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Abstract—Software Defined Networking (SDN) is a new net-
working paradigm that in recent years has revolutionized net-
work architectures. At its core, SDN separates the data plane,
which provides data forwarding functionalities, and the control
plane, which implements the network control logic. The sepa-
ration of these two components provides a virtually centralized
point of control in the network, and at the same time abstracts
the complexity of the underlying physical infrastructure. Unfor-
tunately, while promising, the SDN approach also introduces new
attacks and vulnerabilities. Indeed, previous research shows that,
under certain traffic conditions, the required communication
between the control and data plane can result in a bottleneck.
An attacker can exploit this limitation to mount a new, network-
wide, type of Denial of Service attack, known as the control plane
saturation attack. This paper presents LineSwitch, an efficient
and effective data plane solution to tackle the control plane
saturation attack. LineSwitch employs probabilistic proxying and
blacklisting of network traffic to prevent the attack from reaching
the control plane, and thus preserve network functionality.
We implemented LineSwitch as an extension of the reference
SDN implementation, OpenFlow, and run a thorough set of
experiments under different traffic and attack scenarios. We
compared LineSwitch to the state-of-the-art, and we show that
it provides at the same time the same level of protection against
the control plane saturation attack, and a reduced time overhead
by up to 30%.

I. INTRODUCTION

Software Defined Networking (SDN) is a recently proposed
paradigm that aims at simplifying the management of net-
working infrastructures. SDN proposes a marked shift from
the current network infrastructure by decoupling the network
logic layer, called the control plane, and the data layer, called
the data plane, into separate entities. Such separation provides
several benefits: on one hand, it allows the development
of virtually centralized and directly programmable network
control systems; on the other hand, it reduces the complexity
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of network devices by providing to management applications
an abstract representation of the network.

Among the existing instantiations of the SDN paradigm,
OpenFlow [1], [2] is the most widely adopted. OpenFlow
defines the standard API for communication between the
data plane and the control plane; moreover, it introduces
the concept of flows, which identify the network traffic [2],
and the idea of flow tables. Each OpenFlow-enabled network
device, called OpenFlow switch, needs to maintain a set
of flow tables, organized in a pipeline. These flow tables
define which actions the OpenFlow switch will perform on a
given network flow. The flow table pipeline is traversed every
time a packet is received, allowing for multiple rules from
different tables to be applied to a given network flow. The
control plane can program the flow tables of the OpenFlow
switches either proactively or reactively. When flow rules are
installed reactively, each time an OpenFlow switch receives
an inbound flow for which it has no matching rule, it will
request the installation of a new rule to the control plane [3].
Unfortunately, while this behavior enables a flexible network
management, it also introduces a potential bottleneck in the
communication channel between the data and control plane.

The extensive communication between control and data
plane results not only in poor scalability under high traffic
load in normal circumstances, but also introduces a serious
vulnerability which can be exploited to overload the controller
with flow requests. This attack is called control plane sat-
uration [4], [5], and can be easily performed, for example,
through SYN flooding [6]. Since OpenFlow switches require
the control plane to provide rules for new network flows, an
attacker successfully incapacitating a controller is effectively
incapacitating the switch connected to such controller. This
vulnerability is further exacerbated by the fact that, in general,
a controller manages more than a single switch [4], [7], [5],
[8], potentially hindering a large part of the network.

Recently, Shin et al. [4] proposed AVANT-GUARD, a coun-
termeasure against the control plane saturation attack. AVANT-
GUARD introduces a new module into the OpenFlow switch,
called connection migration module, which protects the switch
from saturation attacks performed by SYN flooding, while
at the same time being transparent to the end hosts. The
connection migration module implements a SYN proxy mech-
anism in each OpenFlow switch; every time an inbound TCP
connection is received, the switch acts as a proxy during the
initial handshake, instead of immediately contacting the con-
troller. Unfortunately, while this protocol effectively shields
the controller from possible floods in the general case, it also



introduces new unintended vulnerabilities and possible limita-
tions. Indeed, we show that, in order to run AVANT-GUARD,
an OpenFlow switch needs to maintain some state in memory
for each connection, leading to a new type of Denial of Service
attack we named buffer saturation attack. Furthermore, the
transparency provided by AVANT-GUARD with respect to the
end hosts comes with a cost in terms of maximum number of
connections that a switch can proxy, which is limited to the
number of available TCP port numbers.

Our Contribution: In this paper, which is an extended ver-
sion of the work in [9], we make the following contributions:

« We identify and discuss some unintended vulnerabilities
of one of the recently proposed schemes against the
control plane saturation attack that, to the best of our
knowledge, represents the state-of-the-art solution against
this threat.

« We propose a novel attack, which we name buffer satu-
ration attack. Our attack exploits some of the identified
vulnerabilities introduced by the state-of-the-art solution
for the control plane saturation attack. As confirmed by
our analysis, buffer saturation attack is both realistic
and simple to run, and leads to significant network
performance degradation.

e We propose LineSwitch, a new efficient and effective
solution to mitigate the control plane saturation attack.
LineSwitch greatly reduces the effects of this attack,
while at same time protects the network from the buffer
saturation attack.

« We ran a thorough set of experiments, and compared our
solution against the current state-of-the art under three
different traffic scenarios: under normal traffic, under
a control plane saturation attack, and under a buffer
saturation attack. The results of our experiments confirm
that LineSwitch effectively protects against the control
plane saturation attack, while reducing the introduced
timing overhead by 30%, when compared to current state-
of-the-art solutions.

e We further propose additional modifications to
LineSwitch, which allow for a more refined use
of proxying based on incoming packets rate at the
controller level, and address possible attacks on legit
clients.

« We discuss how the SDN network performs in the three
different scenarios we considered in our evaluation, when
either the official OpenFlow, the state-of-the-art solution,
or LineSwitch is employed.

Organization: The rest of this paper is organized as follows.
In Section II, we provide some background knowledge on
SDN. In Section III, we revise some related work in the area
of DoS attacks and defense in Software Defined Networking.
Additionally, we provide an overview of AVANT-GUARD,
the current state-of-the-art solution against the control plane
saturation attack. In Section IV, we analyze the limitations
of the current state-of-the-art, and propose a new potential
attack we refer to as the buffer saturation attack. Section V
describes LineSwitch, our countermeasure against the control
plane saturation attack, while we experimentally evaluate its
effectiveness in Section VI. In Section VII, we propose possi-

ble improved variants of LineSwitch through a small extension
of the OpenFlow protocol. In Section VIII, we discuss our
solution at a higher level, and provide a comparison with
the state-of-the-art and the original OpenFlow. Finally, in
Section IX, we draw our conclusions.

II. SOFTWARE DEFINED NETWORKING (SDN)

Software Defined Networking (SDN) has emerged as a new
network paradigm aimed at providing higher flexibility in
network research, development and operation. The cornerstone
of SDN and its main difference compared to today’s network
architecture is the decoupling of the network control and the
forwarding functions. The SDN architecture postulates that
these two logically separated aspects of networking are de-
coupled in two corresponding layers, respectively the control
plane and the data plane. Figure 1 provides a high-level
representation of the SDN architecture.
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Fig. 1: SDN Architecture.

In the SDN model the control plane acts as a middleware,
providing an interface to program the data plane behavior
to third party applications. This model allows applications to
interact with the data plane independently from the physical
network devices employed, as well as abstracts all the com-
plexity related to network infrastructure, and data-to-control
plane communication. Moreover, the control plane offers a
logical centralized system that controls and accesses data from
all network devices, effectively offering a global view of the
network infrastructure.

