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Abstract— We address the problem of resource-efficient access
control for group communications in wireless ad-hoc networks.
Restricting the access to group data can be reduced to the
problem of securely distributing cryptographic keys to group
members, known as the key distribution problem (KDP). We
examine the KDP under four metrics: (a) member key storage,
(b) group controller (GC) transmissions, (c) multicast group
(MG) update messages, and (d) average update energy. For each
metric, we formulate an optimization problem and show that
the KDP has unique solutions for metrics (a) and (b), while is
NP-complete for (c) and (d). We propose a cross-layer heuristic
algorithm called VP3 that bounds member key storage, and
GC transmissions, while significantly reducing the energy and
bandwidth consumption of the network. We define the notion
of path divergence as a measure of bandwidth efficiency of
multicasting, and establish an analytical worst-case bound for
it. Finally, we propose On-line VP3 which dynamically updates
the key assignment structure according to the dynamics of the
communication group in a resource-efficient way.

Index Terms— key distribution, secure group communication,
key management, security, multicast, ad-hoc.

I. INTRODUCTION

Wireless ad-hoc networks are envisioned to provide
rapid on-demand network deployment due to their self-
configurability and lack of pre-deployed infrastructure re-
quirements. Since ad-hoc networks rely on the collaboration
principle, a significant amount of communication is needed
to provide any service. However, if nodes are equipped with
omnidirectional antennae, a single transmission suffices to de-
liver the same message to any receiver within communication
range. Hence, protocols employing Group Communications
can benefit from the broadcast nature of the wireless medium,
and reduce the energy expended for communication [1], [24].

While broadcasting in group communications provides both
energy and bandwidth efficiency, unencrypted transmissions
are openly available to any eavesdropper. Hence, Access
Control policies are necessary in order to restrict access to
the contents of multicast transmissions to valid members of
the Multicast Group (MG). One approach to control access
to the group communication is via broadcast encryption [6].
Alternatively, a bandwidth and computationally efficient solu-
tion to this problem uses a single symmetric cryptographic key,
called the Session Encryption Key (SEK), that is shared by the
multicast source and all members of MG [2], [23], [25]. Using
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the SEK, the sender needs to perform only one encryption and
one transmission to send data to MG, while MG members
need only perform a single decryption to receive the data.

In the case where the multicast group MG is dynamic, the
valid members of MG need to be updated with a new SEK
after every membership change so that new members do not
access past data (backward secrecy [2], [23], [25]), and de-
parting members do not access future transmissions (forward
secrecy [2], [23], [25]). In order to update the SEK, additional
keys called Key Encryption Keys (KEKs) are used by the
entity managing the cryptographic keys, known as the Group
Controller (GC). Hence, the problem of controlling access to
the multicast data reduces to the problem of managing and
distributing the SEK and KEKs to the members of MG. This
problem is known as the Key Management Problem or Key
Distribution Problem (KDP) [2], [23], [25].

Previous research on the KDP in wired networks [2], [23],
[25] mainly focused on designing scalable systems that reduce
costs in terms of key storage at each member, and number
of messages the GC has to transmit to update keys after
a membership change. Through the use of tree-based key
structures, member key storage and GC transmissions have
been reduced to the order of O(log |MG|) [2], [23], [25].

While key storage and sender communication cost are im-
portant performance metrics even in wireless ad-hoc networks,
total energy expended by the network, and total communi-
cation overhead, are critical parameters for the viability and
operability of many network services, including the secure
multicast service, when the network devices are resource
limited. However, the energy and total communication over-
head were not a major concern in wired networks. Thus, the
solutions proposed for the KDP in wired networks [2], [23],
[25], are not sufficient for wireless ad-hoc networks.

We note that, for wireless networks, the energy expen-
diture (physical layer) required for multicasting messages
is dependent on the network topology (network layer), and
hence, energy-efficient key management (application layer)
requires a cross-layer design that makes explicit use of the
routing paths. Recent efforts have shown that incorporating
the network topology in the key management leads to energy-
aware solutions to the KDP problem [11], [13], [21].

A. Our Contributions

We examine the KDP under four metrics, each of which
involves optimizing one of four network resources: (a) member
key storage, (b) GC transmissions, (c) number of messages
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sent by the network to update the SEK and related KEKs,
which we refer to as MG update messages, and (d) the energy
expended by the network for delivering the update messages
to valid members of MG after a member deletion, which we
refer to as update energy cost. We formulate an optimization
problem for each metric, and provide the optimal solution
when possible. We show that metrics (a) and (b) do not depend
on the network topology and unique solutions to the KDP
can be obtained that are equivalent to the optimal solutions
provided for wired networks [2], [23], [25].

We prove that finding the key assignment structure that min-
imizes the MG update messages is an NP-complete problem.
We further prove that finding the key assignment structure
that minimizes update energy cost for rekeying is also an
NP-complete problem. To build an energy and bandwidth
efficient key assignment structure, a heuristic algorithm called
VP3 is proposed. We establish performance bounds for VP3
and through extensive simulations, show that VP3 makes
near optimal key assignment decisions. Finally, an O(|MG|)
complexity algorithm is proposed, that performs dynamic
maintenance of the key assignment structure, by inserting
and deleting members without having to rebuild the key
assignment structure after each membership change.

B. Organization of the Paper

Section II presents the notation and formulation of the KDP
in wireless ad-hoc networks. Section III analyzes the problem
complexity. Section IV introduces our cross-layer algorithm,
called VP3, and analyzes its performance bounds. Section V
presents On-line VP3, an extension for dynamic maintenance
of the key assignment structure. We present our simulation
results in Section VI, and our conclusions in Section VII.

II. THE KEY DISTRIBUTION PROBLEM IN WIRELESS

AD-HOC NETWORKS

A. Network Assumptions and Notation

We assume the network consists of N multicast group
members plus the GC, randomly distributed in a specific
area. We assume the broadcast routing topology R, is known
[1], [24], and consider a single-sender multiple-receiver com-
munications model in which all nodes, including the GC
are using omnidirectional antennae. All nodes are capable of
collaborative relay of information between an origin and a
destination. We also assume that nodes have the ability to
generate and manage cryptographic keys, and that the length
of each key is equal to the length of a single message.

We further assume that pairwise trust has been established
between the GC and all group members. This can be achieved
by pre-loading a unique pairwise key to every member of the
MG, and to the GC. Alternatively, an online Key Distribution
Center (KDC) can act as a trusted third party between every
member of MG and the GC [17]. Pairwise trust can also be
established in the absence of a (KDC), using storage-efficient
probabilistic approaches [5]. Finally, we assume the GC has
enough storage and energy resources to complete the functions
assigned to it. Table I presents the notation we will be using
throughout the rest of the paper.

TABLE I

NOTATION.

Symbol Description
GC Group Controller.
MG Multicast Group.
N = |MG| Multicast Group size.
Mi ith member of the multicast group.
T Key distribution tree.
h Height of a key distribution tree.
d Degree of a key distribution tree.
l Level of a node in the key distribution tree.
Kl,j Key assigned to the jth node, at level l in T .
R The multicast routing tree with set of nodes MG,

and set of links A, of a wireless ad-hoc network.
{m}Kl,j

Message m is encrypted with key Kl,j .
Sl,j(T ) Set of multicast group members

that hold key Kl,j in T .
PMi

Total power required to unicast a
message from GC to Mi.

EMi
Total energy required to unicast a
message from GC to Mi.

EMi→Mj
Energy expenditure of Mi

when transmitting a message to Mj .
ES Energy expenditure of the GC and MG,

when multicasting to group S.
A → B : m A sends message m to B.

