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Abstract

Blakley, Blakley, Chan and Massey conjectured a lower bound on the entropy of broadcast
messages in threshold schemes with disenrollment. In an effort to examine the conjecture,
we identify their original scheme definition has a limitation: a coalition of participants can
reconstruct all shared secrets without broadcast from the dealer, and hence render the dealer
no control over disenrollment. We introduce a constraint that delays this lack of control of
the dealer over disenrollment. We also establish the lower bounds on the entropy of broadcast
messages in such a model. We demonstrate the need for new models by presenting a construction
under open problems.
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1 Introduction

A (t, n) threshold scheme is a technique to split a secret among a group of n participants in such
a way that any subset of t or more participants can reconstruct the shared secret by pooling the
information they have, while any subset of participants of cardinality less than t is unable to recover
the secret [2], [14]. The information held by a participant is called a share, which is distributed
securely by a trusted third party, called dealer, to the participant on initialization. Threshold
schemes find important applications in cryptography and security, such as secure distributed storage
of a master key, secure file sharing, and threshold signature [15].

Threshold schemes were first introduced by Shamir [14] and Blakley [2] and were generalized
to secret sharing schemes, which allow reconstruction of a shared secret among a more general
combination of subsets of participants. An excellent survey on secret sharing can be found in [15],
and a bibliography is provided online in [16].

There are scenarios in which the share of a participant is stolen or is disclosed deliberately by
the malicious participant. Then, for security reasons, the share has to be assumed to have become
public knowledge, and the effective threshold among the group is reduced by 1, because any t− 1
shares from the group plus the disclosed share suffice to reconstruct the secret. It is preferable that
the same level of security, i.e., the same threshold size t, be preserved even if shares are disclosed.
This may not present a problem if secure channel is available all the time, since the dealer can
choose a new shared secret, construct a (t, n−1) threshold scheme, and deliver new shares securely
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to the remaining participants. However, an expensive secure channel is normally set up only to
distribute initial shares and is no longer available after initialization. An alternative is to use
public broadcast by the dealer. The problem of maintaining the threshold via only broadcast in
case of share disclosure or loss was considered by Blakley, Blakley, Chan and Massey in [3], and the
solutions were called threshold schemes with disenrollment capability. Blakley et al. formally defined
threshold schemes with L-fold disenrollment capability as the schemes that have the capability of
disenrolling L participants successively, one at a time, without reducing the threshold. In the
model of a threshold scheme with disenrollment capability [3], it is assumed that no secure channel
is available after initialization between the dealer and each participant or between participants,
and a new secret is chosen to be shared among the group after each disenrollment. The scheme
is different from a proactive secret sharing scheme [9], in which a long-term secret is protected
against gradual break in by refreshing the share of each participant periodically using public key
cryptosystems.

Share size and broadcast size are used to characterize a threshold scheme with disenrollment.
While small share size may lead to low storage requirement, it reduces the search space of an
adversary. Broadcast size indicates communication cost, and a broadcast message of smaller size
is less likely to be corrupted during transmission when compared with a longer message. In [3],
Blakley et al. established a lower bound on the size of shares in a threshold scheme with L-fold
disenrollment capability and conjectured a lower bound on the size of public broadcast. Barwick
et al. confirmed a revised version of the lower bound on the broadcast size in [1].

Our Contribution: We show that the model of a threshold scheme with disenrollment ca-
pability originally defined in [3] and also used in [1] can lead to the disenrollment not under the
control of the dealer. We illustrate this point by studying a scheme in which a coalition of t + i
participants can recover the shared secret K0, ..., Ki before the ith disenrollment, without requiring
any broadcast from the dealer. In order to resolve the problem, we propose a broadcast enforced
model of threshold schemes with disenrollment by adding one condition to the original scheme def-
inition to ensure public broadcast from the dealer is necessary in the reconstruction of the current
shared secret. Although Barwick et al. [1] stated that they do not constrain t + i participants from
constructing the shared secret Ki in advance, they also noted that if it is a potential problem, then
a stronger model is necessary. Our broadcast enforced model can be viewed as the first step in seek
of such a stronger model, and our model prevents the collusion of any number of participants from
recovering new shared secrets without a broadcast message from the dealer. We establish lower
bounds on broadcast messages in the new model. We also note that inherent limitation of the
original disenrollment model by showing that even with our condition, the dealer can only delay
the lack of control under user collusion. We discuss this problem in Section 5 and present examples
showing the need for new directions.