OpenFlow: OpenFlow [2] is the reference implementation
of the SDN paradigm. It defines a standard communication
interface between the control plane and the data plane. The
OpenFlow specification defines that packet routing is per-
formed on the basis of traffic flows. Each network device,
which is called OpenFlow switch, needs to maintain a set of
flow tables. Flow tables contain rules installed by the control
plane, instructing the switch on how to handle incoming
packets. Additionally, each OpenFlow switch also maintains a
communication channel to an external controller in the control
plane. Figure 2 presents the logical structure of an OpenFlow
switch.

The control plane can program the physical devices through
a series of flow rules [3], that are installed inside the flow
tables. Such rules specify which actions a switch will perform



on a specific network flow. For each unique network flow,
or group of flows, there will be a corresponding flow table
entry (i.e., a flow rule). Once an OpenFlow switch receives
a packet, it matches the packet header against the pipeline of
its local flow tables, which will dictate what actions will be
applied to that specific flow. Flow rules can be either pre-
installed (proactively), or installed on-demand (reactively) by
the controller, allowing a switch-driven installation of new
flow rules only when they are effectively required [2]. In the
latter case, if an OpenFlow switch does not have any matching
rule for a new incoming flow, it forwards the corresponding
packet header to the controller (in a PacketIn packet), which at
this point can install a new rule for that flow into the switch [3].
Through the combination of different flow rules, a controller
can define a broad range of actions, from the standard routing
of a packet to a more complex analysis, involving forwarding
the packet to the controller [3].
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Fig. 2: OpenFlow Switch Architecture.

III. RELATED WORK

In the recent years, SDN has become a quite common
networking architecture, as well as a popular research subject.
In this section, we provide a brief overview of the main
research studies related to Denial of Service (DoS) attacks
in SDN. In [6], Peng et al. provided a first feasibility study
for Denial of Service attacks on SDN control plane. In [10],
Kreutz et al. analyzed SDN architecture, identifying critical
aspects and possible new attack vectors, while Kloti et al. [7]
assessed some vulnerabilities that affects OpenFlow [2], using
the STRIDE vulnerability modeling technique.The analysis
in [7] highlighted two main vulnerabilities, i.e., the possibility
for an attacker to mount DoS attacks on the control plane, and
to disclose potentially sensitive information by using timing
analysis techniques.

In [11], Mehdi et al. provided a system for network traffic
analysis at the control plane level. In their work, the authors
applied anomaly detection techniques to expose several types
of attacks, such as scanning worm infections. More recently,
Li et al. proposed DrawBridge [12], a system based on SDN
architecture that enables end hosts to use their knowledge
about desired traffic, to improve ISPs traffic engineering for
DDoS detection. In [13], Braga et al. proposed a lightweight
DDoS detection system for OpenFlow/NOX [14] based on
traffic flow analysis. The system classifies the traffic based
on flow features, such as the average number of packets per

flow. Statistics are collected by the control plane querying each
OpenFlow switch at specific time intervals. In general, all of
the above solutions act as high level applications deployed
at the control plane level. Therefore, they do not address
problems related to data plane and control plane interaction,
nor offer protection from link saturation attacks.

In [15], Wang et al. propose Scotch, a solution that allows
the network’s control plane to scale-up when under high load.
The authors identify the SDN bottleneck in the OpenFlow
agent inside the switches, i.e., the control part of the OpenFlow
switch responsible of interfacing with the control plane. Their
proposed solution leverages the high control plane capacity
given by a pool of Open vSwitch devices [16], as well as the
high data plane capacity of commodity switches, to improve
the scalability of the network under DoS attack. However, their
solution addresses only the situation in which the network’s
bottleneck is represented by the OpenFlow Agent within the
switches, and implicitly assume the remote controller to be
able to handle the high control traffic load. Consequently, we
believe that [15] could benefit from the use of LineSwitch on
the physical switches.

In [17], Mekky et al. extend the SDN architecture by allow-
ing packet forwarding based on application level information.
Their solution allows to limit the communication between the
data plane and the control plane, and to implement a DoS
protection mechanics similar to the one proposed in [4].

Kotani et al. [18] propose a packet-level filtering approach
to limit the data-to-control plane communication. In their solu-
tion, switches maintain two additional data structures for low-
priority packets, i.e., Pending Rule Table (PRT) and Pending
Flow Table (PFT). The PFT is populated a priori by the
control plane, and contains entries indicating which attributes
matches with low-priority packets; the PFT keeps track of the
(low-priority) packets for which a PacketIn message has been
already sent to the control plane. A packet is added to the PFT
if and only if it matches with an entry in the Pending Rule
Table, and if there is no matching entry in the PFT. However,
their proposed defense mechanism is easily avoidable by an
attacker by modifying the header of the flooding packets
(something that would be done anyway in case of an attack, at
least for the IP field, to avoid identification). In this way, all the
packets will be forwarded to the controller without filtering,
effectively circumventing the proposed defense mechanism.
Moreover, selected fields of the header will be stored in the
PFT for each packet, eventually resulting in the saturation of
the table. As the authors suggest, at this point the switch can
either: (1) arbitrarily evict entries from the PFT, which would
not be very useful, as it would be saturated again shortly after;
or (2) temporarily revert to the standard OpenFlow protocol,
therefore exposing the controller to DoS attacks.

Finally, in [4], Shin et al. addresses the architectural flows
of the original OpenFlow protocol by altering the flow man-
agement at the data plane level [5], [4]. In particular, they
tried to solve the bottleneck introduced by the communication
between the data plane and the control plane, that can be
exploited to mount a control plane saturation attack. In their
work, the authors focused on the control plane saturation attack
based on SYN flooding. The authors applied SYN Cookie and



middle-box concepts [19] to OpenFlow switches, changing
significantly the way data flows are handled with respect
to the standard OpenFlow. To the best of our knowledge,
AVANT-GUARD [4] represents the state-of-the-art data plane
level solution for tackling the control plane saturation attack
in SDN. For this reason, we briefly describe this solution in
Section III-A. We will further compare it against our solution
when evaluating our proposal (see Section VI).

A. Avant-Guard

AVANT-GUARD [4] modifies the standard OpenFlow pro-
tocol and adds two extensions: (1) a Connection Migration
module, which mitigates the efficacy of control plane satura-
tion attacks based on SYN flooding by proxying the incoming
TCP handshakes, and (2) the Actuating Trigger module, which
allows the controller to limit the number of control messages
required to collect network statistics. Since the focus of this
paper is on solving the control plane saturation attack, in the
remaining of this paper we will focus only on the connection
migration module of AVANT-GUARD, that we briefly describe
in this section. Moreover, in Section IV we will provide a
security analysis of the connection migration module.

1) Basic Connection Migration: As introduced in Sec-
tion II, whenever an OpenFlow switch receives an inbound
network flow for which it has no flow rule, it will forward
the packet to the control plane. This behavior applies to
SYN packets too: indeed, for each received SYN packet not
matching any flow rule in the pipeline, an OpenFlow switch
will generate a flow request for the controller, asking for a
new rule to be installed. The proposed connection migration
module of AVANT-GUARD addresses this problem at the data
plane level, by having the OpenFlow switch act as a SYN
proxy. This process is composed of four phases (see Figure 3):

1) Classification phase. Whenever a SYN packet from a
new network flow is received by an OpenFlow switch,
(action (1) in Figure 3), the switch acts as a proxy and
engages the client in a stateless TCP handshake by using
SYN Cookies (actions (2) and (3) in Figure 3), instead
of immediately contacting the control plane.

2) Report phase. If the client completes the TCP handshake,
the switch then forwards the new flow to the controller
(action (4) in Figure 3) and wait for a new rule that
defines how it should be handled (action (5) in Figure 3).

3) Migration phase. Upon receiving permission for the mi-
gration, the switch initiates a TCP handshake with the
destination host (actions (6), (7) and (8) in Figure 3).
The OpenFlow switch further reports the result of the
handshake to the control plane (actions (9) and (10) in
Figure 3).