B. Adversarial Model

We assume that any set of members S ⊂ MG may
collude in an attempt to construct the set of keys held by
a valid member Mi /∈ S. Construction of the set of keys of
a valid member Mi /∈ S, allows any colluding member to
access future key updates for Mi and, hence, access to future
communications even if the entire set S is deleted from MG.

For an adversary that is not a member of MG, we as-
sume it can eavesdrop all encrypted communications between
participants, but has no access to the cryptographic keys.
We do not consider Denial of Service attacks that would
prevent a member from receiving keying material from the
GC. Furthermore, we do not address any other type of attack
that may be carried out against the physical link or routing
layers. We do not consider active attacks such as physical
node capture and compromise.

C. Basic Problems for Key Distribution in Wireless Networks

In this section we present four suitable metrics for the KDP
in wireless ad-hoc networks. For each metric, we formulate
an optimization problem and present the optimal solution. We
show that the formulations for the member key storage and
GC transmission metrics reduce to equivalent formulations to
wired networks and hence, the same solutions apply. On the
other hand, the formulations for the MG transmissions and
energy update cost are specific to wireless networks.

1) Member Key Storage, k(Mi, D): Let D denote a key
assignment structure to the members of MG. We want to find
the optimal key assignment structure D∗ that minimizes the
average number of keys assigned to each member Mi:

D∗ = arg min
D

1
N

N∑
i=1

k(Mi, D). (1)

Note that in (1), the quantity minimized is the average number
of keys since key assignment structures need not assign the
same number of keys to every member.
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Proposition 1: The optimal key assignment structure D∗

that minimizes member key storage can be represented as an
N -ary key tree, where the GC shares a unique KEK with each
member, and the SEK with all members of MG [2], [23], [25].

Proof: Each member needs to hold the SEK in order to
decrypt the multicast data. In addition, the GC needs to be
able to securely update the SEK to every member in case of
a membership change. Hence, each member needs to share
at least one pairwise KEK with the GC, to decrypt the SEK
update. Thus, the optimal member key storage solution assigns
two keys to each member of MG, and can be represented as
an N -ary key tree.

Note that the optimal solution for the member key storage
metric is independent of the nature of the network, wireless
or wired. Hence, the solution for wireless networks is the
same as the one provided for wired networks in [2], [23], [25].

2) GC Transmissions, t(Mi, D): Let t(Mi, D) denote the
number of messages transmitted by the GC when Mi leaves
MG, and keys are assigned according to the key assignment
structure D. We want to find the optimal D∗ that minimizes
the average number of key messages transmitted by the GC,
to the members of MG, after Mi leaves the group.

D∗ = argmin
D

1
N

N∑
i=1

t(Mi, D) (2)

Note that we minimize the average number of GC transmis-
sions required to rekey MG, to take into account unbalanced
key assignment structures as well.

Proposition 2: The optimal key assignment structure D∗

for member deletions, can be obtained by distributing one
KEK to every possible subset of MG [2], [23], [25].

Proof: If each possible subset of MG shares a unique
KEK, an arbitrary set of members can be represented by the
index of the corresponding KEK. Hence, after the deletion
of any set of members, the GC can notify all remaining valid
members of MG to use their unique common KEK as the new
SEK, by just broadcasting the index of the KEK corresponding
to the remaining members. Hence, by assigning a unique key
to every possible subset of members, the GC can update the
SEK after the deletion of any set of members, by transmitting
a single message.

As in the case of member key storage, the number of GC
transmissions depends on D and not on the network topology.
Hence, the optimal solution for wireless networks is identical
to the one for wired networks [2], [23], [25].

3) MG Key Update Messages, mMi(D): Let mMi(D) de-
note the number of messages transmitted/relayed by the nodes
of the network in order to update the SEK and KEKs after
deletion of Mi. We want to find the optimal key assignment
structure D∗ that minimizes the average number of messages
mAve transmitted/relayed by all network nodes for updating

the SEK and KEKs, when a member leaves the group.

D∗ = argmin
D

1
N

N∑
i=1

mMi(D) (3)

In contrast to the previous two metrics, mMi depends
both on the network topology as well as the choice of D.
The number of messages the nodes of the network have to
transmit/relay after the deletion of a member, varies depending
on the specific member being deleted. Thus, we use the
average number of MG update messages mAve, to evaluate
the efficiency of a key assignment structure D.

Proposition 3: Finding the optimal key assignment struc-
ture D∗, that minimizes the average number of MG update
messages mAve, is an NP-complete problem.

Proof: Under Proposition 2, the GC can update the
SEK after the deletion of any set of members from MG, by
transmitting a single message to the remaining valid members
of MG, when using the optimal structure D∗. Hence, the prob-
lem of minimizing the number of messages transmitted/relayed
by the network nodes reduces to the problem of minimizing
the number of messages transmitted/relayed by the nodes of
the network to deliver one message from the GC to every
member of MG. In turn, the latter problem can be mapped to
the problem of finding the minimum power broadcast routing
tree Rm rooted at the GC, in which each node of the network
can either broadcast a message with unit power p = 1, or not
transmit at all (p = 0). This routing problem is known as the
Single Power Minimum Broadcast Cover problem (SPMBC)
[1], with input parameter p = 1 and has been proven NP-
complete in [1]. Hence, the problem of minimizing the average
number mAve of MG update messages is also NP-complete.

4) Energy Update Cost, ẼMi(D): Let ẼMi(D) denote the
total energy expended by all network nodes, in order to deliver
the rekey messages to MG after a member deletion. We
want to find the optimal key assignment structure D∗, that
minimizes the average update energy EAve.

D∗ = arg min
D

1
N

N∑
i=1

ẼMi (D) (4)

The total energy expenditure depends on the network topol-
ogy and the choice of D. Thus, as was the case for mMi ,
ẼMi varies depending on which member is deleted from MG.
Therefore, we choose the average update energy cost EAve,
to evaluate the performance of D over MG.

Proposition 4: Finding the optimal key assignment struc-
ture D∗, that minimizes the average update energy EAve, is
an NP-complete problem.

Proof: Under Proposition 2, the GC can update the
SEK after the deletion of any set of members from MG, by
transmitting a single message to the remaining valid members
of MG, when using the optimal structure D∗. Hence, the
problem of minimizing the total energy expenditure required
to update the SEK after the deletion of any set of members
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reduces to the problem of distributing one message to all valid
members of MG, by expending the least amount of energy.
The latter problem is equivalent to finding a broadcast routing
tree RE , rooted at the GC, that minimizes the energy required
to deliver one message from the GC to every valid member of
MG. This problem is known as the Minimum Broadcast Cover
problem (MBC) [1], [3], a generalized version of the SPMBC
problem, for cases where the transmission power level for a
node can adopt any value p ∈ [0, pmax]. The MBC problem
has been proved to be NP-complete in [1], [3] and, hence,
the problem of minimizing the average update energy EAve is
also NP-complete.

The optimal solution to the member key storage problem,
requires the GC to unicast the SEK to each member of MG
every time a member joins or leaves MG. Hence, demanding
O(N) number of GC transmissions. On the other hand, the
optimal solution to the GC key transmission problem for leave
operations requires each user to store at least 2(N−1) keys, thus
making user storage requirements grow exponentially with
group size [2], [23], [25]. Clearly, there is a tradeoff between
all four metrics described.

A key assignment structure scalable in both member key
storage and GC transmissions was independently proposed
in [25] and in [23]. In both proposals it was shown that
using a Logical Key Hierarchy (LKH) such as a d-ary key
tree T, reduces member key storage and GC transmissions to
O(logd N). While key trees are minimal structures in terms of
member key storage and GC transmissions, not all key trees
are energy-efficient [11], [12]. However, we will show that key
tree structures designed by incorporating the metrics of mAve

and EAve, lead to energy and bandwidth-efficient solutions to
the KDP for the wireless ad-hoc networks. In the rest of the
article, we focus on finding resource-efficient key assignments
D that follow the LKH structure T. We now introduce the
LKH structure.