Other related work on threshold schemes with disenrollment includes [4], [6], [8], [11], [12],
[17]. In [11], disenrollment of untrustworthy participants was discussed for general secret sharing
schemes, but no analytical study on the bounds of share size or broadcast size was provided. Blundo
et al. [4] addressed a more general problem of enabling participants of different sets to reconstruct
different secrets at different time via insecure public channel, and established lower bounds on share
size. However, they did not investigate the lower bound on the broadcast size for a threshold scheme
with disenrollment. Charnes et al. [6] presented a computationally secure threshold scheme with
disenrollment using the hardness of discrete logarithm. In [8], secure channels between participants
were employed to refresh valid participants with new shares in order to recover new secrets. A
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scheme was proposed to realize disenrollment without changing shares in [17], but was later shown
to be flawed in [12].

This paper is organized as follows. In Section 2, we review the definition of threshold schemes
with disenrollment capability [3] and previous results on the lower bounds of share size [3] and
broadcast size [1]. In Section 3, we show by one example that the original definition of threshold
scheme with disenrollment potentially can render the dealer no control over disenrollment process.
To fix the problem, we propose to add one broadcast enforcement term to the definition. In
Section 4, we derive lower bounds on the size of broadcast messages in the model with the new
property added. We finally conclude the paper with our contributions and one open problem in
Section 5.

2 Preliminaries

In this section, we review the definitions of a threshold scheme and a threshold scheme with disen-
rollment in an information-theoretic approach, and summarize the results of previous study on the
bounds of share size and broadcast size. For clarity of presentation, we list the notations used in
this paper in Table 1.

Table 1: Notation
H(·) Shannon Entropy [7]
I(·) Mutual Information [7]
t threshold
n total number of participants
L maximum allowable number of disenrollments
N set of all the indices of n participants, i.e., N = {1, ..., n}
i index for update stages
j index for participants
Sj share held by participant j
Ki secret to be shared at stage i
Pi broadcast message at stage i
di index of the disenrolled participant at stage i
Di set of indices of all disenrolled participants up to stage i, i.e., Di = {d1, ..., di}
vl index of valid participants with a dummy counting index l

S
(i)
j subshare of participant j corresponding to the shared secret Ki

R random string used to hide a shared secret or a share
Xa:b set {Xa, Xa+1, ...Xb} for a < b

2.1 Threshold Schemes

A (t, n) threshold scheme is a protocol to divide a secret into n shares so that the knowledge of at
least t shares allow full reconstruction of the secret [2], [14]. Let K be the shared secret that is a
random variable that takes values from space K, and S be a share that is a random variable that
takes values from space S. Let Sj be the share held by participant j, for j ∈ N = {1, .., n} .
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Definition 1 A (t, n) threshold scheme is a sharing of a secret K among n participants so that

1. The secret K is recoverable from at least t shares. That is, for any set of k (t ≤ k ≤ n)
indices {l1, l2, ..., lk} ⊂ {1, ..., n},

H(K|Sl1:lk) = 0 for t ≤ k ≤ n (1)

2. The secret K remains uncertain with the knowledge of (t− 1) or less shares. That is,

H(K|Sl1:lk) > 0 for k < t. (2)

A (t, n) threshold scheme is called perfect in an information theoretic sense if (t−1) or fewer shares
reveal absolutely no information on the secret K. That is,

H(K|Sl1:lk) = H(K) for k < t. (3)

It has been shown in [13] that a necessary condition to have a perfect threshold scheme is

H(Sj) ≥ H(K) for j = 1, ..., n. (4)

A perfect threshold scheme is called ideal if share size achieves the lower bound in (4), i.e., H(Sj) =
H(K) for all j.

2.2 Threshold Schemes with Disenrollment

A threshold scheme with L-fold disenrollment capability deals with the problem of maintaining a
threshold via insecure broadcast channel when disenrolling an untrustworthy participant at each
of L successive updates [3]. Let i = 1, ..., L be the indices of update stages. At the ith update, let
Ki denote the shared secret, Pi denote the broadcast message, di ∈ N\Di−1 be the index of the
disenrolled participant at the ith update, and vl ∈ N\Di for l = 1, ..., n − i be an index of one of
the remaining valid participants.

