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Abstract. We investigate the problem of extending the network lifetime of a single broadcast session over wireless stationary ad hoc
networks where the hosts are not mobile. We define the network lifetime as the time from network initialization to the first node failure
due to battery depletion. We provide through graph theoretic approaches a polynomial-time globally optimal solution, a variant of the
minimum spanning tree (MST), to the problem of maximizing the static network lifetime. We make use of this solution to develop a
periodic tree update strategy for effective load balancing and show that a significant gain in network lifetime over the optimal static
network lifetime can be achieved. We provide extensive comparative simulation studies on parameters such as update interval and control
overhead and investigate their impact on the network lifetime. The simulation results are also compared with an upper bound to the network
lifetime.
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1. Introduction

One of the important applications of wireless stationary ad
hoc networks is wireless sensor networks [2,4,6,13]. The con-
straint of limited battery energy is one of the most salient
feature of sensor networks [6,8,13,24]. Therefore, it is essen-
tial to develop efficient networking algorithms and protocols
that are optimized for energy consumption. In this paper, we
consider the wireless stationary ad hoc network strictly con-
strained by limited battery energy resource. We investigate the
network lifetime maximization problem of a session-oriented
single broadcast traffic. Note that session-oriented broadcast
is markedly different from “regular” broadcast which is used
to maintain network state information by flooding control
packets where the reliability is of utmost importance. How-
ever, the session-oriented broadcast is a more suitable model,
for instance, for continuous multimedia traffic where energy-
efficiency is more valued than reliability. In the context of
sensor networks, energy efficient broadcast tree construction
is important for distribution of updates to sensor nodes, reli-
able sensor data delivery, among others. The results presented
in this paper hold for arbitrary wireless stationary ad hoc
networks and hopefully will provide valuable insights into
designing link cost metrics to prolong network lifetime.

A similar network lifetime maximization problem in uni-
cast routing has been pursued in Chang et al. [10]. However,
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broadcasting in wireless environment is fundamentally differ-
ent from unicasting in many aspects:

(1) Due to the broadcast nature of the wireless medium us-
ing omnidirectional antennas, messages sent to a receiver
reach every node within the transmission range for “free,”
and this property is called “wireless broadcast advantage”
[5], which adds significant complexity to broadcast prob-
lems in wireless environments.

(2) For unicast routing, energy-efficiency can be roughly
achieved by routing traffic through a path where nodes
have sufficient residual battery energy and by avoiding
the inclusion of nodes with scarce energy in the path
[7,10,19]. However, broadcasting requires that every node
in the network be involved either as a receiver or as a re-
lay node. Hence, it is important to design algorithms and
link cost metrics so that they can adaptively assign either
very small or no transmit power to the nodes with scarce
battery energies.

(3) Although elegant formulations in unicasting [10] are pos-
sible using the network flow theory [41], this is mainly due
to the fact that the flow conservation property is satisfied
in unicasting. To solve broadcast problems, we can not ap-
ply the network flow theory without modification, since
the flow conservation property simply does not hold in
broadcasting. Instead we take graph theoretic and heuris-
tic approaches to solve the broadcast problem.

Conceptually similar work in other fields includes the
maximization of battery lifetime of multi-celled batteries.
In [31,32], the authors seek maximization of battery usage
by comparing optimization criteria such as the minimization
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of the total (MINTOTAL) cost or maximum (MINMAX)
cost at each instance of time. Although the underlying
assumptions are different from ours, they demonstrated that
a MINMAX strategy can be a more effective load-balancing
technique and achieve better performance than MINTOTAL

strategy.
In this paper, we first explore the static (or fixed) net-

work case such that the network is not self-configurable, but
the initial setup of a routing structure is used throughout the
session. We pursue the similar questions as those raised in
[31] in a broadcast routing setup [5,6,8,22] and try to an-
swer which optimization criteria such as MINTOTAL transmit
power or MINMAX transmit power lead to longer extended
network lifetime. We observe that current research in energy-
efficient broadcast routing is heavily biased to MINTOTAL

criteria. Since the seminal work of Wieselthier et al. [5],
there has been much progress in finding solutions for MINTO-
TAL transmit power. Theoretically, it has been proven that
the construction of a broadcast routing tree with MINTOTAL

transmit power is NP-complete [21,25,26,34]. On the other
hand, several suboptimal, yet efficient, heuristic algorithms
such as Broadcast Incremental Power (BIP) [5], Embedded
Wireless Multicast Advantage (EWMA) [34] and Largest Ex-
panding Sweep Search (LESS) [36]1 have been proposed that
use greedy approaches to construct a power-efficient tree. A
characteristic common to all of these algorithms is that they
effectively utilize the wireless broadcast advantage property.
However, it is unclear whether MINTOTAL strategy can pro-
vide the longest network lifetime. In this paper, we investigate
energy-efficient broadcast routing mainly from the viewpoint
of MINMAX optimization criteria to maximize the network
lifetime. An optimal solution for the static network case is
provided using a graph theoretic approach.