4) Relay phase. If the handshake is successful, the switch
relays subsequent messages between the client and des-
tination.

The foremost advantage of connection migration, is the
classification mechanism. Only complete TCP flows will be
reported to the control plane, effectively shielding it from SYN
flooding attacks performed with spoofed IP addresses, and
greatly mitigating the threat of link saturation. For non-spoofed

TCP flows, the result is that any {IP, port} combination will
appear to be valid, effectively converting the network to a
whitehole network and preventing an attacker from mapping
possible targets. Moreover, the consequent SYN flooding
vulnerability at data plane level is addressed by the use of
SYN Cookies [20]. Since the SYN Cookie algorithm does not
need to maintain state for connection requests, there is no need
for storing information in the OpenFlow switch for failed TCP
connections.
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Fig. 3: Connection Migration technique of AVANT-GUARD [4].

2) Delayed Connection Migration: Generally, an adversary
can potentially infer the use of the connection migration
protocol through analysis of Round Trip Time (RTT) of
SYN packets. This information can be used to alter the
attack strategy, flooding the data plane with complete TCP
handshakes instead of single SYN packets, hence forcing the
switch to forward each of them to the control plane. To solve
this issue, AVANT-GUARD introduces a modification to the
connection migration module, intended for protocols in which
the initiator of a connection is expected to send the first data
packet: this process is named delayed connection migration.
In particular, delayed connection migration extends the basic
connection migration protocol adding a further requirement for
the switch to forward a new flow to the control plane: after
the initiator successfully completes the TCP handshake, the
data plane will postpone the packet forwarding to the control
plane, until the first valid data packet is received from the
initiator of the connection. Figure 4 presents a high-level view
of the modified connection migration module. This additional
requirements aims at granting a better classification stage,
where the reception of a valid data packet ensures that the
connection is indeed valid and not part of a flooding attack.

Control Plane Controller
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Fig. 4: Delayed Connection Migration technique of AVANT-
GUARD [4].



IV. LIMITATIONS OF THE CONNECTION MIGRATION
MODULE

The connection migration module of AVANT-GUARD [4] is
indeed a valid solution against the control plane saturation at-
tack. Moreover it also shields end hosts from SYN flooding at-
tacks and, by replying unconditionally to every received SYN
packet, it prevents port scanning attacks. Unfortunately, along
with the above desirable properties, the connection migration
module of AVANT-GUARD introduces new vulnerabilities too.
In particular, we identified two distinct vulnerabilities that can
lead to a shutdown of the OpenFlow switch:

1) SYN proxying introduces the need to store timestamp and
sequence number-related state throughout the duration
of the connection, as well as source IP and port. This
constraint can easily be exploited by an attacker to
incapacitate an OpenFlow switch which implements the
connection migration module (see Section IV-A).

2) Using SYN proxy techniques inherently limits the num-
ber of connections that can be forwarded. In particular,
the maximum number of connection forwarded to a
specific {IP, port} pair is 64512 (see Section IV-B).

In this section we provide an in-depth analysis and the
scheme of a possible attack for each of the above points,
highlighting the vulnerabilities and limitations introduced by
the connection migration module of AVANT-GUARD. Finally,
in Section IV-C we discuss the consequences of the need for
transparency during the migration, while in Section IV-D we
discuss the hidden ramifications of using proxy in the inner
nodes of a TCP connection.

A. Proxying Requires State

Let us consider a situation where a host A initiates a TCP
connection with another host B. Let R be an intermediate
OpenFlow switch. According to the TCP specifications [21],
during the TCP handshake the Initial Sequence Numbers
(ISNs) for the connection are set as follows:

o Host A sends a SYN packet to host B with a sequence

number 1SN 4.

« Host B replies with a SYN-ACK packet; the acknowl-
edgment number will be set to ISN4 + 1 and the SYN
sequence number will be set to an arbitrary value I/.SNp.

o Host A replies with an ACK packet with the acknowl-
edgment number ISNpg + 1.

After the completion of the TCP handshake, all subsequent
packets from host A to host B will have sequence numbers
computed starting from I.SN4 + 1, and adding one for each
byte in the payload. In the same way, all the packets from
host B will have sequence numbers computed starting from
ISNp + 1.

When using the connection migration module of AVANT-
GUARD, the OpenFlow switch R proxies the TCP connection
between A and B, introducing a new intermediary handshake
with host A that otherwise would not happen. As a result,
after the first handshake is completed, host A will assume to
have an established connection with host B. Therefore, host A
will expect all the subsequent packets form B to have sequence
numbers starting from I.SNr+1, where IS Np, is the sequence

number of the SYN-ACK packet sent from the OpenFlow
switch R. Moreover, given that for security reasons [22], [23]
each ISN is computed in a non-predictable way, it is not
possible for switch R to compute the exact sequence number
that B will use in the TCP connection. As a consequence, the
sequence number [SNpg used by the OpenFlow switch will
differ from I.SNp. In particular, the actions computed by A,
B and the OpenFlow switch R are the following:

o Host A sends a SYN packet to host B with a sequence
number 1SN 4.

« Switch R intercepts the incoming packet, and replies to
host A with a SYN-ACK packet with a spoofed address,
i.e., using host B address. The ACK number will be
ISN4 + 1 and the sequence number will be a random
number ISNg.

o Host A replies with an ACK packet with the acknowl-
edgment number /S Ng+ 1. From now on, A will expect
incoming packets from host B to have a sequence number
ISNp, = ISNg+payload_bytes, where payload_bytes
is the number of payload bytes received up to a given
moment.

« Upon receiving the permission to migrate the connection,
switch R will start an handshake with host B by sending a
SYN packet with sequence number SN 4. It is important
to note that at this step, switch R can not use the IP
address of host A when sending the connection request.
Indeed, there is no guarantee that the reply from host
B will follow the same path through switch R on the
way back. Therefore, during the whole TCP connec-
tion, the connection identifier stored by host B will be
{IPg, portg, I Pg,portg}, and consequently, host B will
not have any knowledge about host A.

o Host B replies with a SYN-ACK packet containing an
ACK number ISN4 + 1 and a sequence number I.SNp.

« Switch R finalizes the connection sending an ACK with
number /SNp + 1.

In order to maintain the existence of the proxy transparent
for host A, a sequence number translation from host B to host
A is necessary. Conversely, an acknowledgment translation is
required in the opposite direction. As a result, switch R must
change the sequence numbers of all the packets coming from
host B, and the acknowledgment number of all the packets
sent from host A, in order to match what the two end hosts
expect. We underline that, in order for this conversion to
take place, some state information is needed for each active
connection. Moreover, let us consider a scenario where there
are two separate clients, C and D, trying to connect to host B,
both from source port portc p to port portp through switch
R. In this case, since R uses its IP address to migrate the
connection, it can not use port p to proxy both connections
in the migration process. Otherwise, it would not be possible
for R to map each packet received from B, which would
be addressed to R’s IP on port portc p, to one of the two
clients C or D. Therefore, for each host connecting to the
same {IP, port} pair, the OpenFlow switch needs to use a
distinct port number to migrate the connection in order to be
able to match the response packets to the correct host on the
way back. Consequently, for each connection the OpenFlow



switch needs to translate several fields of both the TCP and
IP headers of each packet, and needs to store the following
information:

{IPsrcv POTtsre, POTER, 6seq},

where I P, and portg,. are respectively source address and
port of the initiator of the connection, port , is the port number
used by the router in the migration and Js., is the difference
between the ISN used by the router and the ISN used by the
destination host.