Definition 2 A (t, n) threshold scheme with L-fold disenrollment capability with n − L ≥ t is a
collection of shares Sj for j = 1, ..., n; shared secrets Ki for i = 0, ..., L; and public broadcast
messages Pi for i = 1, ..., L, that satisfies the following conditions:

1. Initially (i.e., at stage i = 0), the scheme is a (t, n) threshold scheme that shares the secret
K0 among n participants.

2. At stage i for i = 1, ..., L, one additional share Sdi is disenrolled, any set of k (t ≤ k ≤ n− i)
valid shares Sv1 , ..., Svk

plus the broadcast messages P1, ..., Pi can reconstruct the new secret
Ki, i.e.,

H(Ki|Sv1:vk
, P1:i) = 0 for t ≤ k ≤ n− i. (5)

3. At stage i for i = 1, ..., L, given broadcast information P1, ..., Pi and all disenrolled shares
Sd1 , ..., Sdi

, the shared secret Ki is not solvable if the number of valid shares is less than t.
That is,

H(Ki|Sv1:vk
, Sd1:di

, P1:i) > 0 for k < t. (6)
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A (t, n) threshold scheme with L-fold disenrollment capability is called perfect if

H(Ki|Sv1:vk
, Sd1:di

, P1:i) = H(Ki) for k < t. (7)

From Definition 2, it follows that a threshold scheme with disenrollment capability at stage i
is equivalent to a (t, n − i) threshold scheme sharing Ki among n − i valid participants. In order
to be able to collectively reconstruct Ki, each participant must have a component in his share
corresponding to Ki. Note that Sj is a collection of components to reconstruct K0, ...,KL. Let S

(i)
j

denote the component in Sj corresponding to Ki, and we call S
(i)
j a subshare of participant j. The

subshare satisfies
H(Ki|S(i)

v1:vk
, P1:i) = 0 for t ≤ k ≤ n− i. (8)

The necessary condition (4) can be extended to subshares as

H(S(i)
j ) ≥ H(Ki) for j = 1, .., n i = 0, ..., L (9)

The share by participant j, Sj , is the union of all its subshares over L disenrollment stages, i.e., Sj =
{S(0)

j , S
(1)
j , ..., S

(L)
j }. Since the shared secrets Ki’s at different stage i = 0, ..., L are independent,

the subshares of one participant that are used to recover different secrets are independent in a share
size efficient scheme.

2.3 Previous Results on Bounds of Share Size and Broadcast Size

For a threshold scheme with disenrollment capability defined in Definition 2, Blakley et al. [3]
established a lower bound on the entropy of each share, as stated in Theorem 1.

Theorem 1 Let S1:n, P1:L, K0:L form a (t, n) perfect threshold scheme with L-fold disenrollment
capability and H(Ki) = m for i = 0, 1, ..., L. Then,

H(Sj) ≥ (L + 1)m for j = 1, 2, ..., n. (10)

The proof of Theorem 1 provided by Blakley et al. is built on their Lemma 5 in [3]. We find
that the original proof of the Lemma 5 on page 543 of [3] fails in the last line. A correct proof of
their Lemma 5 is presented in Appendix.

A perfect threshold scheme with disenrollment in which each share achieves its lower bound is
called share minimal [1], i.e.,

H(Sj) = (L + 1)m, for j = 1, ..., n (11)

where H(Ki) = m for i = 0, ..., L.
Blakley et al. [3] also proposed a conjecture on the lower bound of the entropy of broadcast. A

modified version of the conjecture was proven by Barwick et al. in [1]. Theorem 2 summarizes the
result of Barwick et al. on the entropy of broadcast.

Theorem 2 Let S1:n, P1:L,K0:L form a (t, n) share minimal perfect threshold scheme with L-fold
disenrollment capability satisfying properties (5), (7), and (11), then

i∑

l=1

H(Pl) ≥
i∑

l=1

min(i, n− i− t + 1)m for i = 1, ..., L. (12)
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2.4 Useful Lemmas

In this section, we present some lemmas that will be useful in proving our theorems.

Lemma 1 Let X,Y, Z and W be random variables. Given

H(X|Y,W ) = 0, (13)
H(X|Z,W ) = H(X), (14)

H(X) = H(Y ) (15)

leads to

I(Y ; Z) = 0. (16)

Proof:

H(Y |Z) ≥ H(Y |Z, W ) ≥ I(Y ; X|Z, W ) = H(X|Z,W )−H(Y |Z,W, Y )
(a)
= H(X)

Equation (a) holds because of (13) and (14).