D. Logical Key Hierarchies and Key Distribution Trees

We first provide some necessary definitions:

Definition 1 (Node Depth, r(i)): The depth r(i) of node i
is the length, measured in edges, of the path traced from the
node to the root of the tree.

Definition 2 (Node Weight, w(i)): The node weight w(i)
of node i, is equal to the number of edges leaving i.

Definition 3 (Leaf Ancestor Weight, wa(i)): The leaf an-
cestor weight wa(i) of node i is the sum of the weights of all
nodes traced on the path from i to the root of the tree.

Figure 1 shows a binary key distribution tree for a network
of N = 8 nodes, plus the GC. Each node of the tree is
assigned a KEK, Kl,j , where l denotes the tree level, and
j denotes the node index. (i.e. K1,2 is assigned to node 2 at
level 1 of the tree). The root node is at level 0, and K0 can
also be used as the SEK.

In [23], [25], each user is randomly assigned to a tree leaf,
and holds the keys traced on the path from the leaf to the
root of the tree. (i.e. user M5 in Figure 1 is assigned the
set of keys {K3,5, K2,3, K1,2, K0}). We denote the subset of

Fig. 1. A binary key tree. Members are placed at the leaf nodes. Each member
holds the keys traced on the path from its leaf to the root. As an example M1

holds keys (K0, K1,1, K2,1, K3,1) . If M1 leaves MG, the GC updates
(K0, K1,1) by sending the messages indicated by the dashed arrows.

users that receive key Kl,j , as Sl,j . For example, S1,1 =
{M1, M2, M3, M4}.

Under this regime, the number of KEKs stored by each
member is equal to the depth of its leaf. Thus, worst-case
storage requirements for any node will be �logd N� KEKs,
and the SEK. Figure 1 shows the keys to be updated if M1

leaves MG. In this case, the GC will transmit the sequence:

GC → M2 :{K ′
1,1}K3,2 ,

GC → {M3, M4} :{K ′
1,1}K2,2 ,

GC → {M2 ∼ M4} :{K ′
0}K′

1,1
,

GC → {M5 ∼ M8} :{K ′
0}K1,2 . (5)

Each message in (5) is represented in Figure 1 by a dashed
arrow. The arrows leaving K1,1 represent the first two mes-
sages in (5), while the arrows leaving K0 represent the last
two messages in (5). This illustrates how the number of GC
transmissions is proportional to the sum of edges leaving the
nodes that correspond to the keys that are being updated.
That is, the number of GC transmissions is proportional to
wa(M1). In fact, it has been shown that GC transmissions
due to member deletions increase as a function of d logd N
[8], [16], [20]. The cost of join operations on the other hand,
is proportional to the depth of the leaf the new user is assigned,
a function of logd N [8], [16], [20].

E. On the Security Properties of LKH Structures

To preserve forward secrecy in LKH structures, the keys
common to a deleted member and the remaining valid mem-
bers of the MG are updated [23], [25]. Furthermore, to
preserve backward secrecy, the SEK and relevant KEKs are
updated in the event of a new member join [23], [25].

With respect to member collusion, LKH prevents the con-
struction of the set of keys held by any valid member, if the
cryptographic keys assigned to members are not correlated,
and the GC has a secure channel to individually reach every
member of MG [18]. This last property has been referred to in
the literature, as the Cover Free Property and has been shown
to prevent the collusion of up to any (N−1) members [18]. In
LKH, it is sufficient to establish unique pairwise keys between
the GC and each member of the MG, to satisfy the cover free
property. Interested reader is referred to [18], [23], [25] for a
thorough evaluation of the security of LKH.
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F. Minimizing Average Update Energy In Key-Tree Structures

While the key-tree assignment structure provides scalability
in terms of member key storage and GC transmissions, it
has been shown to be energy inefficient when the network
topology is not taken into account [11], [12]. In fact, it was
shown in [14] that updating the SEK via unicasting to each
member (N -ary key tree) can require less energy to rekey a
member deletion, compared to a binary tree, despite the larger
number of GC transmissions in the case of the N -ary tree.
Hence, bandwidth efficiency of the GC may not imply energy
efficiency of the network.

Furthermore, it was shown in [12], that an energy-optimal
solution for the average update energy does not imply an opti-
mal solution to the number of rekeying messages. Since energy
is, in most cases, a more scarce resource than bandwidth, we
focus on finding an energy-efficient solution and show that our
scheme is also bandwidth-efficient.

In order to rekey the remaining users after a member dele-
tion, the GC has to send rekey messages to multiple subgroups
of MG, as shown in (5). Hence, the update energy cost ẼMi ,
for rekeying MG after deletion of Mi, is dependent upon the
energy required for sending messages to those subgroups. In
fact, we can express the update energy cost after the deletion
of Mi, as a function of the routing tree R, and the key tree
structure T . For simplicity, we have omitted (R, T ) from the
expressions ES(R, T ):

ẼMi(R, T ) =
d∑

j=1,j �=i

(ESh,j
+ .... + ES1,j ) +

h−1∑
l=1

ESl,i\Mi

=
h∑

l=1

d∑
j=1,j �=i

ESl,j
+

h−1∑
l=1

ESl,i\Mi
, (6)

where Sl,j denotes the group of users that share the jth key
at the lth tree level, Kl,j , and h denotes the tree height [11].

Since ẼMi(R, T ) is a member-specific cost metric, it de-
pends on the member that is being deleted. Therefore, we use
the Average Update Energy, EAve(R, T ) [11], to evaluate the
energy-efficiency of a key-tree distribution structure:

EAve(R, T ) =
1
N

N∑
i=1

ẼMi

=
1
N

N∑
i=1

⎡
⎣ h∑

l=1

d∑
j=1,j �=i

ESl,j
+

h−1∑
l=1

ESl,i\Mi

⎤
⎦

=
1
N

(d − 1)

⎡
⎣ h∑

l=1

d(h−l)
dl∑

j=1

ESl,j

⎤
⎦

+
h−1∑
l=1

dl∑
j=1

|Sl,j|∑
k=1

ESl,j\Sl,j(k). (7)

Since the routing tree R is determined by more costly network
functions such as routing, we want to minimize EAve(R, T ),
expressed in (7), with respect to T :

T ∗ = argmin
T

EAve(R, T ). (8)

In the following section we analyze the difficulty of finding
the optimal tree T ∗.

III. ON THE DIFFICULTY OF FINDING AN OPTIMAL KEY

DISTRIBUTION TREE

Finding a solution to (8) implies finding an optimal allo-
cation of members to leaf nodes, so that the sum of energy
costs to multicast to subgroups that share common keys is
minimized. To our knowledge, there is no algorithm that yields
an optimal key tree, or a characterization of the complexity of
the problem in (8).

While building a tree using hierarchical clustering is one
approach, the authors of [11] show a divide and conquer
strategy for constructing each level of the key tree. Finding
a minimum energy partition of MG into subgroups of size
di, and using that partition to construct a minimum energy
partition of MG into subgroups of size di+1, will not lead to
an optimal solution for (8).

It is possible, however, to use this divide and conquer
approach to build a sub-optimal solution. In [11], the authors
show that finding the optimal partition of MG into subgroups
of d = 2 users, in order to construct just one level of the
key tree T , is equivalent to solving the Minimum Weight Non-
Bipartite Matching Problem (MWNBM) [4].