Subsequently, the extension of the solution obtained for
static networks to the dynamic (self-configuring) networks
is also presented, where the routing structure is allowed
to change adaptively. Once again, our work focuses on
evaluating which optimization criteria to choose at each
update interval and how to design link cost metric to get
better network lifetime performance. We consider various
cost and optimization metrics that extend the network lifetime
and provide comprehensive simulation results. Our work is
distinguishable from other work [12,37] in that we present
detailed analyses of the impact on network lifetime of other
crucial parameters such as tree update interval, network
density, initial energy distribution and control overhead,
which have not been addressed before. One notable finding
is that MINMAX cost in conjunction with control overhead
can provide longer lifetime, and constitute a viable (if not
better) approach to MINTOTAL strategy. There exists another
very interesting approach called the cell-based energy con-
servation techniques proposed by Blough et al. [38]. While

1To the best knowledge of authors, our newly developed LESS algorithm
constitutes currently the best performing heuristic algorithm in terms of
total transmit power cost.

theoretically interesting, it assumes an underlying “perfect
load-balancer” and hence is limited in practical usages.
In contrast, our schemes try to reach the upper bound on
network lifetime with a practical on-line tree update strategy.

The remainder of this paper is organized as follows: In
the next section, we provide background and define the terms
used in this paper. In Section 3, we define static network life-
time and the maximization problem of static network lifetime
is presented in Section 4. In Section 5, heuristics to extend
dynamic network lifetime with periodic tree update strategies
are provided. Sections 6 and 7 summarize our simulation re-
sults for static and dynamic network, respectively. Section 8
presents our conclusions.

2. Preliminaries

In this section, we present the background information and
define terms that are used throughout this paper. Notations
and some of the definitions are summarized in Table 1.2

2.1. Network model

We assume that each node (host) in a wireless ad hoc network
is equipped with an omnidirectional antenna. We assume each
node acquires its location information either using GPS or
other localization techniques [42]. The broadcast routing trees
rooted at the source node are constructed using algorithms
according to the different cost and optimization metrics that
will be discussed in the subsequent sections. We assume that a
broadcast session initiates at time t = 0 and carries a constant
bit rate (CBR) traffic.

When the Euclidean distance between node i and j is dij,
the received power at a node varies as d−α

ij where α is the
path loss (attenuation) factor that usually satisfies 2 ≤ α ≤ 4.
The required pairwise transmit power Pij to maintain a link
(i, j) from node i to j is Pij = dα

ij assuming the proportionality
constant related to the receiver sensitivity threshold is set to
1 (0 dB) for notational simplicity. Clearly, the matrix [Pij ] is
a constant matrix that is invariant over time if nodes’ location
do not change.

We represent the amount of power consumption at node i
at time t as Pi(t), and its corresponding transmission range as
Ri(t). To reach node j from node i, we assume the required
RF transmit power of node i is P RF

i (t) = Pij . Other signal
processing powers for transmission, reception, and other com-
putational processing denoted pT

i , pR
i and pC

i , respectively,
contribute to the battery energy drain [11,12]. (Refer Table 1
for details.) Assuming identical transceivers are used, we set
pT

i = pT , pR
i = pR and pC

i = pC for all i. Then, the general

2We note that all notations defined in Table 1 (except Pij , L∗, and L◦)
are time-dependent variables in general. However, whenever the clarity
of presentation is favored, the time dependence in the expression will be
omitted.
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Table 1
Notations and definitions.