I(Y ; Z) = H(Y )−H(Y |Z) ≤ H(Y )−H(X)
(b)
= 0.

Equation (b) holds because of (15). Furthermore, I(Y ; Z) ≥ 0 due to non-negativity of the mutual
information of two random variables [7], it follows I(Y ; Z) = 0.

Lemma 2 Let X,Y and Z be random variables. Given

H(X|Y, Z) = 0, (17)
H(X|Z) = H(Y |Z) (18)

leads to
H(Y |X,Z) = 0. (19)

Proof:

H(Y |X, Z) = H(X, Y, Z)−H(X, Z)
= H(X, Y, Z)− (H(Z) + H(X|Z))
= H(X, Y, Z)− (H(Z) + H(Y |Z))
= H(X, Y, Z)−H(Y, Z)
= H(X|Y, Z) = 0
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3 Broadcast Enforced Threshold Scheme with Disenrollment

In this section, we will show Definition 2 in Section 2.2 is not adequate when centralized control
from the dealer is required, by examining a scheme that satisfies Definition 2 (originally appeared
in [3] as Definition 2) but leaves the dealer no control over disenrollment process.

Let us consider the following scheme.

• Participant j holds the share Sj = {S(0)
j , S

(1)
j , ..., S

(L)
j } after initialization, where sub-

share S
(i)
j corresponds to a share of a (t + i, n) ideal perfect threshold scheme sharing

the secret Ki.

• At stage i, the dealer broadcasts Pi = Sdi

If t + i participants collaborate by exchanging their shares, then they can decipher K0, ...,Ki

in advance and the disenrollment of an invalidated participant involving the update of Ki−1 to Ki

at stage i is not under the control of the dealer. Therefore, for the dealer to have control at each
disenrollment, we should seek a model in which broadcast Pi is necessary in reconstructing the
secret Ki, and each disenrollment is not possible without a broadcast message from the dealer.

The scheme presented above satisfies Definition 2 but requires no broadcast from the dealer if
t + i participants collude. In order for the dealer have control over each disenrollment, we suggest
adding the following broadcast enforcement term:

I(Ki; S1:n, P1:i−1) = 0 for i = 1, ..., L. (20)

Condition (20) states that the mutual information of Ki and all shares Sj for j = 1...n and
all previous broadcast message P1, ..., Pi−1 is zero. By jointly considering (5) and (20), we note
that (20) expresses the importance of broadcast message Pi at stage i: without the message, no
information on the new shared secret Ki can be obtained even if all shares Sj and all previous
broadcast messages P1, ..., Pi−1 are known. Futhermore, by enforcing a broadcast message from
the dealer, it allows the dealer the freedom to choose a secret to be shared when disenrolling
untrustworthy participants; while in the scheme presented, all the shared secrets are predetermined
before distributing shares to participants.

In [1], Barwick et al. used the same model defined in (5) and (7) when deriving a lower bound
on the entropy of broadcast. However, one of their lemmas, Lemma 2, implies the necessity of
broadcast in recovering the shared secret. From now on, we use capitalized LEMMA to refer to
the lemmas cited from [1] and [3], and Lemma or Lemma for our lemmas.

LEMMA 2 in [1] In a (1, n) threshold scheme with L-fold disenrollment capability, let l1, ..., lL
be distinct elements of N = {1, ..., n},

H(Ki|Sl1:li ,K0:i−1) = H(Ki) for i = 1, ..., L. (21)

They claim that (21) holds regardless of Sl1:li being valid or not. We will show in the following
lemma for (21) to hold when at least one of Sl1:li is valid, an additional condition that suggests the
importance of broadcast message needs to be satisfied.

Lemma 3 For (21) to hold for the case in which at least one of the shares {Sl1 , ..., Sli} is valid at
stage i, a necessary and sufficient condition is

I(Ki; P1:i|Sl1:li , K0:i−1) = H(Ki). (22)
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Proof:
Necessity: Since at least one of the shares Sl1:li is valid, for a (1, n) threshold scheme, we have

H(Ki|Sl1:li , P1:i) = 0 from (5), and thus H(Ki|Sl1:li , P1:i, K0:i−1) = 0.