It is clear that, while proxying each TCP connection allows
R to prevent malicious SYN packets from being forwarded
to the controller, it also forces a connection-long storage of
information, for each open connection. This behavior gives
rise to the same type of vulnerability SYN flooding exploits,
i.e., gives an adversary an easy mean to saturate the target
OpenFlow switch buffer.

Buffer Saturation Attack: Given that the OpenFlow switch
needs a translation table with one entry for each connection, it
is a prime target for a buffer saturation attack. The attack itself
is simple: the attacker just needs to open several complete
TCP connections through the target OpenFlow switch to a
given host. Note that each of these connections will need state
to be stored on the switch for translation. Therefore, if the
number of connections is large enough, the portion of memory
dedicated to that data structure will be saturated, incapacitating
the switch from serving any further valid connection.

B. TCP Ports and Limit on Connections Number

As we already stated in Section IV-A, when a connection
from hosts A to B is proxied by switch R, all the packets
translated by the switch to the destination B will have the
IP address of R and a port number which will be different
from the original one used by A. This behavior introduces yet
another important limitation: in the scenario where multiple
clients connect to a given destination on the same port (e.g.,
{IPg,portg}) through switch R, the latter will be forced to
use a different port to migrate each connection. However,
since TCP port numbers are 16 bit fields, the maximum
number of connections the switch will be able to migrate to a
given IP-port pair is at most 216 —1024 = 64512 (the first 1024
ports are reserved for well known services). This number can
be quickly reached if we consider extremely popular HTTP
services (e.g., Google or Facebook). Therefore, each switch is
bound to a maximum number of connections it can migrate for
each service, after which all new incoming connection requests
can not be satisfied.

1) DoS through Port Saturation: This limitation is clearly
a very important drawback of the system, and can easily be
exploited by a malicious attacker. Indeed, it would be easy
to target a given service by opening a series of long-lasting
connections through the OpenFlow switch. Once enough con-
nections are opened and all the possible ports have been used
by the switch to migrate the connections, any other client
trying to connect to said service will be rejected. This bound
on the maximum number of connections that a switch can
migrate, provides an extremely simple and efficient way of

mounting a DoS attack to a given host B, for all the clients
whose path to B passes through the same OpenFlow switch.
There are no definitive solutions to this problem if proxying
is used: each connection to the same service must be assigned
a unique port number by the switch. The most promising way
to somewhat mitigate this restriction is to purchase several 1P
addresses for the switch to use. In this way, when all the ports
have been used with a given address, it will switch to a new
address and will be able to migrate other 64512 connections.
While address purchasing can be employed as a partial solu-
tion, it is worth noting that for each additional address, the
space of possible combinations increases by just 64512. If we
consider a complex network, where several switches employ
the connection migration technique, we will quickly hit a
point where the cost and complexity of management increase
extremely rapidly, reducing the appeal of this workaround.

C. Connection Migration Transparency

The connection migration module of AVANT-GUARD [4] is
transparent to both the source and destination host. Consider
again a host A communicating with another host B, through an
OpenFlow switch R. When host A completes the connection
with R in the first step of connection migration, it has no
knowledge of the fact that it is not connected to the destination
host B. As a consequence, host A might start sending data as
soon as the connection is completed. At this point, a switch
executing the delayed connection migration module of AVANT-
GUARD (see Section III-A) has only two possibilities: (1)
discard all the incoming packets, until the connection has
been migrated; or (2) buffer all the incoming packets, and
further forward them as soon as the connection migration is
completed. Both options have their pros and cons.

In the first case, discarding all incoming data packets will
result in a higher overhead in the first stage of the connec-
tion, since the packets will be retransmitted by the sender
only after TCP timeout expires. Moreover, if the duration of
the connection migration spawns over more than one TCP
retransmission (e.g., because of a slow or distant destination
host), the overhead will increase exponentially due to TCP’s
binary exponential backoff mechanism [24]. If the connection
is a long-lived one, this initial overhead might be negligible
over its duration. However, if the connection is short-lived,
and possibly part of a set of other short-lived connections, the
cumulative overhead can indeed become considerable.

In the second case, buffering incoming data packets while
the migration is in progress will certainly result in a lower
overhead, since such packets would be forwarded to destina-
tion as soon as the migration is completed, but unfortunately, it
would also give an attacker an easy way of flooding the switch
and force it to buffer all the packets. However, once the buffer
is saturated, the switch could simply revert back to discarding
all data packets, so the impact of such an attack would be
somewhat limited. Nonetheless, such buffering behavior could
be used to consume computational and storage resources on
the switch.

In our implementation of the connection migration module,
we opted for discarding incoming data packets in order to



minimize the surface for the attacker as much as possible.
This design choice does not in any way influence the results
of the experiments presented in Section VI, as the code used
for the SYN proxy is the same for both our implementations
of AVANT-GUARD and LineSwitch (see Section V).

D. Consequences of Breaking End-to-End Semantics

All the vulnerabilities we identified above should be results
of breaking TCP end-to-end semantics. In fact, in this way
we force intermediate nodes in the path to actively take part
in the communication which was designed to be purely end-
based. Beside what we already argued, this can have deeper
and more subtle consequences on higher level protocols that
rely on the standard TCP design, and even on some aspects
of TCP itself.

1) Higher-Level Protocols and Applications: A problem
arises when we consider higher-level protocols and applica-
tions relying on the standard TCP behavior. In particular, it
is common for higher layers of the network stack to access
lower layer information, e.g., information about IP addresses
might be used for location based services. Unfortunately,
when proxying mechanisms, such as the one used in AVANT-
GUARD, are in place, this information will not be valid,
since modified by the OpenFlow switch. As a consequence,
applications and protocols relying on the correctness of lower
layers information, will either not work or return unexpected
results.

2) TCP Setup: The TCP handshake is designed to allow for
the correct setup of a connection, which includes the exchange
of the capabilities (in TCP terms, available options [25]) of the
two end hosts. Since it is not possible for an OpenFlow switch
to have any knowledge about the capabilities of the destination
TCP stack, when it completes the connection with the source,
it can not allow any option which is not required by the
standard (namely, only the MSS option [21]). This precludes
the setup of all the TCP extensions for high performance [26]
as well as the SACK option [25], which are fundamentals in
order to achieve efficient use of the available bandwidth in
large-bandwidth connections. Moreover, for the MSS option
the switch is forced to use a conservatively small value in
order to have a reasonably high probability that the destination
host will be able to manage such segment size. Indeed, if the
MSS is greater than what the destination host can manage,
the switch will be forced to break up packets that are too
big in multiple fragments (each with a new set of headers),
introducing additional delays.

3) Path Instability Issues: Since the migration is done with
the IP address of the OpenFlow switch that is proxying the
connection, the destination host will have no notion of the real
initiator of the connection. Consider the case in which the path
between the two end hosts A and B changes, and does not pass
through the proxy OpenFlow switch anymore, e.g., because
of normal congestion, or as a result of a targeted attack. In
this scenario, as soon as the destination host B receives a
packet from A, this time with IP address and port of A, it
will not be able to match it with any existing flow. Therefore,
B will respond with a RST packet, abruptly terminating the
connection and loosing any data in transit.

The above behavior could theoretically be exploited by a
malicious user to target known OpenFlow switches executing
the connection migration protocol. Indeed, an attacker could
overload and incapacitate such switches to force network
flows to change path, this way effectively destroying all
open connections passing through that node. Moreover, the
same problem arises with fragmented packets: if a packet
is too big to be sent as a single TCP/IP datagram, the
source host, or the routers along the path, might separate
it into multiple fragments. In general, there is no guarantee
that all this fragments will be routed along the same path.
Therefore, if one or more fragments do not pass through
the proxy OpenFlow switch, the destination host will not
recognize them, and possibly terminate the original connection
at the source host (with a RST packet). Finally, while it is
possible for the control plane to mitigate this limitation by
keeping the routing of TCP flows static inside its network,
this would highly reduce the effectiveness of existing load
balancing techniques. Moreover, the control plane can not
influence external subnetworks. Therefore, if the packets from
a migrated flow are routed through a different subnetwork
by external nodes, the connection will not pass through the
proxy OpenFlow switch and will be consequently reset by the
destination host.