(i, j ) a directed edge (or link) in a directed graph G

Wij the weight of an edge (i, j ) for a weighted directed graph G

T a directed spanning tree (arborescence) rooted at source node S

dij Euclidean distance between node i and j

α path loss factor satisfying 2 ≤ α ≤ 4

Pij pairwise transmit power, Pij = dα
ij

P RF
i (t) RF transmit power of node i at time t due to power amplifier

circuitry (PLL, VCO, etc.) within an antenna

Ri (t) transmission range of node i at time t

pT
i transmit signal processing power of node i due to modulation,

encoding and encryption, etc.

pR
i receive signal processing power of node i due to equalization,

demodulation, decoding and decryption, etc.

pC
i other information processing power of node i

PT X(T ) total transmit power of nodes to maintain a spaning tree T

ℵi physical neighbor of node i, i.e.,

ℵi := {k | 0 < dik ≤ Ri} (1)

�i logical neighbor of node i, i.e., adjacent nodes of node i in a
spanning tree T such that

�i := {k | (i, k) ∈ T } (2)

µ(T ) maximum edge weight of a spanning tree T such that

µ(T ) := max
(i,j )∈T

{
Wij

}
(3)

Ei (t) residual battery energy level of node i at time t

Lij (t) residual link longevity of link (i, j ) at time t such that

Lij (t) := Ei (t)/Pij (4)

�i (t) residual node longevity of a node i at time t such that

�i (t) := Ei (t)

Pi (t)
= Ei (t)

maxj∈�i

{
Pij

} = min
j∈�i

{
Lij (t)

}
(5)

L(T ) static network lifetime (SNL) of a broadcast network given by
a spanning tree T

L∗ optimal (maximum) static network lifetime over all possible
spanning tree T such that

L∗ := max {L(T ) | T ⊂ G} (6)

L◦ optimal (maximum) dynamic network lifetime

�t update interval in dynamic network

form of Pi(t) is

Pi (t) = P RF
i (t) + pT I

{
P RF

i (t) > 0
}

+
∑

j∈N\{i}
pRI {dij ≤ Rj (t)} + pC (7)

where

I
{
P RF

i (t) > 0
} =

{
1, if i is transmitting at time t

0, otherwise

I {dij ≤ Rj (t)} =
{

1, if dij ≤ Rj (t) at time t

0, otherwise.

Note that I {P RF
i (t) > 0} is an indicator function which is

1 only when P RF
i (t) > 0, that is, transmission with nonzero

RF power always incurs transmit signal processing power pT .
Similarly, I {dij ≤ Rj (t)} means that receive signal processing
power pR is required for node i, if it is within the transmission
range of node j.

A network is represented as a weighted directed graph
G = (N,A) with a set N of n = |N | nodes and a set A of m =
|A| directed edges (links). An edge (i, j ) ∈ N2 exists if dij ≤
Rmax. This model is usually called the (unit) disk graph [25].
The weight of the edge (i, j ) is denoted by Wij . We define
a network is connected, if there exists a directed path from
the source node S to every node i ∈ N. Given transmission
ranges {Ri(t)}i∈N , the topology τ induced by {Ri(t)} is a
mapping τ : G −→ G′ from a directed graph G = (N, A) to
a subgraph G′ = (N ′, A′) ⊂ G satisfying N ′ = N and A′ =
{(i, j ) | (i, j ) ∈ A(G), dij ≤ Ri(t)} [16–18].

We define a static network as a network in which the un-
derlying routing structure is not self-reconfigurable or does
not change over time. When a wireless network is self-
reconfigurable or changes over time, we will call it a dynamic
network. If the positions of hosts are allowed to change, we
call it a mobile network; otherwise, we call it a stationary
network to avoid confusion with the static network.

For a directed graph, a directed spanning tree rooted at
a node is called an arborescence [28,29]. Since a spanning
tree is the minimal graph structure supporting the network
connectivity, it is intuitively clear that a topology which
maximizes the network lifetime should be a tree. Given a
spanning tree T, the actual (node) transmit power assigned
to the node i is Pi = maxj∈�i

{Pij } where �i denotes the
logical neighbor of node i which is a set of adjacent (child)
nodes in the directed tree T such that �i = {k | (i, k) ∈ T }.
In contrast, if node i is transmitting with power Pi, then the
physical neighbor ℵi of node i in a wireless network is a set
of all the nodes within the communication boundary such
that ℵi = {k | 0 < dik ≤ Ri}. The set of nodes within the
maximum communication range Rmax of node i is called the
(1-hop) neighbor of node i, i.e., Ni = {k | 0 < dik ≤ Rmax}.
In general, the physical neighbor is determined by the
network topology and transmit power, whereas the logical
neighbor is determined by routing algorithms. Hence, they do
not generally coincide and usually �i ⊆ ℵi . Clearly, the total
transmit power PT X(T ) corresponding to a spanning tree T
is the sum of all node transmit power PT X(T ) = ∑

i∈N Pi .
In a wireless network, depending on the transmit power

assignment, there is always a trade-off between reliability
(fault tolerance) and network lifetime. There exists a whole
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spectrum of topology control problems in between. At one
extreme, there is flooding with maximum transmit power (un-
controlled topology) where a network is most reliable at the
cost of minimal network lifetime [23].