H(Ki) = H(Ki|Sl1:li ,K0:i−1)
= H(Ki|Sl1:li ,K0:i−1)−H(Ki|Sl1:li , P1:i, K0:i−1)
= I(Ki;P1:i|Sl1:li ,K0:i−1) (23)

Sufficiency:

H(Ki) = I(Ki;P1:i|Sl1:li ,K0:i−1)
= H(Ki|Sl1:li ,K0:i−1)−H(Ki|Sl1:li , P1:i, K0:i−1)
≤ H(Ki|Sl1:li ,K0:i−1)

Since H(Ki) ≥ H(Ki|Sl1:li , K0:i−1), we obtain that H(Ki) = H(Ki|Sl1:li , K0:i−1).
Condition (22) emphasizes the importance of broadcast messages, i.e., even with the knowledge

of enough valid shares and all previous shared secrets, broadcast messages up to now are needed in
deciphering the current shared secret. In fact, the proposed term (20) is a sufficient condition for
LEMMA 2 as shown in the following lemma.

Lemma 4 Condition (20) is a sufficient condition for (21), where li ∈ N for i = 1, ..., L.

Proof:

H(Ki|Sl1:li ,K0:i−1) ≥ H(Ki|S1:n,K0:i−1, P0:i−1)
= H(Ki|S1:n, P0:i−1) + I(Ki; K0:i−1|S1:n, P0:i−1)
= H(Ki|S1:n, P0:i−1) + H(K0:i−1|S1:n, P0:i−1)−H(K0:i−1|S1:n, P0:i−1,Ki)
(a)
= H(Ki|S1:n, P0:i−1)
= H(Ki)− I(Ki; S1:n, P0:i−1)
(b)
= H(Ki)

Equation (a) holds because of (5), and Equation (b) holds due to the broadcast enforcement term
(20). Since H(Ki|Sl1:li ,K0:i−1) ≤ H(Ki), it follows that (21) holds.

We will address how the broadcast enforcement term (20) affects the previously derived lower
bounds on the broadcast size. Adding (20) to the definition only puts additional constraints on
requiring broadcast at each disenrollment, and hence it will not affect the lower bounds on the
share size.

4 Lower Bounds on Broadcast Entropy

In this section, we will establish lower bounds on the entropy of broadcast in a perfect threshold
scheme with disenrollment satisfying (5), (7) and (20). We consider two cases, (i) no constraints on
the share size; (ii) the size of each share achieves its lower bound (11), i.e., share minimal perfect
threshold schemes with disenrollment.
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Theorem 3 Let S1:n, P1:L, K0:L form a perfect (t, n) threshold scheme with L-fold disenrollment
capability satisfying properties (5), (7) and (20), and H(Ki) = m for i = 0, 1, ..., L, then

H(Pi) ≥ H(Ki) = m i = 1, ..., L. (24)

Proof:

H(Pi)
(a)

≥ H(Pi|S1:n, P1:i−1)
(b)

≥ H(Pi|S1:n, P1:i−1)−H(Pi|S1:n, P1:i−1,Ki)
(c)
= I(Pi;Ki|S1:n, P1:i−1)
(d)
= H(Ki|S1:n, P1:i−1)−H(Ki|S1:n, P1:i−1, Pi)
(e)
= H(Ki|S1:n, P1:i−1)
(f)
= H(Ki)− I(Ki; S1:n, P1:i−1)
(g)
= H(Ki) = m.

Inequality (a) comes from the fact that conditioning reduces entropy. Inequality (b) holds due
to non-negativity of entropy. Equations (c), (d) and (f) follow from the definition of mutual
information. The second term of (d) is zero due to (5), so Equation (e) follows. Equation (g) holds
from property (20).

Theorem 3 is the main result of our previous paper [10]. It shows that the entropy of a broadcast
message is at least that of the shared secret for all updates. The same result is mentioned in [1] for
the original threshold scheme with disenrollment model, but without rigorous proof.

Now we consider share minimal perfect threshold schemes with L-fold disenrollment, i.e., the
case in which H(Sj) = (L + 1)m for j = 1, .., n. It will be proven for this case,

H(Pi) ≥ min(i + 1, n− i− t + 1)m i = 1, ..., L. (25)

if all previous broadcast messages Pl’s sastify their lower bounds min(l + 1, n− l − t + 1)m for
l = 1, .., i− 1.

In order to establish the bound (25), we first prove some lemmas as follows.