Similarly, finding an optimal partition of MG into sub-
groups of d = k (k ≥2) members, is equivalent to solv-
ing the Minimum Weight Non k-partite Matching problem
(MWNkPM). While the MWNBM has a polynomial solution
[4], [7], [10], we now show that the MWNkPM is NP-hard
for all k ≥ 3:

Proposition 5: The Minimum Weight Non k-partite Match-
ing problem is NP-hard for k ≥ 3.

Proof: The proof is provided in Appendix I.

In the following section, we present VP3, a heuristic that
employs cross-layer information and a divide and conquer
approach, to build an energy and bandwidth efficient solution
for the KDP in wireless ad-hoc networks.

IV. VP3: VERTEX-PATH, POWER-PROXIMITY, A
CROSS-LAYER APPROACH

The VP3 algorithm borrows its name from the network
and physical layer information it exploits, in order to build
an energy-efficient key distribution tree; Vertex-Path, Power-
Proximity (VP3). The concept of Power-proximity was first
introduced in [11], and will be used throughout this paper:

Definition 4 (Power-proximity): Node j∗ is said to be
in power-proximity to node i over the set S, if j∗ =
argminj∈S |Pi − Pj |.
We first introduce the main ideas of VP3, and then present
algorithmic details. VP3 reduces EAve by constructing key
trees that assign the same KEKs to members that receive
messages via common routing paths. For instance, if a member
Mi lies on the path from the GC to member Mj , and a
message is sent to both Mj and Mi, the latter will receive
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the message for free. Hence, by assigning a common KEK,
Kk,l to subgroup Sk,l = (Mi, Mj), VP3 decreases the energy
expenditure required for updating the SEK and common
KEKs, whenever transmitting a message to both nodes.

To explore this idea, VP3 discovers which members of MG
share the longest paths or, equivalently, which members have
paths that differ the least, a property that is extracted from
a given broadcast routing tree R. The network paths from
the GC to each node are represented as binary codewords
of length equal to N . The kth position of the ith codeword
Ci(k), has a value of one if node k has to transmit in order for
a message unicasted by the GC to reach node i, and a zero
otherwise1. Thus, the length of a path from the GC to node
i, PAi, can be obtained by computing the Hamming Weight
Hw(Ci) of the codeword Ci that represents PAi [22]:

Hw(Ci) =
N∑

k=1

Ci(k). (9)

Once codewords have been constructed for each node, we need
a metric that allows us to measure the path distance, defined
below, between the paths of any two nodes:

Definition 5 (Path Distance): We define the path distance
between two nodes i, j as the difference between the unicast
paths from the GC to i, j, in number of nodes. We measure
the path distance between i and j, by computing the Hamming
Distance Hd(i, j), between the codewords corresponding to
the unicast paths to i, j [22]:

Hd(i, j) =
N∑

k=1

Ci(k) ⊕ Cj(k). (10)

A. The VP3 Algorithm

We assume two sets of parameters as inputs: (a) the
NxN binary connectivity matrix C, where each row Ci is
a codeword that represents the node path from the GC to
node i, such that entry Ci(k) = 1 if node k ∈ PAi, and
Ci(k) = 0 otherwise and, (b) a vector E of length N , where
the ith entry Ei, indicates the energy expenditure required to
unicast a message from the GC to node i, following the path
indicated by the connectivity matrix C. To construct a d-ary
key distribution tree, we execute the following steps:

Step 1: Calculate the Hamming weight Hw(Ci) for each
row in C, corresponding to the path from the GC to node i.

Step 2: Choose the node i∗ with the maximum Hamming
weight i∗ = argmaxi∈MG(Hw(Ci)). If there is more than
one node that satisfies this condition then, from this list, pick
the node i∗ to be the one with maximum Ei.

Step 3: Pick the (d − 1) nodes with the shortest Hamming
distances Hd(i∗, j), j ∈ MG\i∗. If there are more than (d−1)
nodes with equal Hd(i∗, j) always pick first, if any, the node or
nodes found on the path from the GC to i∗. For the remaining
nodes, pick those with the largest Ej . Assign a unique KEK
to all members chosen in this step.

1Construction of the codewords is equivalent to generating the connectivity
matrix for the network.

Step 4: Repeat Steps 2, 3 until all nodes belong in sub-
groups of at most d nodes and are assigned a unique KEK.

Step 5: Generate a matrix C′ with rows corresponding to the
subgroups generated in Step 4 and columns corresponding to
the network nodes. An entry C′

i(k) = 1 if node k is traversed
by the path from the GC to any of the members of subgroup
Si, and C′

i(k) = 0 otherwise. Compute the vector E′, the ith

entry of which indicates the energy expenditure required to
multicast a message from GC to all members of Si, following
the paths indicated by the connectivity matrix C′. Execute
Steps 1 ∼ 4 with inputs C′, E′.

Step 6: Repeat Steps 1 ∼ 5 until all nodes belong to a
single group.

B. Applying VP3 on a Sample Network

We now present the application of VP3 on the sample
network of Figure 2(a). The numbers on the links indicate
the energy link cost. Nodes 1 − 8 correspond to members
M1 − M8 of MG. Figure 2(c) shows the connectivity matrix
C for MG, the Hamming weights Hw(Ci) for each row Ci,
and the energy expenditure Ei necessary to send a message
from the GC to member Mi.

We want to construct a binary key tree (d = 2) using VP3.
Column Hw in Figure 2(c) shows the result of executing Step
1. Step 2, identifies node i∗ = 5 as the node with the greatest
Hw, and withdraws it from the pool.

Using Step 3, VP3 finds nodes {7, 2} to have the shortest
Hd to 5. Since we need to choose only one node (d = 2),
and 7 is on the path from GC to 5, {M5, M7} are assigned
a unique KEK, and node 7 is removed from the pool. Note
that because node 7 lies on the path from the GC to node 5,
the choice made by VP3 maximizes the length of the common
path over the set of available choices, nodes 2 and 7.

In Step 4, VP3 repeats Steps 2, 3; nodes {2, 6, 8} have the
highest Hw, and 6 is selected since it has the highest Ei. Since
node 8 has the smallest Hd to 6, nodes 6, 8 are paired and
{M8, M6} are assigned a unique KEK. Similarly, VP3 groups
{M2, M3} and {M1, M4} and a unique KEK is assigned to
each group.

In Step 5, VP3 recomputes the connectivity matrix C′ and
energy matrix E′ for the pairs generated in Step 4, and repeats
Steps 1 to 4. Nodes {2, 3, 5, 7}, {1, 4, 6, 8} are grouped,
and members {M2, M3, M5, M7}, {M1, M4, M6, M8}, are
assigned unique KEKs, respectively. At this point the SEK
is assigned to all members and the key tree construction is
completed. Figure 2(b) presents the key distribution tree.

C. Balancing Trees for Improved Energy-Efficiency

In [16], Moyer et al. define the concept of balanced trees
and show that maintaining such trees ensures that GC trans-
missions during rekey operations are kept at O(d logd N).

Definition 6 (Balanced Tree): A tree is said to be balanced,
if leaf depth differs by at most one between any two leaves
of the tree [16].

We note that, depending on the size of MG, the application
of VP3 may yield an unbalanced tree . Unbalanced trees have
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(a) (b)

1 2 3 4 5 6 7 8 Hw E

1 0 0 0 0 0 0 0 0 0 4

2 0 0 1 0 0 0 0 0 1 5

3 0 0 0 0 0 0 0 0 0 3

4 0 0 0 0 0 0 0 0 0 2

5 0 0 1 0 0 0 1 0 2 8

6 1 0 0 0 0 0 0 0 1 6

7 0 0 1 0 0 0 0 0 1 6

8 1 0 0 0 0 0 0 0 1 5

(c)

Fig. 2. (a) The broadcast routing tree for an ad-hoc network of eight nodes plus the GC. Nodes {1 − 8} are members of MG. The numbers on the links
indicate the units of energy required to transmit a message through that link. The ovals indicate the grouping of the members into the key tree after the
execution of VP3. (b) The key distribution tree constructed by VP3 for the network in Figure 2(a). (c) The Connectivity Matrix for the network in Figure
2(a). The first row and first column denote the node ID, column 10 denotes the Hamming weight of each codeword, and the last column denotes the energy
required to unicast a message to each node.