When trying to extend the network lifetime, it is critical
to define what we mean by the lifetime of a network. In
this paper, we adopt the definition of the network lifetime as
the time to the first node failure due to battery depletion at
the node as defined in [10]. We assume that broadcast from
the source node takes place at the beginning of the network
initialization. The static network lifetime L(T ) corresponding
to a tree T refers to the lifetime, when the tree T does not
change once the tree is setup at the initialization phase. The
dynamic network lifetime refers to the case when the trees
are updated based on an update policy (for example, either
periodically or whenever there are changes in the network
topology). We note that other definitions of network lifetime
used in the literature include (i) fraction of surviving nodes in
a network [6,12,17,20] and (ii) mean expiration time [9], but
these definitions are not used in this paper.

2.2. Energy dissipation model

We will use a linear battery discharge model. We do not con-
sider in our battery model the nonlinear behavior of voltage
as a function of remaining capacity [7] or the battery charge
recovery effect due to diffusion process [31,32]. We intend to
study the effect of different battery discharge models in the
future. Let Ei(0) denote the initial battery energy level of node
i at time t = 0. Considering all the power consumption com-
ponents introduced in (7), the residual battery energy Ei(t) at
time t satisfies

Ei(t) = Ei(0) −
∫ t

0
Pi(τ )dτ (8)

= Ei(0) −
∫ t

0
P RF

i (τ )dτ − pT

∫ t

0
I

{
P RF

i (τ ) > 0
}
dτ

−pR
∑

j∈N\{i}

∫ t

0
I {dij ≤ Rj (τ )}dτ − pCt (9)

where
∫ t

0 I {P RF
i (τ ) > 0}dτ corresponds to the length of “on”

period of node i up to time t and
∫ t

0 I {dij ≤ Rj (τ )}dτ is the
length of the period when node i was within the transmission
range of node j.

To avoid undue complication, we set pT = pR = 0 and in-
vestigate the energy consumption by only RF transmit power.
However, we do consider pC by accounting for the control
overhead to setup a routing tree in later sections. Hence, we
will use a simplified version of (8) such that

Ei (t) = Ei(0) −
∫ t

0
P RF

i (τ )dτ − pCt. (10)

The sum of all node energies
∑

i∈N Ei(t) at a given time t is
referred to as the energy pool of the network.

2.3. Single vs. multiple broadcast session

In this paper, we will concentrate on the lifetime maximization
problem of a single broadcast session, not multiple sessions.
That is because considering multiple broadcast session re-
quires scheduling; otherwise, none of the sessions can succeed
assuming all broadcasts are performed in the same channel.
We will shortly show that even very naive scheduling can yield
the desired load-balancing effect. It makes hard to appreciate
the true effect of link cost metric design and the choice of
optimization criteria, which are the main focus of this paper.
Considering only a single broadcast session makes it possible
to decouple each effect from the scheduling problem. All the
definitions introduced in later sections are tailored to a single
broadcast session. Let us explain this point with a simple ex-
ample. Let us consider a linear topology where every node lies
on a straight line segment as in figure 1, where all three subfig-
ures have the same node distribution. Each figure corresponds
to an independent broadcast session carrying different traffic.

