve
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the same coverage since they have the same size F.
Analyzing formula (23), the coverage probability depends on the fractions F

F0
, L0L

F0
.

Since in our experiment the triangular sensing area had the same size as the circu-
lar sensing area the difference in the coverage probability in the two deployments
depends only on the fraction L0L

F0
. However, the difference in the fraction L0L

F0
for

triangles and circles is negligible with respect to the value of 2π, or
(
2π + F

F0

)
where

it is added. Hence, although A0 does not extend infinitely, its size is sufficiently
large such that the impact of the perimeter of the sensing area L is negligible. This
would not be the case if F0 and L where of comparable size, or the perimeters of
the sensing areas differed significantly.

The independence of the coverage achieved from the shape of the sensing areas,
is also illustrated in the Poisson approximation shown in (31), where the coverage
only depends on the size of the area F and not the perimeter L. As F0 increases
both L

F0
and L0

F0
tend to zero [Santalo 1976] and, hence, the perimeter of both the

FoI and the sensing area do not influence the coverage probability.

5.3 Heterogeneous Sensor Networks

In our second experiment, we considered a hierarchical (heterogeneous) sensor net-
work, where two types of sensors are deployed. Type A has a sensing area of disk
shape with a sensing range rA = 10m, while type B has a sensing area of disk
shape with a sensing range of rB = 15m. We randomly deployed an equal num-
ber NA = NB = N

2 of sensors of each type over a circular FoI of size F0 = πR2

where R = 100m. In figure 9, we show the fraction fr(A0) of A0, that remains
non-covered as a function of the number of sensors N that are deployed to monitor
the FoI. The theoretical formula that compute that is equal to:

fr(A0) = p(S = 0) =
N∏

i=1

2πF0 + L0Li

2π(F0 + Fi) + L0Li
, (41)

where F0 = πR2, L0 = 2πR, Fi = πr2
i , L = 2πri. The Poisson approximation of the

fraction of A0 that is non-covered was illustrated in [Miorandi and Altman 2005],
and is given by,

fr′(A0) = p′(S = 0) = e−
NE[F ]

F0 . (42)

where E[F ] = πE[r2] denotes the expected value of the sensing area of the sensors
deployed.

We observe that the simulation results verify our theoretical expression, while
the Poisson approximation deviates from the simulation results. In figure 10(a), we
show the pdf of the fraction fr(A0) covered by exactly k sensors when N = 300
sensors are randomly deployed. The equivalent sensor density is equal to ρ = 0.0095
sensors/m2. The same graphs for N = 500, N = 1, 000 (densities ρ = 0.016
sensors/m2, ρ = 0.032 sensors/m2) are provided in figures 10(c) and 11(a), re-
spectively. According to Theorem 4.7, fr(A0) is equal to the pdf p(S = k) of the
probability that a randomly selected point P is covered by exactly k sensors. Our
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Fig. 9. Fraction fr(A0) of A0, that remains non-covered as a function of the number
of sensors N that are deployed to monitor the FoI, for the heterogeneous network
deployed in the second experiment.

analytical derivation in Section 4.4, yields:

fr(A0) = p(S = k) =





∏N
i=1

(
2πF0+L0Li

2π(F0+Fi)+L0Li

)
, k = 0P(N

k)
i=1 (Qk

j=1(2πFT (i,j))
QN−k

z=1 (2πF0+L0LG(i,z)))QN
r=1(2π(F0+Fr)+L0Lr)

, k ≥ 1.

(43)

The Poisson approximation of the fraction of A0 that is covered by exactly k sensors
is equal to,

fr′(A0) = p′(S = k) =
(NE[F ]

F0
)k

k!
e−

NE[F ]
F0 . (44)

For the pdf of the number of sensors covering exactly a fraction of the FoI in
the heterogeneous case, we again computed the KL-distance and TV-distance be-
tween the theoretical pdf in (43) from the simulated pdf as well as the KL-distance
and TV-distance of the Poisson approximated pdf in (43) from the simulated pdf.
In Table III, we summarize the comparison of the theoretical pdf and its Pois-
son approximation. As in the case of the homogeneous network, we observe a
higher deviation of the Poisson approximated formula from the simulated results.
This deviation is not only due to the border effects [Bettstetter and Krause 2001;
Bettstetter and Zangl 2002], but also due to the use of the expected size of the sens-
ing area of the sensors in the Poisson approximated formula. On the other hand,
our theoretical pdf is almost identical to a real pdf, showing that our analytical
derivation accurately predicts the coverage achieved by the sensor deployment.