(a)

(b)

Fig. 3. (a) An unbalanced ternary key tree of N = 10, wa(T ) = 7.5. (b)
Balancing the tree reduces wa(T ) to 7.2.

been shown to require more GC key transmissions, since their
average leaf ancestor weight wa(T ), is larger compared to that
of balanced trees [8], [16], [20]. Hence, unbalanced trees, on
average, require more energy for rekeying, as will be shown
in Section VI.

We now illustrate how the use of balanced trees reduces
wa(T ) in a tree, which leads to savings in GC transmissions.
Figure 3(a) shows an unbalanced ternary key tree for a ten
node network, in which the empty branches at levels 0 and
1 are left indicated. The ancestor weight wa(Mi), for the
leftmost nine leaves is eight, wa(M10) = 3, and wa(T ) = 7.5.
By contrast, Figure 3(b) shows a balanced tree with wa(Mi) =
7, i ∈ {1, ..., 8}, wa(M9) = wa(M10) = 8, and wa(T ) = 7.2.
Nevertheless, an analysis of Figures 3(a) and 3(b) reveals that
the subgroups in both representations are mostly unaffected.
For example, subgroups S2,1 and S2,2 in Figure 3(a), have the
same members as S1,1 and S1,2 in Figure 3(b).

Our simulation results show that balancing trees has signifi-
cant impact on energy consumption as N increases. Hence, we
have modified VP3 to always construct balanced trees without

affecting the efficiency of the resulting partitions of MG into
subgroups of the desired size. We do this by distributing
members among the branches of T , as evenly as N will allow.
If an even distribution of members among the branches of T
is not feasible, we favor grouping of the remaining members
into the subgroups with shortest paths. We now describe the
algorithmic steps involved in balancing the tree.

Before building the key tree structure, we calculate the
number of members that should be assigned to each subgroup
at level h of the tree. This is done by computing the number
of branches B, in the balanced tree at level (h − 1), B =
d�logd N�−1. We then assign g = 
N

B � members to each
subgroup at level h. The remaining L = N − gB members
are assigned one to each of the last L subgroups to be formed
by the first iteration of VP3. For example, for the tree in
Figure 3(b), the number of subgroups at level h is equal to
the number of nodes in the balanced tree at level (h − 1),
B = 3(�log310�−1) = 9, and each subgroup will have at least
g = 
 10

9 � = 1 node. We then have L = 10 − (1)(9) = 1
node left (M10), which is assigned to the last group formed
by the first iteration of the algorithm, S2,9. Note that the added
computational cost of balancing the trees is that of computing
three quantities: B, g and L.

In Figure 4, we present the pseudo-code for VP3, including
the balanced tree modification. The ConnectivityMatrix()
function computes the connectivity matrix for its argument set.
The EnergyMatrix() function computes the energy required
to reach a set of nodes sharing a common key from the GC,
where each set is an element of the argument. Initially, the
argument to both functions is the set of all members of MG.
With the construction of every subsequent level l of the key
tree, the argument will be the set of groups generated in the
previous level. The AssignKey() function assigns a KEK to
every element of the argument set.

D. Algorithmic Complexity of VP3

The algorithmic complexity of VP3 is determined by the
complexity of its subgrouping process. The algorithm first
identifies the codeword Ci∗ , with the largest Hamming weight,
then computes the Hamming distances from all other code-
words to Ci∗ , and picks the (d−1) codewords with the shortest
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C = ConnectivityMatrix(MG), E = EnergyMatrix(MG)

B = d(�logd N�−1), g = �N
B
�

for l = 1 : �logd(N)�
Hw(i) =

�N
j=1;j �=i Ci(j), ∀ rows Ci

for k = 1 : B

i∗ = arg maxi∈MG Hw(i)

if |i∗| > 1 then i∗ = arg maxi∈i∗ Ei

MG = MG\{i∗}
j′ = {j ∈ MG � arg minj∈MG Hd(i∗, j)}
if l > 1 then gs = d, else gs = g

if l = 1 and k ≥ N − gB then gs = gs + 1

if |j′| > (gs − 1) choose j′ path GC → i∗

and (gs − 2) ∈ j′ � arg maxi∈j′ Ei

MG = MG\{j′}, G = G ∪ j′

AssignKey(j′)
endfor

MG = G

C = ConnectivityMatrix(MG)

E = EnergyMatrix(MG)

endfor

Fig. 4. Pseudo-code for VP3. The ConnectivityMatrix() function compu-
tes the connectivity matrix for its argument set. The EnergyMatrix() func-
tion computes the energy required to reach a group of vertices from the GC,
where the groups are elements of the vector argument. The AssignKey()
function assigns a common key to every element of the argument set.

Hamming distance to Ci∗ . This process has to be repeated
�N

dj � times at each of (h−1) tree levels, where j = h− i, and
i is the tree level being built. The total number of operations
for this process is:

h−1∑
j=0

� N

dj �−d∑
i=0

[
(d + 2)

(⌈
N

dj

⌉
+ id

)
− d − 1

]
< d3N2. (11)

Since in general, we are interested in trees with small d, the
worst case algorithmic complexity of VP3 is O(N2).

E. An Analytical Bound for Subgroup Choices in VP3

In this section we evaluate the deviation of a subgrouping
choice made by VP3 from the optimal choice, by computing
the worst case cumulative path divergence Δ(S), defined
below, for a subgroup S, of arbitrary size, with subgroup head
α(S):

Definition 7 ((Sub)group Head, α(S)): We define the
(sub)group head α(S), of a (sub)group S, as the (sub)group
member that satisfies α(S) = arg maxi∈S{Ei}.

Definition 8 (Cumulative Path Divergence): The cumula-
tive path divergence Δ(S) of a subgroup S with subgroup
head α(S), is defined as:

Δ(S) =
N∑

k=1

⎡
⎣Cα(S)

∧⎛
⎝ ∨

j∈S,j �=α(S)

Cj

⎞
⎠

⎤
⎦ , (12)

where the symbol ∨ denotes successive bitwise OR operations
over the codewords of all members of the set S\α(S), the
symbol

∧
denotes a single bitwise AND operation, and Ci

denotes the complement operation on codeword Ci.

Fig. 5. The cumulative path divergence between nodes 6 and 8 is Δ(6, 8) =
1. Note that the common path between nodes 6 and 8 goes from the GC to
node 2 and Δ(2, 6) = 0.

Δ(S), expresses the number of additional transmissions
required by the network, so that a multicast message sent by
the GC reaches all members of S\α(S), once the subgroup
head α(S) has already been reached.

As an example, in Figure 5 the path distance between
nodes {2, 6} is Hd(2, 6) = 3, but their path divergence is
Δ(2, 6) = 0, since node 2 is in the path from GC to node 6,
and is reached for free whenever a message is sent to node
6. Similarly, for S = {6, 8, 10}, α(S) = 6, and Δ(S) can be
computed as:

C6 = 1101100000, C6 = 0010011111,

C8 = 1100001000, C10 = 1000000010,

Δ(S) =
10∑

k=1

[
C6 ∧ (C8 ∨ C10)

]
= 2.