We assume the distances between adjacent nodes are one
unit and every node has the same initial battery energy
Ei(0) = E . We consider the nodes do not move around (sta-
tionary network) and routing trees do not change over time
(static network). In figure 1(a) and (b), node A is the source
of broadcast and in figure 1(c), node B is the source. As will
be presented later in Corollary 1, the minimum spanning tree
(MST) solution shown in figure 1(a) is the optimal solution
for maximum static network lifetime in case of equally dis-
tributed energy network (EDEN). Since the transmit power of
each transmitting node is Pi = 1 power unit, the network can
survive up to L = E/Pi = E time unit(s). Now let’s assume
figure 1(b) and (c) represent broadcast trees given by some

Figure 1. An illustration of three independent broadcast session traffic for
demonstrating the load-balancing effect of multiple broadcast sessions. Ar-
rows indicate the broadcast flow directions. (a) Node A is the source. (b)
Node A is the source. (c) Node B is the source.
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suboptimal algorithms. If we consider these two broadcast
session separately, assuming the path loss factor is α = 2, the
network can survive only up to L = E/4, which is four times
smaller than the case in figure 1(a). In contrast, from now on,
let’s consider scheduling these two broadcast sessions given
in figure 1(b) and (c) so that two routing trees from different
sources A and B are alternating in a round-robin fashion with
an equal length duty cycle (1 second for example). It is clear
that in this scenario the network can survive up to L = E/2
time units. Compared to previous case, the overall network
lifetime becomes doubled. This is due to scheduling and its
inherent load-balancing effect, when we consider multiple
broadcast sessions from different sources. Because of this in-
herent load-balancing effect for multiple broadcast sessions,
it is really hard to evaluate the “true” performance gain for
a specific broadcast session obtained by a specific optimiza-
tion criteria such as MINTOTAL or MINMAX and cost metrics.
This is the most important reason we considered only a single
session from a fixed source. Once we consider only a single
session, any realistic traffic pattern such as Poisson arrival pro-
cess becomes non-material, because energy is consumed only
when there is transmission, ignoring idle time energy con-
sumption. Therefore, choosing a simple traffic model such as
continuous constant bit rate (CBR) traffic can be justified.

3. Static network lifetime

As mentioned earlier, the static network refers to the case
when the routing structure does not change over time. With-
out loss of generality, we assume a broadcast session initial-
izes at time t = 0 by constructing a broadcast routing tree
T after exchanging control packets, and lasts until one node
dies due to battery depletion. Since the node transmit power
determined at the initialization stage is not a function of time,
we will drop the time dependence in our notation and sim-
ply use Pi(0) = Pi . Since the control overhead for one-time
initialization of the broadcast tree is negligible, pC = 0 in
(7), the residual battery energy level of node i at time t is
Ei(t) = Ei(0) − ∫ t

0 Pi(τ )dτ = Ei(0) − Pi · t.

Given Ei(t), if node i transmits to node j using transmit
power Pij , the link (i, j) can be supported up to Ei(t)/Pij

units of time. We call this as the (residual) link longevity
Lij (t) := Ei(t)/Pij of a link (i, j). Similarly, node i constantly
transmitting with power Pi can survive for �i(t) = Ei(t)/Pi

units of time. Therefore we call this as the (residual) node
longevity �i(t). The link and node longevity of node i is related
to each other as �i(t) := minj∈�i

{Lij (t)} as shown in (5).
These notations are summarized in Table 1. Note that the
variable dimension of both quantities is a time unit. If node
i is a leaf node in the spanning tree, then Pi = 0 and thus
�i = ∞. Otherwise, the source and relay nodes have a finite
node longevity.

Given a routing tree T determined by some algorithm at
time t = 0, the corresponding transmit power levels {Pi}, and
the initial battery energy levels {Ei(0)}, the static network
lifetime (SNL) L(T ) of the tree T is defined as the time to

first node failure, when this tree is constantly used for broad-
casting. It is easy to see that this corresponds to minimum
node longevity L(T ) := mini∈N {�i(0)} = mini∈N {Ei(0)/Pi}.
Hence, the network lifetime of a tree T is determined by a node
with the minimum node longevity, which in turn determined
by the link with minimum link longevity as follows:

L (T ) := min
i∈N

{�i(0)} = min
i∈N

{
Ei(0)

Pi

}
(11a)

= min
i∈N

{
min
j∈�i

Lij (0)

}
= min

(i,j )∈T

{
Lij (0)

}
. (11b)

where, by definition of the logical neighbor, T = {(i, j ) |
i ∈ N, j ∈ �i}. We now present a few interesting cases as
examples.

3.1. Some examples

Now, let us examine a few simple examples on how these
definitions can be applied to different scenarios.