Lemma 5 In a (1, n) share minimal perfect threshold scheme with L-fold disenrollment, any i + 1
subshares S

(i)
l1

, ..., S
(i)
li+1

are independent.

Proof: A (1, n) perfect threshold scheme with disenrollment satisfies the following two equa-
tions in terms of subshares.

H(Ki|S(i)
v1

, P1:i) = 0 (26)

H(Ki|S(i)
d1:di

, P1:i) = H(Ki) = m (27)

where (26) is from (8) and (27) is obtained from (7).
Substituting X = Ki, Y = S

(i)
v1 , Z = S

(i)
d1:di

and W = P1:i into Lemma 1, we have from (26),

(27) and H(S(i)
j ) = H(Ki) that

I(S(i)
v1

; S(i)
d1

, ..., S
(i)
di

) = 0. (28)
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We now prove the independence between subshares by contradiction.
Assume there is one set of i + 1 subshares {S(i)

l1
, ..., S

(i)
li+1

} that are not independent. That is,

in {S(i)
l1

, ..., S
(i)
li+1

}, there is at least one subshare that is not independent of the rest i subshares.

Without loss of generality, we assume that S
(i)
l1

is dependent on S
(i)
l2

, ..., S
(i)
li+1

I(S(i)
l1

; S(i)
l2

, ..., S
(i)
li+1

) > 0 (29)

However, if {l2, ..., li+1} = {d1, .., di}, these subshares fail to form a valid (1, n) threshold scheme
with L-fold disenrollment since (29) contradicts with (28).

In order to be able to disenroll any i participants while maintaining the threshold at stage i,
any i + 1 subshares S

(i)
l1

, ..., S
(i)
li+1

have to be independent.

Lemma 6 In a (1, n) share minimal perfect threshold scheme with L-fold disenrollment,

H(Pi) ≥ min(i + 1, n− i)m, (30)

if all previous broadcast messages meet their lower bound on entropy, i.e., H(Pw) = min(w+1, n−w)
for w = 0, ..., i− 1. When H(Pi) achieves its minimum at (i + 1, n− i)m, then I(Pi; S

(l)
j ) = 0 for

l = i+1, ..., L and j = 1, ..., n, i.e., Pi is independent of subshares used to reconstruct future shared
secrets.

Proof:
We will first show H(S(i)

v1:vu |Ki, P1:i) = 0, where u = min(i + 1, n− i). Let Svl
denote one valid

share in the set {Sv1 , ..., Svk
}.

H(S(i)
vl
|P1:i) ≥ I(S(i)

vl
; Ki|P1:i)

= H(Ki|S(i)
vl

)−H(Ki|S(i)
vl

, P1:i)
= H(Ki) = m

Since H(S(i)
vl |P1:i) ≤ H(S(i)

vl ) = m, we have H(Svl
|P1:i) = m. From (27), we obtain H(Ki|P1:i) =

H(Ki) = m. By letting X = Ki, Y = S
(i)
vl and Z = P1:i and applying Lemma 2, we obtain

H(S(i)
vl |Ki, P1:i) = 0.

0 ≤ H(S(i)
v1:vu

|Ki, P1:i) ≤
u∑

l=1

H(S(i)
vl
|Ki, P1:i) = 0 (31)

Therefore, H(S(i)
v1:vu |Ki, P1:i) = 0.

Then we will prove the lower bound of H(Pi) by induction.
At stage k = 1, there are n− 1 valid participants, u = min(k + 1, n− k) = min(2, n− 1)

H(P1) ≥ I(Pi;S(1)
v1:vu

|K1)

= H(S(1)
v1:vu

|K1)−H(S(1)
v1:vu

|K1, P1)
(a)
= H(S(1)

v1:vu
,K1)−H(K1)

= H(S(1)
v1:vu

) + H(K1|S(1)
v1:vu

)−H(K1)
(b)
= H(S(1)

v1:vu
) + H(K1)−H(K1)
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(c)
=

u∑

l=1

H(S(1)
vl

)

= um = min(2, n− 1)m

Equation (a) holds because H(S(1)
v1:vu |K1, P1) = 0. Without P1, H(K1|S(1)

v1:vu) = H(K1) and hence
(b) holds. Equation (c) holds due to the independence of S

(i)
vl ’s for l = 1, ..., i+1 shown in Lemma 5.