Δ(S) = 2 denotes the two additional transmissions 7 → 8
and 9 → 10 required to deliver a message m to nodes 8 and
10, when m is sent to 6.

VP3 aims to reduce the energy cost of the key distribution
tree by maximizing energy savings when building a partition
of MG into subgroups of size d. The idea is to maintain total
subgroup cost ES , as close to the unicast cost of the subgroup
head as possible. Thus, we consider a subgroup S achieves
optimal cost if ES = Eα(S), where α(S) = argmaxi∈S{Ei}.

It is important to point out that ES = Eα(S) implies that
ΔS = 0, i.e., no additional transmissions are required to reach
any of the members in S\α(S), when α(S) is reached. Hence,
ES = Eα(S) indicates that a message multicasted from the GC
to S will be relayed with the minimum number of MG update
messages for the given routing tree R. That is, ES = Eα(S)

implies optimal energy update cost and optimal MG update
messages when transmitting a message to S, for fixed R.

We note that while ES = Eα(S) implies Δ(S) = 0, the
converse is not true, as can be shown by the example of Figure
5. Let S = {3, 5, 6}, and E4→3 > E4→5. In that case, though
Δ(S) = 0, we ES = E6 − E4→5 + E4→3 > E6.

We now calculate the worst case Deltad(S) for a subgroup
S of size d, when S is generated using VP3:

Proposition 6: The maximum cumulative path divergence
Δ∗

d(S), for a subgroup S of size d > 2 is:

Δ∗
d(S) = (d − 1)maxHw(i), i ∈ R.

Proof: Can be found in Appendix II.
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J = JoiningGroup, D = LeavingGroup

T ′ = UnassignedLeavesinT

C = ConnectivityMatrix(MG), E = EnergyMatrix(MG)

T = T\D
for k = 1 : |J |

α(J) = argmaxi∈J Hw(i)

if |α(J)| > 1 then α(J) = arg maxi∈α(J) Ei

nn(α(J)) = {k ∈ MG\J � arg mink∈MG\J Hd(α(J), k)}
if |nn(α(J))| > 1 then nn(α(J)) = arg maxk∈nn(α(J)) Ek

t′ = {t ∈ T ′
� arg mint∈T ′ λ(nn(α(J)), t)}

AssignLeaf(t′, α(J))

J = J\α(J)

endfor

Fig. 6. Pseudo-code for On-line VP3. The ConnectivityMatrix() function
computes the connectivity matrix for its argument set. The EnergyMatrix()
function computes the energy required to reach a group of vertices from
the GC, where the groups are elements of the vector argument. The
AssignLeaf() function assigns leaf t′ to node i∗.

V. ON-LINE VP3

We expect wireless ad-hoc networks to be dynamic envi-
ronments in which different members join and leave MG at
different times. Thus, we need a method that allows addition
and deletion of members, without having to reconstruct T
every time there is a change in group membership. This is
important since our simulations show that tree reconstruction
costs are at least an order of magnitude higher than updating
the key tree, whenever N ≥ 100.

In Section IV, we proposed the use of balanced trees to
reduce EAve. Balancing the trees may leave a number of
unassigned leaves, depending on group size N . On-line VP3
takes advantage of these empty spaces, and tries to find the
best available leaves to insert new members.

Two different update strategies have been proposed for
dynamic maintenance of key trees: individual rekeying [25],
and batch rekeying [15], [19], [26], [27]. Individual rekeying
or immediate rekeying of MG after each join and leave,
generates a significant amount of GC transmissions when
group membership changes rapidly. Because of this, we adopt
a batch rekeying strategy for On-line VP3, where the GC has
a rekeying interval during which all join and leave requests
are collected, and executed at the end of the interval.

In On-line VP3, once the rekeying interval expires, nodes
leaving MG simply vacate their leaves, which are then made
available to incoming members. New members joining MG
are first inserted into the routing tree R. The GC uses the
updated R to identify the best empty leaf in the tree T ,
and assigns that leaf to the joining member. This decision
is based on the concepts of nearest neighbor and leaf distance.

Definition 9 (Nearest Neighbor, nn(i)): Node j is the
nearest neighbor of node i, in R, if: (a) j lies on the path
from GC to i, or i, j have a common parent node, and (b) i
and j are in power-proximity, over all nodes that satisfy (a).

Definition 10 (Distance Between Two Leaves in T, λ(i, j)):
The distance λ(i, j) between two leaves i and j in T , is the
length of the shortest path from i to j, over T .

A. Description of On-line VP3

The initial input for On-line VP3 is: (a) the key tree created
by VP3, (b) the list J of joining members, (c) the list D
of members that are being deleted from MG, (d) the NxN
connectivity matrix C, for the new multicast topology and,
(e) the vector E of length N , denoting the energy expenditure
required to transmit a message from GC to each node i. On-
line VP3 executes the following steps:

Step 1: Delete all members of set D from the key tree.
Step 2: Select the group head of J , α(J), and find its

nearest neighbor nn(α(J)).
Step 3: Find the unassigned leaf i∗ in T , with the shortest

distance λ(i∗, k), where k is the leaf assigned to nn(α(J)).
Assign leaf i∗ to α(J), and erase α(J) from J .

Step 4: Repeat steps 2 and 3 until all new members have
been assigned a leaf in the key tree.

For example, suppose that J = {M11, M12}, join a multi-
cast group that has the key tree structure shown in Figure 3(b).
Assume that after executing steps 1 and 2, On-line VP3 has
determined that α(J) = M11, and that nn(M11) = M8. Node
M11 will now be assigned leaf node K3,23. Now suppose that
nn(M12) = M9, then M12 will be assigned leaf node K3,27.

We note that Step 3 looks for nn(α(J)), among all members
of MG that are not in J . This is done to ensure that the
nn(α(J)) that is picked by On-line VP3 will indeed, have a
leaf assigned in T .

In Figure 6, we present the pseudo-code for On-line VP3.
As was the case with VP3 in the previous section, the
ConnectivityMatrix() function computes the connectivity
matrix for its argument set. The EnergyMatrix() function
computes the energy required to reach a set of nodes sharing
a common key from the GC, where each set is an element of
the argument. The AssignLeaf() function assigns a tree leaf
to a member.

B. Algorithmic complexity of On-line VP3

The main tasks executed by On-line VP3 are (a) the com-
putation of the Hamming distance between a joining node’s
codeword and those of the existing members of MG, (b)
finding each joining node’s nearest neighbor in R, and (c)
finding the corresponding nearest available leaf in T . Each of
these operations has complexity O(N).

Therefore, worst case algorithmic complexity of On-line
VP3 is O(N), which is similar to the complexity of simply
looking for the first available leaf in the tree and inserting.

VI. PERFORMANCE EVALUATION

To evaluate the performance of VP3, we generated random
network topologies confined to a region of size 100x100.
Following the network generation, we used the Broadcast
Incremental Power (BIP) algorithm [24] to construct and ac-
quire the routing paths from the GC to every group member2.
Nodes were assumed able to adjust their transmission power

2Any other suitable routing algorithm can be applied as well [1], [24].
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Fig. 7. A comparison between the VP3, RAwKey and the random key tree algorithm. (a) The graph on top shows the average number of MG update
messages, the graph in the middle shows the average number of receptions, and the graph at the bottom shows average update energy. Each data point is the
average result over 100 randomly generated networks. (b) % of improvement in all three measures mAve, rAve and EAve obtained by VP3 over RAwKey
for different sizes of MG.

(a) (b)

Fig. 8. (a) Comparison in performance of VP3 for trees of degree d ∈ {2, 3, 4}. The graph on the top shows mAve, the graph in the middle shows rAve and
the graph on the bottom shows EAve. (b) Average MG update messages, average number of receptions and average update energy for different multicast
group sizes, for balanced and unbalanced trees.

in order to route messages to any node dictated by the decision
process of BIP [24]. Furthermore, we assumed a collision free
environment where no packet losses occur due to multiple
access in the common channel. Finally, we assumed that nodes
were always available to forward key update packets.