Example 1. Figure 2 shows some examples of known power-
efficient trees constructed using MST, BIP, EWMA and LESS
algorithms on n = 10 nodes distributed within 10×10 deploy
region. In this example, we will show that the MINTOTAL

transmit power does not necessarily imply maximum life-
time. We assume the path loss factor is α = 2. Node 1
is picked as the source node. Although the direction of each
link is not indicated, the direction of every link should be
interpreted as directed away from the source. For instance,
let us analyze the BIP tree TBIP shown in figure 2(b). In this
tree, the logical neighbor of node 6 is �6 = {2, 3, 7} which
corresponds to the child nodes of node 6 in the tree. The phys-
ical neighbor of node 6 is ℵ6 = {1, 2, 3, 7, 10}. For reader’s
convenience, the pairwise transmit power matrix matrix [Pij ]
is presented:

[Pij ] =






0 20 52 73 100 10 29 65 85 65

20 0 16 37 40 2 17 25 41 17

52 16 0 5 8 26 65 65 89 41

73 37 5 0 9 49 104 106 136 74

100 40 8 9 0 58 101 85 109 53

10 2 26 49 58 0 13 29 45 25

29 17 65 104 101 13 0 10 16 18

65 25 65 106 85 29 10 0 2 4

85 41 89 136 109 45 16 2 0 10

65 17 41 74 53 25 18 4 10 0






The transmit power of node 6 is P6 = maxj∈�6{P6j } =
P63 = 26 power units. Likewise, node 1, 3, 6, 7, and 8 are
transmitting nodes with transmit power P1 = 10, P3 = 8,
P6 = 26, P7 = 10, P8 = 4. The transmit power of other
leaf nodes are 0. Thus, the total transmit power of TBIP

is PT X(TBIP ) = ∑
i∈N Pi = 58. Similarly, for other trees,

PT X(TMST ) = 61,PT X(TEWMA) = 49. and PT X(TLESS) = 43.
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Figure 2. Broadcast routing trees corresponding to power-efficient algorithms including (a) minimum spanning tree (MST), (b) broadcast incremental power
(BIP) [5], (c) embedded wireless multicast advantage (EWMA) [34], and (d) largest expanding sweep search (LESS) [36] for a sample network configuration
of n=10 nodes: the node with ID=1 is the source node. The path loss factor α=2 is used. For details of each algorithm, readers are referred to the original
references.

As seen in this example, our LESS algorithm performs better
than other algorithms.

Again let’s consider TBIP. Let’s assume [Ei(0)] =
[900, 200, 900, 400, 700, 500, 900, 900, 100, 300]. The
link longevity from node 6 to its logical neighbor is
L62 = 500

2 , L63 = 500
26 , L67 = 500

13 . Hence the node longevity
of node 6 is �6 = minj∈�6{L6j } = L63 = 19.23. Similarly,
�1 = 900

10 , �3 = 900
8 , �7 = 900

10 , �8 = 900
4 , and the leaf nodes 2,

4, 5, 9, and 10 have infinite node longevity. Thus, the static
network lifetime is L(TBIP ) = �6 = 19.23 which is deter-
mined by the edge (6, 3). Likewise, L(TMST ) = �2 = 200

16 =
12.5,L (TEWMA) = �6 = 500

29 = 17.24,L (TLESS) = �2 =
200
17 = 11.76. These values are summarized in the following

Table 2.
Thus, although LESS consumes the smallest total transmit

power, it has also the shortest network lifetime. This is not
surprising, since the lifetime is a function of both battery
energy and node transmit power, whereas MINTOTAL transmit
power optimization criterion, for which these algorithms are
optimized, does not incorporate the battery energy and hence
can not guarantee the longest lifetime. In the next section, we
will provide a systematic solution to obtain a tree with the
maximum static network lifetime.

Example 2 (Equally Distributed Energy Network (EDEN)).
As a special case, when all nodes in a network have identi-
cal initial energy levels (i.e., E1(0) = . . . = En(0) = E), we
will refer to the network as an equally distributed energy net-
work (EDEN). The lifetime of EDEN can be expressed as
LEDEN(T ) = E/max(i,j )∈T {Pij }.

Table 2
Summary of important values of the trees shown in figure 2.

Algorithm
∑

i∈N Pi maxi∈N {Pi} L(T )

MST 61 16 �6 = 12.5

BIP 58 26 �2 = 19.23

EWMA 49 29 �6 = 17.24

LESS 43 17 �2 = 11.76

Example 3 (Flooding). Another common example is flooding
[23]. Although we concentrate on the network lifetime for a
tree, the definition as a minimum node longevity (11a) is ap-
plicable to any general topology. In flooding, each node caches
the messages it has previously received. If a message currently
received is in the cached list, it simply drops the message.
Otherwise, each node retransmits the message with the same
maximum power Pmax. Hence, each node transmits each mes-
sage exactly once even though it can receive the same message
multiple times. In this case, the network lifetime for flooding
is L(f looding) = min{E1(0)

Pmax
, . . . , En(0)

Pmax
} = mini∈N {Ei (0)}

Pmax
.