V. OUR SOLUTION: LINESWITCH

Breaking TCP end-to-end semantics introduces the need to
store state, which in turn opens the system to attacks exploiting
buffer saturation. Therefore, any defense mechanism against
the control plane saturation attack needs to reduce the use of
proxying as much as possible, while at the same time retaining
the beneficial effects proxying offers. As noted before, one of
the main strengths of SYN flooding is the possibility to launch
the attack with spoofed source IP addresses. If we were able
to remove this possibility, it would be possible to identify
flooding attempts and to discard all incoming packets from
the offending IP.

To this end we propose LineSwitch, an OpenFlow module
deployed on edge OpenFlow switches. LineSwitch proxies
all incoming TCP connections from a given IP until one is
completed, while subsequent connections are proxied only
with a very small probability FP,. Figure 5 presents a high-
level representation of the logical flow of LineSwitch.

LineSwitch can protect the control plane and the switch,
even in presence of an attacker Adv with knowledge about
the proxy mechanism in use. Indeed, it would be possible
for Adv to perform an attack by correctly completing the
handshake associated with the first SYN packet sent, and
then initiating the SYN flooding. Although this is true, Adv
would be forced to use its real IP address, P44, in all the
packets, to ensure they will be forwarded to the OpenFlow
pipeline. This requirement stems from the fact that the first
connection from any address is proxied by the switch, and
then forwarded through the OpenFlow pipeline only if the
handshake is completed. Since an attacker using a spoofed IP
address is unable to complete the handshake, all his requests
are immediately discarded by LineSwitch. Moreover, since



the effectiveness of the SYN flooding attack is based on
a high throughput, once Adv is forced to use its real IP
address for the flooding, the OpenFlow switch will quickly
proxy one of the packets, thus detecting the attack. Then, the
OpenFlow switch can blacklist the IP address of host Adwv,
IP 440, for T x 2€0UnP a4, seconds, where countrp,,, indicates
the number of times IP 44, did not complete a connection, and
T represents a default time value. The time required for the
detection of the attack is related to the probability of proxying,
which is defined by the network administrator and should be
tailored to the specific needs and history of the network under
consideration for maximum efficacy. We further discuss what
realistic values can be used in Section VI-D.
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Fig. 5: LineSwitch logic flow.

LineSwitch effectively blocks all packets with spoofed IP
addresses at the data plane, while at the same time penalizes
clients performing SYN flooding with non-spoofed IPs (after
they first established a complete TCP connection) with expo-
nentially increasing blacklist periods of time.

A. Key Advantages

In this section we describe the various improvements that
our approach grants with respect to the problems identified on
the current state-of-the-art in Section IV.

1) Higher Resiliency to Buffer Saturation: The first clear
advantage of our approach is that it will drastically reduce
the memory usage due to the required translation for each
connection, thus offering high resilience against the proposed
buffer saturation attack. Indeed, LineSwitch requires port
translation only for the first SYN packet per each IP address,
and only for a very small number of packets after that based
on the chosen probability P,. Therefore, the memory usage
increases almost linearly with the number of clients with a
TCP connection through the switch R. In contrast, the memory
overhead introduced by AVANT-GUARD grows linearly with
the number of connections that passe through the switch. An

attacker can easily generate a huge number of connections
from the same source IP using different port numbers (up
to 26 = 65535 per < IPjy,portys > pair; the theoretical
limit would then be 216+32+16) and, with AVANT-GUARD, the
switch would need to store state for each of these connections.
As a reference, in our experiments with a link of 1 Mbps we
were able to open approximately 780 connections per second,
while with a higher bandwidth of 5 Mbps, it was possible to
complete more than 4000 connections per second.

While it would be prohibitive for any realistic attacker to
keep track of such a huge amount of connections, this is not
needed for a buffer saturation attack. Indeed, the attacker can
simply send SYN packets as quickly as possible, and blindly
reply to any SYN-ACK packet received from the OpenFlow
switch, without checking if it is the answer to a previous sent
SYN packet or not. Due to this peculiarity, there is no need for
the attacker to store the state related to the opened connections,
therefore allowing him to reach the theoretical maximum
limit (albeit in a long time). Instead, with LineSwitch the
number of entries the switch needs to store under attack, is
almost proportional to the number of distinct real IP addresses
(machines) the attacker possesses. As a consequence, the
effect of buffer saturation attacks is greatly reduced, while at
the same time retaining full protection against SYN flooding
attacks. Moreover, even if an attacker were able to generate
a huge amount of complete connections in a relatively small
time, it would be sufficient to dynamically adjust the migration
probability P, for the offending hosts, as soon as a buffer
saturation attack attempt is detected. Finally, when an attack
is detected and the OpenFlow switch is under high distress
(e.g., the buffer use crosses a given critical threshold, which
will happen only after an extremely long time, as we will show
in Section VI-C), it is fair to consider incomplete connections
whose duration exceeds a given value to be malicious, and
therefore they can be reset [27]. In the statistically unlikely
scenario that the connection was a valid one, the originator
will simply restart it with little harm done (and it will not be
proxied again with high probability). What would constitute a
good method to detect such attacks is left as future work.

2) Reduced Use of Proxy: As discussed in Section IV-B
and Section IV-D, while being an effective mechanism to
protect against SYN flooding attacks, proxying introduces
several problems which derive from breaking the end-to-end
paradigm. Therefore, its use should be limited as much as
possible. To this extent, LineSwitch proxies only the first
connection from a given host (i.e., an IP address), while
subsequent incoming connections from the same IP address
are proxied only with probability P,. Since LineSwitch is
effective even with small migration probability value P,
(see Section VI), in most cases the normal network flow is
preserved, mitigating intrinsic problems of proxying such as
routing path instability, limited maximum number of migrated
connections, and allowing for all possible TCP options that
proxying and SYN Cookies do not allow for (see Section IV-B
and Section IV-D). Moreover, our experimental results show
that a small value for P, does not reduce the level of protection
that LineSwitch provides against the control plane saturation
attack (see Section VI).



3) Reduced Overhead: While according to its specifications
AVANT-GUARD introduces a negligible overhead retrieving a
web page [4], we will show in Section VI-A that, after a
more careful analysis of the AVANT-GUARD system (namely,
that it cannot use the original IP and port, as discussed in
Section IV-A) this claim of low overhead changes consider-
ably. Indeed, the connection migration protocol introduces a
remarkable amount of overhead. Moreover, as our experimen-
tal evaluation will show, LineSwitch fares considerably better
under this point of view both under normal circumstances and
under SYN flooding attack.

VI. EVALUATION

In order to assess the feasibility and effectiveness of our
solution in different scenarios, we designed and performed a
thorough set of experiments. In particular, we implemented our
solution in the reference OpenFlow software switch [28], and
evaluated it against the standard OpenFlow implementation.
Moreover, we compared it to the state-of-the-art solution
to tackle the control plane saturation attack generated by
SYN flooding, i.e., AVANT-GUARD [4], adapted to include
the necessary modifications pointed out in this paper (see
Section IV). More in detail, AVANT-GUARD does not require
any setup, since there are no configurable parameters. All
the parameters related to the conducted experiments are kept
constant when comparing the different solutions (standard
OpenFlow, AVANT-GUARD and LineSwitch) and are described
in detail in this section. The specific modifications to AVANT-
GUARD, when compared with [4], are as follows:

1) For each completed connection, our AVANT-GUARD im-

plementation stores G¢imestamp and 5., Number, source
IP IPg,., and source port ports,. (see Section IV).