A. Energy model

We assumed that the energy required to send a message
to a node at a distance � from a source is proportional to
the square of � (free path propagation). For simplicity we set
the proportionality constant equal to one. Hence, E(�) = �2

Energy Units (E.U.) We also assumed that the energy required
to receive a message is the sum of the fixed cost of powering
the antenna plus the fixed processing cost. For simplicity we
set the reception energy expenditure to 1 E.U. This assumption
allows us to scale the energy expenditure due to reception,
since the receiving energy becomes equal to the number of
messages received in the whole network.

B. Comparison between VP3 and RAwKey
In our first experiment, we compared VP3 with the previ-

ously known best algorithm for building key tree structures for

wireless ad-hoc networks, RAwKey [11]. RAwKey provides a
low-complexity solution for incorporating the routing informa-
tion into the key tree construction [11]. Initially, the energy
required to unicast a single message to every member of MG
based on the routing tree R, is organized in an ascending order
sorted list. Then, the members of the MG are placed in the
leaves of the key tree T in the same order as the order in the
unicast energy sorted list. Compared to VP3, RAwkey does
make explicit use of the routing paths and, hence can result
in inefficient member groupings [13].

We also compared VP3 with a random key assignment
algorithm as in wired networks [23], [25]. Since for a fixed
key tree degree d, the key assignment structures built by
VP3, RAwKey, and the random key tree algorithm have the
same member storage and GC transmissions requirements,
we compared the three methods in terms of average MG
update messages mAve, average number of receptions rAve,
and average update energy EAve.

Figure 7(a) shows the mAve (top graph), rAve (middle
graph) and EAve (bottom graph), for trees of degree d = 4
and for different multicast group sizes N. All trees were left
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unbalanced. Due to space limitations, we have omitted the
results for binary and ternary trees. In the top and middle
graphs of Figure 7(a), we observe that sudden increases in
mAve and rAve occur when N = di+1, i ∈ Z

+. The increases
in mAve and rAve are a consequence of leaving the key
tree unbalanced, since in that case the average leaf ancestor
weight wa(Mi) significantly increases for those nodes with
large Hamming weight Hw during the transition from N = di

to N = di + 1. As we discussed in Sections II and IV, an
increase in wa(Mi) for those nodes with large Hw implies an
increase in the number of GC transmissions directed to nodes
with longer paths, which in turn leads to an increased number
of relaying messages, which in turn increases the number of
receptions.

The bottom graph of Figure 7(a) shows the EAve for
different multicast group sizes N. We observe that the sudden
increases in mAve and rAve from the top and middle graphs of
Figure 7(a), translate into sudden increases in EAve, also due
to the use of unbalanced trees. As N continues to increase,
however, wa(T ) decreases, and EAve is reduced. This happens
because the size of the deployment area is fixed. Thus, as
N increases and the nodes become more densely packed, the
number of relaying messages required to rekey MG increases,
but the average energy cost per relayed message decreases.

Figure 7(b) shows the performance improvement achieved
by VP3, over RAwKey, on all three parameters mAve, rAve

and EAve, for key trees of degree d ∈ {3, 4}. While average
improvement on all metrics is 14%, the average for networks
of size N ≥ 150 increases to 20%. The difference in
performance between VP3 and RAwKey occurs due to the near
optimal decision process of VP3 when compared to RAwKey,
which ignores path direction [11], [13].

Figure 8(a) compares mAve, rAve and EAve for key trees of
degree d ∈ {2, 3, 4}, generated using VP3. We note that binary
trees are clearly outperformed by ternary and quaternary trees,
which in turn perform quite similarly for the selected sizes of
MG. This happens because the number of GC transmissions
increase much more rapidly for binary trees, due to the
increase in tree height. Nevertheless, the trend is inverted for
d > 4, because the increase in subgroup size d implies an
increase in the number of unicast transmissions required for
rekeying. This increase outweighs reductions due to shorter
tree height. Our simulations show that the best results are
obtained when we use key trees of degree d ∈ {3, 4}.

C. Effect of the Use of Balanced Tree Topologies with VP3

In our second experiment, we evaluated the effect of bal-
ancing the key tree structures, as described in Section IV.

The top and middle graphs in Figure 8(b) shows the effect
of balanced tree topologies on mAve and rAve. We observe
that both parameters grow almost linearly with N. This is to be
expected, since the MG update messages required to complete
rekey operations are not bounded by the size of the area in
which networks were generated.

The bottom graph in Figure 8(b) shows the improved EAve

achieved by VP3 when balancing the tree structure. EAve is
almost constant for networks of size N ≥ 50, both for ternary
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Fig. 9. Δ(S) observed in 29,300 randomly generated networks. Networks
of size N ∈ [8, 300] were generated at random, 100 networks for each size.
The histograms show the percentage of subgroups of size d ∈ {3, 4, 5, 6}
that showed Δ(S) > 0, over the total number of subgroups that were formed
by VP3, for all networks.

and quaternary trees. The size of the deployment area is fixed,
thus, as N increases and the nodes become more densely
packed, the number of MG update messages increases, but
the average energy cost per message decreases. Since VP3
provides near optimal grouping of members, the increase in
relay messages does not increase EAve.

D. Path Divergence of VP3

For our third experiment, we generated 100 networks for
each network size N ∈ [8, 300] (a total of 29,300 networks),
in an area of 100x100. We then employed VP3 to partition
each network into groups of size d ∈ {3, 4, 5, 6} (steps 1−4 of
VP3) and evaluated Δ(Si) for each of the resulting subgroups,
using (12)3.

The histograms in Figure 9 present the percentage of
subgroups that showed a Δ(Si) > 0, for subgroups of different
size. As an example, in Figure 9(a) only 0.03% subgroups of
size d = 3 out of the subgroups formed from the 29,300
networks tried, had Δ(S) > 0.

Note that while the worst-case bound indicates that
Δ∗

3(S) = maxHw(i), the conditions required to achieve this
divergence occur in the specific network topology shown in
the Figure 13 in Appendix II, and all its isomorphics. In fact,
none of the subgroups obtained in our simulations exceeded
Δ(S) = 1, for d = 3, and we did not find a case in which
Δ(S) > 7, for d ∈ {3, 4, 5, 6}. Our simulations suggest that
the worst-case bound in (12) may be overly pessimistic for
most networks, and that the vast majority of groups generated
by the decision process of VP3 have zero path divergence.

E. Performance of On-line VP3

In our fourth experiment, we evaluated the performance of
On-line VP3. To do this, we generated small networks of 8

3For d = 2 it can be proved analytically that VP3 partitions each network
into subgroups with Δ(S) = 0.
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Fig. 10. A comparison between the On-line VP3, insertion in the first available leaf and tree reconstruction. The graph on the top shows mAve, the middle
graph is rAve, and the graph on the bottom shows EAve. (b) Performance improvement when using On-line VP3 over choosing the First Available Leaf for
insertion.
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Fig. 11. (a) Comparison between ternary and quaternary trees, using On-line VP3. (b) Cost of rebuilding the tree after each member join, averaged over 100
network topologies.

nodes in an area of 100x100, and then added nodes one at a
time, until N = 300. At each step, the joining node was added
to the physical network, and the broadcast routing topology
R, was recomputed using BIP [24]. Once R was updated, we
inserted the new node into the original key distribution tree
using two different methods: (a) selection of the best available
tree leaf, chosen by On-line VP3 as described in Section V,
and (b) searching the key tree from left to right, and inserting
the new member in the first available leaf. We then computed
mAve, rAve and EAve for the resulting key tree.