4. Maximizing static network lifetime

4.1. Problem formulation

In this section, we investigate an optimization problem of find-
ing a routing (spanning) tree which maximizes the network
lifetime without tree update. We assume that once a routing
tree is established at the beginning of a broadcast session, the
same broadcast routing tree is used for the whole remaining
time. We want to find a static routing tree T∗ which is not
necessarily unique, but gives the maximum network lifetime.
This problem can be formulated as:

maximize L(T ) = min
(i,j )∈T

{Lij } over ∀ T ⊂ G. (12)

The global optimal solution to this problem is referred to as
the optimal static network lifetime L∗ := maxT ⊂G{L(T )} =
maxT ⊂G min(i,j )∈T {Lij }. This problem can also be considered
as a range assignment problem [25], but to obtain a tree, we
additionally need to determine the connectivity matrix.

Note the analysis presented in Section 3 is a network anal-
ysis problem: given T, we can derive all information we want.
On the other hand, this MAXMIN (or bottleneck) optimization
problem (12) is a network design problem in which we need to
find an optimal spanning tree T, or equivalently, the optimal
power assignment {Pi} to each node. We will show in the
following subsections that we can in fact find a (global) op-
timum solution to this problem by a polynomial-time greedy
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algorithm. The presentation in this section is a quick summary
of our earlier work [35]. Due to space limitation, the proofs
of the lemmas and corollaries presented later will be omitted.
We refer the reader to our original paper [35] for the proofs.

4.2. A special case (EDEN)—Undirected graph

We initially consider a special case (Example 2) when all
the nodes have identical battery energy levels Ei(0) = E,∀i.
Although this constraint is possibly too stringent in real situa-
tions, we solve this problem first because it provides insights
into the more general case of unequal battery energies. Due to
the equal energy assumption, the graph can be considered as
undirected, because Lij = E/Pij = E/Pji = Lji . We define
the edge weight as Wij = Pij , if dij ≤ Rmax, and Wij =
∞, if dij > Rmax.

Let µ(T ) := max(i,j )∈T {Wij } be the maximum edge
weight of a tree T and we will refer to the edge satisfying
this condition as the bottleneck edge of the tree T. We also de-
fine µ∗ := minT ⊂G{µ(T )}. A bottleneck spanning tree (BST)
denoted TBST is a spanning tree which has the minimum bottle-
neck edge weight among all spanning trees such that TBST :=
arg minT ⊂G{µ(T )}. Let TBST = {T | µ(T ) = µ∗, T ⊂ G} be
the set of all BST’s. The following lemma shows that the min-
imum weight spanning tree (MST) is a bottleneck spanning
tree.

Lemma 1. (MST has minimum bottleneck edge weight.)
Let TMST denote a minimum spanning tree over an undirected
weighted graph G. Then the bottleneck edge weight of the
MST is the smallest among all spanning trees T ⊂ G, i.e.,

µ(TMST ) = µ∗.

The problem can be rephrased as showing whether TMST ∈
TBST holds. This is a standard problem in the graph theory and
the proof is omitted. Interested readers are referred to [15,35]
for details. We note that for a given specific network topology,
when Wij = Pij , the bottleneck edge weight µ∗ corresponds
to the “critical power” discussed in [39].

Corollary 1. If Ei(0) = constant,∀i ∈ N (EDEN), the
minimum spanning tree is a globally optimal solution to the
static network lifetime maximization problem.

Lemma 1 shows that the MST is a sufficient condition
to be a bottleneck spanning tree. However, it is not a nec-
essary condition in general [15]. That is, MST is a globally
optimal solution but not unique in general. In fact, any tree
T ∈ TBST with the same bottleneck weight edge serves our
purpose equally well. We also emphasize that MST is not a
tree with minimum total node transmit power and does not
exploit the wireless broadcast advantage property during its
construction as in [5]. However, after the tree is constructed,
the node transmit power is calculated considering the wireless
broadcast advantage using Pi = maxj∈�i

{Pij }.