2) For each packet in transit, our AVANT-GUARD imple-
mentation replaces all the above fields to maintain the
connection state consistent (see Section IV).

The specific implementation of these steps is shared be-
tween AVANT-GUARD and LineSwitch (which requires them
too when proxying is used). For this reason, our experimental
results are not influenced by our specific implementation. We
ran all our experiments using the Mininet network simula-
tor [29] in a virtual machine.

Figure 6 presents the setup of our simulation, which in-
cludes two client hosts, and an HTTP server, connected to an
OpenFlow switch running the reference OpenFlow software
switch [28], and a local controller (running the POX controller,
13_learning module [30]).

The only meaningful parameters for a buffer saturation
attack are the rate at which connections are completed, which
is influenced only by the total bandwidth available to the
attacker, and the size of the buffer the OpenFlow switch
uses to store the required information. Therefore, we did not
deem necessary using more complex network layouts in our
experiments. The computer used for the simulation is equipped
with a quad core Intel i5-4670 @3.40GHz, all of which were
available to the virtual machine.

In what follows, we analyze and compare the performance
of OpenFlow, AVANT-GUARD and LineSwitch both in a

regular use-case scenario (Section VI-A), under SYN flood-
ing attack (Section VI-B) and under buffer saturation attack
(Section VI-C).
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Fig. 6: Experimental Setup.

A. Regular Traffic Scenario

As a first test, we simulated the system in Figure 6 under
a regular traffic scenario, i.e., a client performs an HTTP
request to a web server through an OpenFlow switch. For
this experiment, Link 1, Link 2 and Link 3 of Figure 6 are
setup with a bandwidth of 10 Mbps and a Round Trip Time
(RTT) between nodes of 80 ms. Moreover, the probability
for LineSwitch to migrate a connection of an already known
host is set to P, = 0.05 and maintained static. We sampled
the time required to retrieve a web page (of size 1 KByte)
with both OpenFlow, AVANT-GUARD and LineSwitch, and
computed the average over 500 separate runs. The results of
our simulation are displayed in Table I. As we can see, our
implementation of AVANT-GUARD, which takes into account
the practical considerations we discussed in Section IV-A,
requires considerably more time compared to what originally
estimated in [4].

The main difference seems to arise from the fact that the
analysis in [4] did not consider the need for an OpenFlow
switch to modify all the packets of a connection passing
through it.

Implementation | Avg. Time | Std. Dev. | Overhead
OpenFlow 0.404 s | 0.001 s 0.00%
AVANT-GUARD | 0.573 s | 0.014 s | 41.83%
LineSwitch 0.435 s | 0.030 s 7.67%

TABLE I: Average web page retrieval time/success rate, in a
regular traffic scenario.

Note that, given the unavailability of the original source
code, we needed to provide our own prototype implementation
of AVANT-GUARD, which is not optimized. However, in
general the operations required by the connection migration,
coupled with the lookups needed to retrieve the informa-
tion pertaining to the specific TCP flow, result in a high
total overhead for the connection. In contrast, on average
LineSwitch introduces just a small overhead per connection.
Moreover, it can be further tuned to the specific needs of
the environment through adjustments the P, parameter, as
this will allow to filter a higher or smaller percentage of the



incoming connection requests. Finally, it is worth noting that
the connection migration code used in our proposal is the same
as the one adopted for the implementation of AVANT-GUARD,
therefore any improvement on the latter will consequently
reflect on the results of our proposal too.

B. SYN Flooding Scenario

In this test we simulated the behavior of the system under
the control plane saturation attack via SYN flooding, and
assessed the state of the various components. In our exper-
iment, we measured the average retrieval time of a web page,
and the corresponding success rate. In particular, in order to
have a better understanding of the impact of such attack on
the system at different attack rates, we ran the experiments
varying the bandwidth of Link 2, i.e., the attacker’s link in
Figure 6, while keeping Link 1 and Link 3 at 10 Mbps. This
allows us to ascertain the behavior of the different solutions
under increasing rates of attack. Table II and Table III report
the results of our experiments, along with the corresponding
bandwidth values for Link 2.

In all our tests, the flooding attack was started 20 s before
the measurements were performed; this was done in order to
obtain more meaningful results, simulating a background SYN
flooding attack already in progress while trying to retrieve a
web page.

Implementation | Avg. Time | Success Rate | Overhead
OpenFlow 2.41 s 100% 495.54%
AVANT-GUARD | 0.56 s 100% 39.85%
LineSwitch 0.41s 100% 1.73%

TABLE II: Average web page retrieval time/success rate, under
SYN flooding attack. Link 2 is set to 3 Mbps.

We recall that the network setup we used is the one
depicted in Figure 6. As we can see from Table II, even
under a modest rate of attack of 3 Mbps, the average retrieval
time for the standard OpenFlow implementation increases
by almost 500%, while almost doubling the attack rate is
enough to completely overload the controller (see Table III).
By contrast, both AVANT-GUARD and our solution dispatch
100% of packets to destination, but with considerable different
overheads: indeed, AVANT-GUARD introduces approximately
a 40% overhead compared to the standard OpenFlow under
normal network conditions, while LineSwitch introduces only
a negligible overhead, i.e., roughly 2% (see Table III).

Implementation | Avg. Time | Success Rate | Overhead
OpenFlow - 0% -
AVANT-GUARD | 0.568 s 100% 36.92%

LineSwitch 0.426 s 100% 5.45%

TABLE III: Average web page retrieval time/success rate,
under SYN flooding attack. Link 2 is set to 6.5 Mbps.

As we can see from Table III, in these tests both LineSwitch
and AVANT-GUARD perform better than in the regular traffic
scenario, with results well within the standard deviation (see

tables I, II and III). This is a strong indicator that both
solutions are barely affected by background SYN flooding
attacks.

Figure 7 gives a more complete view of the behavior of the
system under SYN flooding attack at different attack rates, in
all the three cases we considered.

As Figure 7a shows, even under a high attack rate of
20 Mbps, both AVANT-GUARD and LineSwitch guarantee a
0% packet loss. Moreover, the web page retrieval time remains
at stable levels with both solutions (see Figure 7b). Finally
when considering the original OpenFlow implementation, the
controller reaches a critical point between an attack rate of 6
and 6.5 Mbps, where the percentage of successfully delivered
packets decreases dramatically to approximately 0%, while the
average retrieval time grows extremely rapidly. This behavior
is consistent with the results presented in [4], and is exactly
what is expected from an overloaded controller.

C. Buffer Saturation Scenario

In the tests presented in this section, we simulated the
behavior of both AVANT-GUARD and LineSwitch under the
buffer saturation attack introduced in Section IV-A. To this
aim, we configured the system with different buffer sizes and
run the attack at different rates. As a result, we show that:

1) The attack rate required to successfully incapacitate an
OpenFlow switch running AVANT-GUARD grows linearly
with the size of the buffer.

2) When using AVANT-GUARD, the throughput needed to
successfully complete the attack in a reasonable amount
of time is easily achievable, even with larger buffers.

3) LineSwitch offers an extremely high resiliency to the
buffer saturation attack, and can be further configured
through the P, parameter to address the specific needs
of the network.

The network setup used in the experiments is the same
one as in Figure 6. Figure 8 presents the results of our
simulation. It shows the average time needed to successfully
overload a switch with a buffer saturation attack, running both
AVANT-GUARD and LineSwitch, with the latter executed with
parameter P, set to 0.01 and 0.05. The results are presented
for varying size of the buffer (expressed in Bytes) and for
different rates of attack (expressed in Mbps).