Figure 10(a) shows the results for a tree of degree d = 4.
The upper graph shows mAve, middle graph is rAve, and the
bottom graph shows EAve. The abrupt drops in all graphs
take place when network size is N = di + 1, i ∈ Z

+

(tree height increases by one), at which point we rebuild the
tree in order to always maintain an efficient key assignment
structure. The graphs show averages over 100 networks. The
dotted lines show mAve, rAve and EAve for a tree that was
rebuilt after every join operation, and are essentially the same
graphs shown in Figure 8(b) for balanced trees. Note, however,
that to obtain the mAve, rAve and EAve achieved by tree
reconstruction, we would need to rebuild the key tree after
each member join.

Figure 10(b) shows the efficiency improvements obtained by
On-line VP3 over choosing the first available leaf, for mAve

(top graph). rAve (middle graph) and EAve (bottom graph).
The performance improvement of On-line VP3 over simply
choosing the first available leaf increases with N , averaging
36% in all mAve, rAve and EAve, and coming close to 50%
for some values.

Figure 11(a) shows a comparison between trees of degree
3 and 4. The trees of degree d = 4 perform, on average,
better than trees of degree 4. In [25] the authors proved that
the optimal tree degree in terms of GC transmissions for
member deletion is equal to d∗ = 4. We observe that, on
average, minimum number of GC transmissions gives also
smaller mAve, rAve and EAve. However, as can be seen, and
unlike the wired case, a tree of degree d = 4 does not always
outperform a tree of degree d = 3 in wireless networks.

Finally, we note that a strategy is required to determine at
what point in the multicast group’s lifetime, reconstruction of
the key tree using VP3 will become a more cost effective
option than insertion of joining members using On-line VP3.
Rebuilding is a costly decision since, as Figure 11(b) shows,
costs are at least an order of magnitude higher than EAve for
most values of N . The strategy to decide between On-line VP3
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Fig. 12. Reduction of 3DM to MWN3PM. Assume that W = {1, 2, 3}, X =
{4, 5, 6}, Y = {7, 8, 9} and U = {(1, 4, 7), (2, 5, 8), (3, 6, 9), (3, 5, 7)}.
Now we have V = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and we know H(V, A) is a
fully connected graph. The figure shows all vertices in V , and only those
hyperedges in A that have weight 1, those hyperedges whose endpoint sets
are elements of U . The minimum weight matching M′ in our transformed
hypergraph H(V, A), is represented by those hyperedges shown in solid lines.
The hyperedge shown in dotted lines is the only one of weight 1 that is not
an element of M′. Clearly, the only way wh(M′) = 3, the cardinality of
W, X and Y , is if there exists a match M ⊆ U .

and reconstructing the key tree using VP3 would be based on
user policies, and is beyond the scope of this paper.

VII. CONCLUSION

We addressed the problem of resource-efficient Key Distri-
bution (KDP) for group communications in wireless ad-hoc
networks. We considered the KDP under four metrics, namely
member key storage, GC transmissions, MG update messages
and average update energy. For each metric we formulated an
optimization problem and showed that the KDP problem has
unique solutions in terms of member key storage and GC
transmissions, while it is NP-complete in terms of MG mes-
sages and average update energy. We proposed a cross-layer
heuristic algorithm called VP3, that exploits network flows and
algebraic structures, in order to assign KEKs to subgroups
of members in an energy and bandwidth efficient way. We
provided a worst-case bound for the grouping decision process
of VP3 by introducing the notion of path divergence. We also
proposed On-line VP3, a heuristic algorithm that inserts new
members in the key assignment structure in an energy efficient
way. Finally, we provided extensive simulations illustrating the
savings achieved using our algorithms.

APPENDIX I
Minimum Weight Non k-Partite Matching Problem

Proposition 5: The Minimum Weight Non k-partite
Matching problem is NP-hard for k ≥ 3.

Definition 11: A Hypergraph H(V, A) is a graph in which
the set of generalized edges A, may connect more than two
vertices in V . Edges in a hypergraph are commonly referred
to as hyperedges.

Definition 12: A k-uniform hypergraph H(V, A) is one in
which all edges have k endpoints.

Proof: We begin by stating the 3DM problem:

C

Fig. 13. (a) Worst case for VP3. For the subtree rooted at C, VP3 will
select the following subgroups: {A, B, F}, {C, D, E} first, and leave node
G isolated. Similar choices will leave nodes K and J isolated. Therefore
S7 = {G, K, J}.

Instance: A set U ⊆ W ×X × Y , where W , X and Y are
disjoint sets, and all have the same number of elements q.

Problem: Is there a subset M ⊆ U , such that |M| = q
and no two elements in M agree on an element from W, X
or Y ? That is, is there a matching M in U?

Now we state MWN3PM:
Instance: A 3-uniform hypergraph H(V, A).
Problem: Find an optimal (minimum weight) matching M′

in H(V, A).

We first transform the input from 3DM by constructing a
fully connected 3-uniform hypergraph H(V, A), such that V =
W ∪ X ∪ Y , where the hyperedge a = (w, x, y) has weight
wh(a) = 1 if (w, x, y) ∈ U and wh(a) = 2 otherwise.

We then observe that because H is fully connected, there
will always be an optimal matching M′ in it. Next we note
that M′ will have one of two forms:

1) If there exists a match M that is the solution to the 3DM
problem, the optimal match M′ = MWN3PM(H(V, A))
will have weight wh(M′) = 3, and M = M′.

2) If there is no match M in the original 3DM problem,
then wh(M′) > 3.

Thus, we have reduced the 3 Dimensional Matching
problem to the Minimum Weight Non 3-Partite Matching
problem.

Finally, we note that the generalized version of 3DM, the k-
Dimensional Matching problem (kDM) is also NP hard, for
all k > 2 [9], and that the reduction of kDM to MWNkPM,
for all k > 3 is analogous to the one we have just shown.

APPENDIX II
Analytical Bound for Maximum Cumulative Path

Divergence, Δ∗
d(S), for d > 2

Proposition 6: The maximum cumulative path divergence
Δ∗

d(S), for a subgroup S of size d > 2 is:

Δ∗
d(S) = (d − 1)maxHw(i), i ∈ R.

Proof: VP3 will achieve its worst-case bound when
|S\α(S)| = (d − 1) subgroup members have Δ(α(S), i) =
max[Hw(j), i ∈ S\α(S), j ∈ R]. We present a construct
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that achieves this worst-case bound in Figure 13. Assume
d = 3 and, without loss of generality, assume EA > EE >
EG > EF > ED , so that VP3’s first subgroup choices within
the subtree RC rooted at node C will be S1 = {A, B, F}
and S2 = {C, D, E}, as shown in Figure 13. Note that
these choices leave node G isolated from those nodes of
the broadcast routing tree R that have not been grouped yet.
Similarly, VP3’s subgrouping choices for subtrees RH and RI ,
rooted at nodes H and I respectively, will leave one isolated
node in each subtree, nodes J and K. Since the roots of
d = 3 subtrees are all connected to GC, the only subgrouping
choice there remains for VP3 to take, is S7 = {G, J, K},
the three nodes shown in gray in Figure 13. Note that the
paths of the three subgroup members have a common node
in GC, hence, the length of their common path is zero,
and Δ(α(S7), i) = Hd(i, GC) = Hw(i), ∀i ∈ S7\α(S7).
Finally, since Hw(G) = Hw(J) = Hw(K) = maxHw(i)
for i ∈ R, and |S7\α(S7)| = (d − 1), we have that Δ(S7) =
(d − 1)maxHw(i).
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