As in the case of the homogeneous sensor network, we also observe that the KL-
distance and TV-distance for the Poisson approximation increases with the increase
of N. This is due to the fact that the as the number of deployed sensors increases,
more sensors will be deployed at the border of the deployment region and, hence,
the border effect becomes more significant. On the other hand no such pattern
occurs for the KL-distance between our theoretical result and the simulations.
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Fig. 10. Heterogeneous sensor network, with FoI being a disk of radius R = 100m.
An equal number of two types of sensors are deployed; Type A has a sensing area of
a disk shape with radius rA = 10m, while type B has a sensing area of a disk shape
with rB = 15m. (a) The pdf of the fraction fr(A0) covered by exactly k sensors
when N = 300 sensors. (b) The fraction fr(A0) covered by at least k sensors when
N = 300 sensors. (c) The pdf of the fraction fr(A0) covered by exactly k sensors
when N = 500 sensors. (d) The fraction fr(A0) covered by at least k sensors when
N = 500 sensors.

In figure 10(b), we show the fraction of A0 covered by at least k sensors when
N = 300. The same graphs for N = 500, N = 1, 000 are provided in figures 10(d)
and 11(b), respectively. For all graphs in figures 6, 7 we show the theoretical
result according to our expressions, the simulation values as well as the Poisson
approximation.

In the case of heterogeneous sensor networks where each sensor has a different
sensing area, the formula in (43) has an exponentially increasing computational
cost, since an exponentially increasing summation of terms must be computed in
order to derive the exact coverage achieved. Such a computation may not be feasible
for large networks. The higher accuracy obtained using the exact formula, does
not justify the tradeoff in computational complexity with respect to the Poisson
approximation provided by [Miorandi and Altman 2005].
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(a) (b)
Fig. 11. Heterogeneous sensor network, with FoI being a disk of radius R = 100m.
An equal number of two types of sensors are deployed; Type A has a sensing area
of a disk shape with radius rA = 10m, while type B has a sensing area of a disk
shape with rB = 15m. (a) The pdf of the fraction fr(A0) covered by exactly k
sensors when N = 1000 sensors. (b) The fraction fr(A0) covered by at least k
sensors when N = 1000 sensors.

Theoretical Result in (43) Poisson Approximation in (44)

Number of Nodes (N) KL dist. TV dist. KL dist. TV dist.
(x10−3) (x10−3) (x10−3) (x10−3)

300 0.86 14.7 2.2 36.3

500 1.4 18.3 6.9 38.4

700 0.062 7.8 8.4 49.4

1000 0.096 10.9 12.3 59.6

1500 0.15 11.5 15.7 65.2

R = 100m, rA = 10m, rB = 15m, F0 = πR2, L0 = 2π

FA = πr2
A, LA = 2πrA, FB = πr2

B , LB = 2πrB , NA = NB = N
2

Table III. Heterogeneous sensor network, with FoI being a disk of radius R = 100m. An equal
number of two types of sensors are deployed; Type A has a sensing area of a disk shape with
radius rA = 10m, while type B has a sensing area of a disk shape with rB = 15m. The table
compares the KL-distance and TV-distance of our theoretical pdf p(S = k) with the spatial Poisson
approximation p′(S = k) for varying number of sensors with identical sensing areas, randomly
deployed in the FoI. The pdf in (43) provides an almost exact match to the desired distribution
(the KL-distance is very close to zero), while the pdf in (44) has a significant distance from the
desired distribution that grows as N increases.