As Figure 8 shows, even with a modest rate of attack
it is possible to quickly overflow the buffer of a switch
running AVANT-GUARD: with an attack rate of 1 Mbps, a
buffer of 222 Bytes is saturated in 74.72 s, preventing the
switch from migrating any new connection. By contrast when
using LineSwitch, even when setup with a highly conservative
migration probability P, = 0.05, the time needed to perform
a successful buffer saturation attack is one order of magnitude
greater when compared to AVANT-GUARD. As an example,
with a 1 Mbps attack rate, a buffer size of 222 and P, =0.05,
LineSwitch requires 769.49 s to be saturated against only
74.72 s required when running AVANT-GUARD. When using
lower (and more realistic) migration probability values, the
time difference increases even more, as shown in Figure 8.
For completeness, we evaluated the average time required
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to complete a successful buffer saturation attack employing
P, = 0.001. Results are shown in Table IV.

Link Bandwidth | Buffer Size Time
218 439.84 s
5 Mbps 220 1814.00 s
222 7375.98 s

TABLE IV: LineSwitch with P, = 0.001: buffer saturation
attack with different buffer sizes.

As we can see, when using a probability value P, = 0.001,
saturating the buffer of a switch running LineSwitch can take
up to hours (7375.98 s ~ 2.02 h) with a 5 Mbps attack rate
and 222 Bytes buffer, while under the same conditions AVANT-
GUARD is saturated in a matter of seconds. This confirms the
resiliency of LineSwitch against this type of attack, and shows
how easily it can be adapted to different security needs. As
argued in Section V-Al, given the long time needed to saturate
the buffer when employing LineSwitch, it is a fair assumption
that when an attack is detected most of the longer lasting
connections are malicious and can safely be discarded from
the buffer with minimal impact on legitimate ones. Moreover,
since a high percentage of the incoming connections follows
the normal OpenFlow pipeline, on average the attacker will
have to complete 1/P, times more connections than with
AVANT-GUARD in order to fill the buffer. It would then be
easy to detect such cases, since there would be an immediate
and prolonged spike in the number of incoming connections
from a given set of IPs. Therefore, it is possible to adopt the
countermeasures we introduced in Section V-Al.

The size of the buffer we used in our simulations are
based on the fact that we assume only a single attacking

node with limited computational resources. Nonetheless, our
experimental results show that, in order for the attack to be
successful, the rate needs to grow just linearly (see Figure 8a,
Figure 8b and Figure 8c) with the size of the buffers. Even
taking into consideration top of the line OpenFlow switches
with gigabytes of memory available (which clearly needs to
be shared with many other data structures beside the target
buffer), the attacker could make use of a botnet, which today
are readily available for rent at accessible prices, to obtain a
sufficiently high attack rate. As an example, if we consider an
extremely small set of 200 bots with an average bandwidth
per bot of 5 Mbps, using our experimental data as a reference
(see Figure 8c), a buffer of 4 GBytes of memory (dedicated
only to this particular data structure) would be saturated in
approximately 74s. Since the size of botnets can range in the
thousands [31], it is easy to see how, in general, the size of
the buffer does not offer any protection against the buffer
saturation attack. Indeed, the required attack rate is easily
achievable regardless of buffer size.

D. Configuring the Proxy Probability

LineSwitch efficacy depends partially on the value assigned
to the proxying parameter P,. At the two extremes, i.e.,
P, = 1 and P, = 0, the behavior of LineSwitch is equiv-
alent to that of AVANT-GUARD and the standard OpenFlow
respectively. To better balance the protection level provided
by our solution with respect to both control plane saturation
and buffer saturation attacks, P, needs to be configured appro-
priately. The most important deciding factors in selecting the
appropriate value of P, are the configuration and the history
of the network under consideration. As an example, a network
provided with multiple controllers with high computational



power is less susceptible to control plane saturation attack,
and will require a very high attack rate to be incapacitated. In
this scenario LineSwitch can be configured with a really low
proxying probability value. Indeed, intuitively, even if a single
connection request has a low probability of being proxied,
given the large number of packets required for a successful
attack, at least one will be quickly proxied and the attack
detected. On the other hand, a network with low resources
will be incapacitated with lower attack rates, and therefore a
higher proxying probability is desirable.

In general, we can estimate the average attack detection time

d; as:
1

di = —
t g ] Ppa

where v is the attack speed, s is the size of each packet, and P,
is the adopted proxy probability. Using the same parameters
we chose in our experimental evaluation in Section VI-C, we
can see that, on average, an extremely low value such as
P, = 0.1 x 1073 is sufficient to detect an attack in less than
one second. Let v = 6.5 Mbps be the minimum critical attack
rate for a successful control plane saturation attack, as from
our results in Figure 7b; moreover, let s = 70 Byte (560 bit).
A successful control plane saturation attack requires (at least)
approximately 12000 packets per second. With a proxying
probability P, = 0.1 x 1073, on average LineSwitch will rec-
ognize an attack in ~ 0.82 sec. Note that, in our experimental
evaluation in Section VI-C, we considered P, = 0.05, which
is an extremely conservative proxy probability value: indeed,
this choice results in a detection time of ~ 0,016 sec.

For a better understanding of the role of P, in our solution,
we can estimate the average attack detection time given a
certain confidence probability P; of detecting an attack. We
can model the event of LineSwitch checking a packet sent
by the attacker as a Bernoulli trial, with success probability
P,. Moreover, for a finite number n of tries, the probability
of detecting the attack, i.e., of proxying at least one packet
sent by the attacker, follows the binomial distribution. As a
consequence we can write:

Pi=1- <Z)P]S(1 _ Py 1-(1- B,
With a confidence of P; = 0.9 (i.e., in the 90% of the
cases), and P, = 0.1 x 10~3, LineSwitch can detect an
attack after approximately n = 23025 packets sent by the
attacker; therefore, under an attack rate of 6.5 Mbps, we have
a detection time of ~ 1.89 sec.

VII. EXTENDING LINESWITCH

The proposed version of LineSwitch is a simple but ef-
fective modification of the basic OpenFlow switch behavior,
implemented completely at the data plane level to offer the
highest possible level of protection to the control plane. In
its original design [9], we defined LineSwitch as a data plane
level-only protection mechanism. In designing our solution,
we had two main goals: (1) avoiding any interaction with the
control plane, to prevent opening unwanted vulnerabilities, and
(2) preserving as much as possible the standard OpenFlow

protocol, to ease integration with existing OpenFlow based
networks. However, if we relax the above requirements by
minimally involving the control plane in LineSwitch, we can
provide several improvements to our original design. In this
section, we look at possible extensions to LineSwitch, in order
to increase its flexibility, enhance its performance, and offer
overall better protection.

A. Opportunistic Proxying and Packetln Rate Monitoring

A first possible improvement to the original LineSwitch
design is opportunistic proxying based on detected Packetln
rate.

During the execution of the standard OpenFlow protocol,
the control plane is contacted by the OpenFlow switches for
each new inbound network flow through Packetln messages.
By keeping a per-switch Packetln history at the control plane
level, it is possible to obtain an average Packetln rate (PiR)
for normal network conditions. Similarly to [15], the con-
troller can then sample the PiR at fixed intervals, in order
to detect sudden variations (Apjr) from the average, which
indicate a possible ongoing SYN-flooding attack. Indeed, if
Apr is greater than a given threshold (e.g., twice the PiR
standard deviation), the controller will send a specially crafted
OpenFlow TOGGLE_LINESWITCH message to the OpenFlow
switch generating the unusual control traffic. The switch will
then enable the base LineSwitch module on the fly, in order
to shield the controller from the flooding and to identify the
offending client(s). Once the PiR is back in a normal range,
the controller will send another TOGGLE_LINESWITCH mes-
sage, deactivating the module.