Now we show if H(P1) = min(2, n− 1)m, then I(P1; S
(l)
j ) = 0 for l = 2, ..., L and j = 1, ..., n.

H(P1) ≥ I(P1;S
(l)
j , K1, S

(1)
v1:vu

)

≥ I(P1;S
(l)
j ) + I(Pi; S(1)

v1:vu
|K1, S

(l)
j )

= I(P1;S
(l)
j ) + H(S(1)

v1:vu
|K1, S

(l)
j )−H(S(1)

v1:vu
|K1, P1, S

(l)
j )

= I(P1;S
(l)
j ) + H(S(1)

v1:vu
|S(l)

j ) + H(K1|S(l)
j )−H(K1)

(d)
= I(P1;S

(l)
j ) + H(S(1)

v1:vu
)

= I(P1;S
(l)
j ) + min(2, n− 1)m

Equation (d) holds because of independence of subshares of one participant and condition (20).
From H(P1) ≥ I(P1; S

(l)
j ) + min(2, n − 1)m, a necessary condition for H(P1) to achieve its lower

bound is I(P1;S
(l)
j ) = 0 for l = 2, ..., L.

Assume Lemma 6 is true for stage k = i− 1, i.e., H(Pi−1) ≥ min(i, n− i + 1)m if all previous
broadcast messages reach their lower bound on entropy, i.e., H(Pw) = min(w + 1, n − w) for
w = 0, ..., i− 2, and I(Pi−1; S

(l)
j ) = 0 for l = i, ..., L.

When k = i, u = min(k + 1, n− i) = min(i + 1, n− i)

H(Pi) ≥ I(Pi; S(i)
v1:vu

|Ki, P1:i−1)

= H(S(i)
v1:vu

|Ki, P1:i−1)−H(S(i)
v1:vu

|Ki, P1:i)

= H(S(i)
v1:vu

,Ki|P1:i−1)−H(Ki|P1:i−1)

= H(S(i)
v1:vu

|P1:i−1) + H(Ki|S(i)
v1:vu

, P1:i−1)−H(Ki|P1:i−1)

= H(S(i)
v1:vu

|P1:i−1) + H(Ki)−H(Ki)

= H(S(i)
v1:vu

|P1:i−1)

= H(S(i)
v1:vu

)
= um = min(i + 1, n− i)m

The proof of I(Pi;S
(l)
j ) = 0 for l = i+1, ..., L when H(Pi) achieves its minimum at (i+1, n−i)m

is similar to the base case (k = 1) and thus is omitted.
Now we can establish the lower bound of H(Pi) for a share minimal perfect threshold scheme

with disenrollment.

Theorem 4 Let S1:n, P1:L,K0:L form a share minimal perfect (t, n) threshold scheme with L-fold
disenrollment capability satisfying properties (5), (7), (11) and (20), then

H(Pi) ≥ min(i + 1, n− i− t + 1)m i = 1, ..., L. (32)

if all previous broadcast messages Pl’s for l = 1, .., i−1 achieve their lower bounds as min(l + 1, n− l − t + 1)m.
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Proof:
As shown in [1], if {S1:n, P1:L,K0:L} form a (t, n) share minimal perfect threshold scheme with

L-fold disenrollment capability, then {Sl1:ln−t+1 |Sv1:vt−1 , P1:L|Sv1:vt−1 ,K0:L|Sv1:vt−1} form a (1, n −
t + 1) share minimal perfect threshold scheme with L-fold disenrollment capability, where | denote
“conditioned on” and {l1, ..., ln−t+1} = N\{v1, ..., vt−1} For the (1, n− t+1) threshold scheme with
disenrollment, we have H(Pi|Sv1:vk

) ≥ min(i + 1, n − t + 1 − i)m from Lemma 6, if all previous
broadcast messages meet their lower bound on their entropy.

Since H(Pi) ≥ H(Pi|Sv1:vk
), then

H(Pi) ≥ min(i + 1, n− t + 1− i)m.

Therefore, Theorem 4 holds.
Comparing Theorem 2 and Theorem 4, we notice that when adding (20) into the definition to

ensure the dealer to have control over disenrollment, the lower bound on broadcast size is different
from (12) as expected.