In such a case, a similar approximation can be used for our formulas by employing
the expressions derived for a homogeneous sensor network and substituting the size
F and perimeter L of the sensing area of the sensors with the expected size E[F ]
and expected perimeter E[L]. The theoretical approximation for such a case is:

fr(A0) = p(S = k) =

(
N
k

)
(2πE[F ])k(2πF0 + L0E[L])N−k

(2π(F0 + E[F ]) + L0E[L])N
. (45)

In figure 12(a) we show the pdf obtained via simulation for our heterogeneous
sensor network experiment, for N = 500 sensors, the theoretical values based on the
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Fig. 12. Heterogeneous sensor network, with FoI being a disk of radius R = 100m.
An equal number of two types of sensors are deployed; Type A has a sensing area of
a disk shape with radius rA = 10m, while type B has a sensing area of a disk shape
with rB = 15m. (a) The pdf of the fraction fr(A0) covered by exactly k sensors
when N = 500 sensors. (b) The fraction fr(A0) covered by at least k sensors when
N = 500 sensors.

exact formula in (43), the Poisson approximation in (44), and the approximation in
(45). In figure 12(b), we show the fraction of A0 covered by at least k sensors. We
observe that for the case of heterogeneous sensor networks where each sensor has a
different sensing area, (45) provides a better approximation than the (44), without
incurring the computational cost of (43). The KL-distance for the approximation
obtained via (45) is equal to 2.3x10−3, while the Poisson approximation gives a
KL-distance equal to 6.8x10−3. With respect to the worst case, the TV-distance
for the approximation obtained via (45) is equal to 6.4x10−3, while the Poisson
approximation gives a TV-distance equal to 54.6x10−3.

5.4 An Example of Computing the Coverage in a Sample Network

In this section, we provide an example of applying our results to a sample sensor
network. Consider an FoI of size F0 = 106m2 and perimeter L0 = 4, 000m where
sensors of identical sensing area F = 100π and perimeter L = 20π are randomly de-
ployed. We want to compute the number of sensors needed in order for a randomly
selected point of the FoI to be covered by at least one sensor with a probability
pC = 95%. Or alternatively, the number of sensors N needed, so that a fraction
pC = 0.95 of the field of interest is covered by at least one sensor.

Lemma 4.6 and Corollary 4.8 yield:

p(S ≥ 1) = 1− p(S = 0)

= 1−
N∏

i=1

(
2πF0 + L0L

2π(F0 + F ) + L0L

)

= 1−
(

2πF0 + L0L

2π(F0 + F ) + L0L

)N

.
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We want to the probability of 1-coverage to be at least p(S ≥ 1) ≥ p. Hence,

P (S ≥ 1) = 1−
(

2πF0 + L0L

2π(F0 + F ) + L0L

)N

≥ pC ⇒

N ≥ log (1− pC)

log
(

2πF0+L0L
2π(F0+F )+L0L

) .

Substituting the values for pC , F0, L0, F, L yields N ≥ 9, 728 sensors.

6. CONCLUSION

We studied the problem of stochastic coverage in heterogeneous sensor networks. By
mapping the coverage problem to the set intersection problem, we derived analytical
formulas that compute the k-coverage when sensors are deployed in a Field of
Interest according to an arbitrary distribution Y. In our analysis, the sensors can
have a sensing area of any shape and also need not have identical sensing areas.
We provided simplified expressions for the case when the sensors are randomly
deployed, as well as when the sensors have identical sensing areas.

We verified our theoretical results via simulation and compared them with previ-
ous formulas that characterized coverage in both homogeneous and heterogeneous
sensor networks. By evaluating the KL-distance between the analytic coverage for-
mulas and the simulation, we showed that our expressions provide a significantly
higher accuracy. This is due to the fact that our results do not suffer from the bor-
der effects and hold exactly rather than approximately. We also provided examples
on how to utilize our expressions in order to compute the number of sensors that
need to be deployed in a Field of Interest, so that a coverage requirement is met.