We implemented a proof-of-concept version of this oppor-
tunistic proxying mechanic. Figure 9 shows a preliminary
evaluation of this approach, performed with the same setup
as illustrated in Figure 6.
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Fig. 9: Page retrieval time using opportunistic proxying.
LineSwitch is activated at time ¢, when the PiR is above the
detection threshold. Standard deviation in error bar.

As Figure 9 shows, when the PiR rises above the configured
threshold, which we set to 4 x 10% PacketIn/sec, LineSwitch
is automatically activated, shielding the controller from the
flood. In our preliminary evaluation, LineSwitch runs with
proxy probability P, = 0.05.

This solution presents several advantages over the base
LineSwitch module:

« Since the LineSwitch module is activated only when
needed, the standard OpenFlow protocol is preserved



under normal traffic conditions. As we argued in Sec-
tion IV, this is extremely important as it inherently
prevents buffer saturation attacks, as well as allows the
correct establishment of TCP connections.

o Since, in general, the network will be under possible
attack just for a fraction of its overall lifetime, activating
LineSwitch on-demand allows to further reduce the over-
head introduced (see results in Section VI-A). While the
reduction in the overhead is limited in our preliminary
evaluation, this implementation is just a proof-of-concept
aimed to prove that LineSwitch can be further improved.
Moreover, even with such an early-stage evaluation it is
noticeable how the opportunistic activation of LineSwitch
is beneficial to the network from the point of view of
latency. Indeed, when using LineSwitch, our experiments
register a high jitter (as shown by the high standard
deviation after time ¢ in Figure 9), which can be disruptive
in cases where real-time interaction is needed like VoIP
for instance. Activating LineSwitch only when effectively
necessary mitigates this problem, allowing for the use of
the normal OpenFlow pipeline when the network is not
under attack.

o The additional control traffic required by this feature
increases linearly with the number of controlled Open-
Flow switches, i.e., it requires only one message per
switch; therefore the introduced communication overhead
is negligible.

Note that, since opportunistic proxying can be obtained
without adding any new functionality over the standard Open-
Flow protocol, it does not introduce any exploitable mechanics
to the network.

The only downside of such modification is the introduction
of a new OpenFlow message, and therefore it may not be
backwards compatible with OpenFlow switches conforming
to older versions of the specifications. However, for these
switches it is possible to employ the base LineSwitch module.

Finally, while this proposed modification extends
LineSwitch from data plane-only solution to cross-plane
solution, the role of the control plane remains limited. Indeed,
the controller is only required to opportunistically activate
LineSwitch on the attacked OpenFlow switch (and deactivate
it once the situation is back to normal). Therefore, we think
it is acceptable to still consider LineSwitch a data plane
solution and to evaluate it against other data plane solutions
(e.g., AVANT-GUARD [4]).

B. Legit Client Protection

The default behavior of LineSwitch is to blacklist IP ad-
dresses from which a SYN-flooding is detected. A malicious
user could exploit this by flooding the OpenFlow switch with a
spoofed IP address in order to have another client blacklisted,
thus performing a DoS attack on the victim. Since LineSwitch
is designed to work on edge routers and the blacklist is local to
each OpenFlow switch, this will work only under the following
conditions: (1) the attacker is connected to the same edge
router as the victim; and (2) the attacker knows the victim
IP address. If these two conditions are met, then an attacker

can successfully perform a DoS attack on the victim. It is
possible to avoid this by introducing a slight modification in
how LineSwitch works. At the switch level, in OpenFlow the
traffic is further divided into in-ports (i.e., the physical port
where the traffic came from). Taking this into consideration,
all that is needed is to restrict the blacklist of a given IP only
for the given in-port from where the SYN-flooding is detected.
This way, even if a malicious user were to perform a SYN-
flooding with a spoofed IP address of a client connected to the
same switch, this would not influence the legit client as the
blacklisting of the IP would be enforced only for the in-port
of the attacker.

VIII. DISCUSSION AND COMPARISON

In this section, we will analyze and compare the collective
state of the system while employing the standard OpenFlow
protocol, the AVANT-GUARD [4] extension and our own
proposal under different attack situations.

1) SYN Flooding Scenario: As demonstrated by our experi-
ments presented in Section VI, the SYN flooding-based control
plane saturation attack heavily affects the standard OpenFlow
implementation, while being barely noticeable when AVANT-
GUARD and LineSwitch are in use. The collective state of the
system under SYN flooding, in the three cases we discussed,
is summarized in Table V.

Switch | Controller | Network | Host
OpenFlow X X X *
AVANT-GUARD v v v v
LineSwitch v v v v

TABLE V: System state under typical SYN flooding attack.
Symbol v indicates component working normally; symbol
% indicates component under distress; symbol X indicates
component unresponsive or under considerable distress.

While both AVANT-GUARD and LineSwitch defeat SYN
flooding attack, the standard OpenFlow implementation leaves
the system exposed to a considerable threat: if the attack
rate is high enough, which is easily obtainable as demon-
strated in Section VI-B, the controller will be overloaded
and consequently the switch will be incapacitated. In general,
since a single controller can manage multiple OpenFlow
switches on a subnetwork, all the switches connected to it
will become unresponsive to new flows, compromising parts
of the network. Moreover, until the controller is completely
overloaded, the flooding is forwarded to the server possibly
causing considerable distress.

2) Buffer Saturation Scenario: In Section VI-C we showed
that AVANT-GUARD is heavily vulnerable to buffer saturation
attacks. Indeed, a modest attack rate is sufficient to fill the
internal buffers of an OpenFlow switch running AVANT-
GUARD, preventing it from migrating any new connection
and possibly causing problems to a whole subnetwork. As
we demonstrated in Section VI-C, even if we increase the
size of the buffer for the AVANT-GUARD switch, the attack
throughput required for a successful attack grows linearly.
Furthermore, after a certain point, extending the amount of



memory available for the OpenFlow switch buffer will hit a
diminishing return point, where the efficiency of the lookup
operations is severely impacted by the large data structures
needed. By contrast, when LineSwitch is in use, the problem
is highly mitigated through a quick host classification based
on probability and blacklisting. As our results confirmed, it
is easy to adjust the probability parameter, P,, to render
this attack ineffective, while retaining full protection against
the control plane saturation attack based on SYN flooding.
Table VI summarizes the collective state of the system under
buffer saturation attack.

Switch | Controller | Network | Host
OpenFlow v * v v
AVANT-GUARD X v * v
LineSwitch v v v v

TABLE VI: System state under buffer saturation attack, de-
scribed in Section IV-A. Symbol v indicates component
working normally; symbol % indicates component under dis-
tress; symbol X indicates component unresponsive or under
considerable distress.

IX. CONCLUSION

In this paper we analyzed the effects of the control plane
saturation attack based on SYN flooding, one of the most
widespread types of Denial of Service attack, when applied
to Software Defined Networks (SDN) architecture, and in par-
ticular to its reference implementation, OpenFlow. We showed
that the extensive communication needed by the control plane
and the data plane in SDN amplifies the effect of typical
Denial of Service attacks, resulting in an overload of the
control plane and in the possible impairment of large parts
of the network. Furthermore we considered AVANT-GUARD,
which is, to the best of our knowledge, the only currently
proposed solution against control plane saturation attack. We
showed that in its original design, subtle points were not taken
into consideration, opening critical system vulnerabilities. To
address these challenges, we proposed LineSwitch, a solution
based on probability and blacklisting which offers both re-
siliency against SYN flooding-based control plane saturation
attacks and protection from buffer saturation vulnerabilities.
We experimentally demonstrated that LineSwitch imposes a
negligible overhead, which can be dynamically adjusted to fit
the network needs, while successfully defending the OpenFlow
switch and controller from attacks that can potentially disrupt
the functionality of the network.
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