5 Conclusions and An Open Problem

During the process of examining the conjecture on the lower bound of broadcast entropy [3], we
found that the original model of threshold schemes with disenrollment [3] is inadequate to ensure
the dealer of the control over each disenrollment. We presented a broadcast enforced model which
ensures that the public broadcast from the dealer is required for disenrollment, by adding an
additional term to the original definition. We showed that in related previous work to establish
a lower bound on broadcast size [1], though the original model is used, the validity of LEMMA
2 does require the broadcast from the dealer. In the new model, the coalition of any number of
participants is unable to reconstruct the shared secret Ki before the ith disenrollment stage. We
also derived lower bounds on the entropy of broadcast messages in such a model, which are refined
from the bound obtained in [1].

There is an open problem with threshold scheme with disenrollment. Consider the following
schemes.

Scheme 1

• Participant j has share Sj = {S(0)
j , S

(1)
j , ..., S

(L)
j }, where S

(i)
j is a share of a (t + i, n)

ideal perfect threshold scheme sharing Ki + Ri with Ri being a string of length m
chosen by the dealer.

• At update i, the dealer broadcasts Pi = {Ri, S
(i)
d1

, ..., S
(i)
di
}.

This scheme satisfies (5), (7) and (20) and achieves the lower bound (32) in Theorem 4 if L < bn−t
2 c.

But if t + L participants collude in advance, then they can construct K0 + R0, ..., KL + RL. Under
this construction, dealer looses the ability to disenroll a participant of its choice. The best the
dealer can do is to delay broadcast and hence the reconstruction of the shared secrets! Therefore,
there are schemes that satisfy all the properties including the broadcast requirement and still do
not allow dealer to have no control over the disenrollment process. At first it might appear as the
problem with the setup of the original model in [3].

12



We now present a model attributed to Brickell and Stinson in [3] and show that it is possible
to construct schemes that allow dealer to have full control over the disenrollment with (5), (7) and
(20).

Scheme 2 Brickell-Stinson’s Scheme [3]

• The share held by participant j is Sj = {S(0)
j , R

(1)
j , ..., R

(L)
j } where R

(i)
j denotes en-

cryption/decryption key of m bits for participant j at disenrollment stage i.

• At stage i, the dealer updates only valid participants with new shares, so Pi = {S(i)
v1 +

R
(i)
v1 , ..., S

(i)
vn−i + R

(i)
vn−i}.

This scheme prevents a coalition of any number of participants from obtaining any shared secrets
as long as the dealer does not update those colluded participants with new shares.

From the above observation, we note that the predistribution of multiple shares can lead to
unwanted key exposure. Finding alternate models that allow more control to the dealer remains
an open problem. 1

Appendix

In the appendix, we present a correct proof to LEMMA 5 in [3].
LEMMA 5 in [3] Let S1:n, P1:L,K0:L be a perfect (t, n) threshold scheme with L-fold disen-

rollment capability,
I(Ki; Sv1:vk

, Sd1:di , P1:i,K0:i) = 0 for k ≤ t− 1. (33)

In the original proof of LEMMA 5 in [3], they made use of (5), which holds for only k ≥ t.
Proof:

Let us consider k = t − 1 first. At stage w = 0, ..., i − 1, t − 1 valid shares plus Sdi which was
also valid at stage w suffice to recover Kw, i.e.,

H(Kw|Sv1:vt−1 , Sd1:di , P1:i) = 0 for w = 0, ..., i− 1, (34)

which is a necessary condition for (7).

I(Ki;Sv1:vt−1 , Sd1:di , P1:i,K0:i−1)

= I(Ki;Sv1:vt−1 , Sd1:di , P1:i) +
i−1∑

w=0

I(Ki; Kw|Sv1:vt−1 , Sd1:di , P1:i, K0:w−1)

= H(Ki)−H(Ki|Sv1:vt−1 , Sd1:di , P1:i)

+
i−1∑

w=0

[H(Kw|Sv1:vt−1 , Sd1:di , P1:i,K0:w−1)−H(Kw|Sv1:vt−1 , Sd1:di , P1:i,K0:w−1,Ki)]

(a)
= 0.

Equation (a) holds because of (7) and (34).
1We are currently working on this open problem and progress will be reported in a journal paper.
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For k < t− 1,

0 ≤ I(Ki;Sv1:vk
, Sd1:di

, P1:i,K0:i−1) ≤ I(Ki; Sv1:vt−1 , Sd1:di
, P1:i,K0:i−1) = 0

Therefore, LEMMA 5 holds for k ≤ t− 1.
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