APPENDIX

1. MEASURE OF ALL MOTIONS OF A1 SUCH THAT IT INTERSECTS WITH A0

In this section, we compute the measure of all motions ofA1 such thatA0

⋂A1 6= 0 :

m(A1 : A0

⋂
A1 6= ∅) (i)

=
∫

A0
TA1 6=∅

dA1

(ii)
=

∫

A0
TA1 6=∅

dx ∧ dy ∧ dφ

(iii)
=

∫ 2π

0

(F0 + F1 + 2F01) dφ

(iv)
= 2π(F0 + F1) + L0L1. (46)

In (i), we integrate the kinematic density dA1 of set A1 over all motions of A1

such that A0

⋂A1 6= ∅. In (ii), we write the kinematic density in its expanded
differential form as defined in (2). In (iii), we compute the area between A0,A1

which is called mixed area of Minkowski and integrate over all possible rotations.
The integration yields the desired result.
ACM Journal Name, Vol. V, No. N, Month 20YY.



Stochastic Coverage in Heterogeneous Sensor Networks · 31

1.1 Proof of (iii)

The proof is due to [Santalo 1936; Santalo 1976]. LetA0,A1 be two convex sets with
support functions p0(φ), p1(φ), respectively. The support function p(φ) of a convex
set A denotes the distance of the origin point of a convex set from the envelope
that defines the curve that bounds the convex set, as a function of the angle φ of
the envelope with the x-axis of the coordinate system. Let A0,A1 intersect and let
A01 denote the common area between A0,A1. A01 is called the mixed convex set
of A0,A1, and has a support function p(φ) = p0(φ) + p1(φ).

The area if the mixed convex set can be computed by the decomposition into
elementary triangles of height equal to p and base equal to ds, where ds is the
elementary arc of the convex curve that bounds A01 :

F =
1
2

∫

dA01

pds

(i)
=

1
2

∫ 2π

0

p(p + p′′)dφ

(ii)
=

1
2

∫ 2π

0

(
p2 − p′2

)
dφ

(iii)
=

1
2

∫ 2π

0

(
(p0 + p1)2 − (p0 + p1)′2

)
dφ

=
1
2

∫ 2π

0

(
p2
0 − p′20

)
dφ +

1
2

∫ 2π

0

(
p2
1 − p′21

)
dφ +

1
2

∫ 2π

0

(p0p1 − p′0p
′
1) dφ

= F0 + F1 + 2F01, (47)

where,

F01 =
1
2

∫ 2π

0

(p0p1 − p′0p
′
1) . (48)

Equation (i), is due by the definition of the support function [Bonnesen and Fenchel
1934; Santalo 1976]. In (ii), we do integration by parts and in (iii) we replace
p = p0 + p1.

1.2 Proof of (iv)

In this section, we want to compute the integral:

I =
∫ 2π

0

(F0 + F1 + 2F01) dφ. (49)

The computation is as follows:

I =
∫ 2π

0

(F0 + F1 + 2F01) dφ

= 2πF0 + 2πF1 +
∫ 2π

0

2F01dφ. (50)
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F01 =
1
2

∫ 2π

0

(p0p1 − p′0p
′
1) dφ

(i)
=

1
2

∫ 2π

0

(p0(p1 + p′′1)) dφ

(ii)
=

1
2

∫

dA1

p0ds1

(iii)
=

1
2

∫

dA1

p0(φ− θ)ds1. (51)

Equation (i) is obtained by performing integration by parts. In (ii), we replace
p1 +p′′1 , with ds1 ([Bonnesen and Fenchel 1934; Santalo 1976]). In (iii), we consider
all possible rotations θ of A1, such that A1, intersects with A0. Integrating, over
all θ yields,

∫ (

0

2πF01)(θ)dθ =
∫ 2π

0

(
1
2

∫

dA1

p0(φ− θ)ds1

)
dθ

=
1
2

∫

dA1

(∫ 2π

0

p0(φ− θ)dθ

)
ds1

=
1
2

∫

dA1

L0ds1

=
1
2
L0L1, (52)

where we have used the fact that [Santalo 1976]:
∫ 2π

0

p0dθ = L0,

∫

dA1

ds1 = L1. (53)

Substituting (52) into (50) yields:

I = 2πF0 + 2πF1 + L0L1. (54)
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