4.3. General case—Directed graph

When we consider the general distribution of the initial battery
energy levels (i.e. there exist Ei(0) �= Ej (0)), the graph is
no longer undirected. Note that although Pij = Pji , Wij =
Ei(0)/Pij �= Ej (0)/Pji = Wji . In Section 4.2-B, we found
that a global optimal solution for EDEN is MST and then
obtained an important result: the minimization of the total cost
leads to minimization of the maximum cost for an undirected
graph (but not vice-versa). It is natural to ask the question
whether this analogy carries over to a directed graph as well.
Unfortunately, the answer is negative.

Lemma 2. (see [35].) Minimum total weight arborescence
rooted at the source node does not necessarily minimize the
maximum weight of a directed graph.

Thus, the results for an undirected graph in Lemma 1
cannot be directly applied to a directed graph. In [35], we
presented a two step algorithm in which we first find by
binary search techniques the sparse topology consisting of
edges whose edge weights are bounded by the bottleneck
edge weight. However, we will show in the following lemma
that the first step of the algorithm in [35] is redundant and
only applying Prim’s algorithm [15] on a directed graph from
the source node by inspecting only outgoing edges at each
step is enough to produce an arborescence with MINMAX

edge weight. Since the original Prim’s algorithm is for a min-
imum spanning tree on an undirected graph, we will conve-
niently call this algorithm as the Directed Minimum Spanning
Tree (DMST). Note that DMST does not necessarily pro-
duce an minimum total weight arborescence rooted at the
source node in general. Since the time complexity of Prim’s
algorithm is O(m + n log n) using Fibonacci heap [15], the
overall time complexity of the DMST algorithm for a fully
connected graph is O(n2). This is a slight enhancement over
the algorithm in [35] since running time was �((n + m)
log m).

Lemma 3. Let TDMST denote a directed tree obtained by the
DMST algorithm. For any directed weighted graph, the bot-
tleneck edge weight µ(TDMST ) of the DMST tree is minimum
among all arborescences, i.e.,

µ(TDMST ) = min
T ⊂G

{µ(T )}.

Proof: Let (i∗, j ∗) denote the bottleneck edge of the DMST
tree TDMST . Removing (i∗, j ∗) from TDMST partitions the tree
into two subtrees T1 and T2 where T1 includes the source
node S. For any directed edge (i, j ) ∈ T1 × T2, Wi∗j∗ ≤ Wij ,
because DMST chooses an edge with the smallest cost
among outgoing edges from the nodes in T1. On the other
hand, for any arbitrary tree T⊂ G to be connected, an edge
(i ′, j ′) ∈ {(i, j ) | i ∈ T1, j ∈ T2} should be chosen. Hence
µ(T ) ≥ Wi ′j ′ ≥ Wi∗j∗ = µ(TDMST ),∀T ⊂ G, and the result
immediately follows. �
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Corollary 2. Let Wij = L−1
ij = Pij /Ei(0) be the inverse of

link longevity (or normalized pairwise transmit power), then
DMST is a (globally) optimal broadcast routing tree solution
for static network lifetime maximization problem.

Note that distributed algorithms for minimum weight span-
ning tree over both undirected and directed graphs are pre-
sented in [14] and [27], respectively.

To illustrate this point, figure 3 shows the topology τ =
{(i, j ) | Lij (0) ≥ L63(0), i ∈ N, j ∈ ℵi} which consists of all
links such that the link longevity is larger than L63(0). In this
example, the link (6,3) is the critical link, without which node
3, 4, and 5 can not be reached from the source node 1. A link is
drawn with a solid line, if it is a bidirectional link, i.e., (i, j) ∈ τ

and (j, i) ∈ τ ; otherwise, it is drawn with a dotted line and the
arrow in the middle of the link indicates the direction of each
edge. It is clear that the graph is directed: node 1, 3, 6, 7 and
8 which have relatively large battery energy can reach node
2, but node 2 can reach only node 6.

Consequently, we will call DMST algorithm in conjunction
with edge weight Wij = Pij /Ei(0) as Maximum Static Net-
work Lifetime (MSNL) algorithm. Note that MST (or BST)
with edge weight Wij = Pij provides the MINMAX transmit
power solution. This is optimal only for undirected graphs
and hence is equivalent to MSNL only for EDEN. In general,
the solution obtained by MST is not optimal. Note that while
MSNL algorithm achieves the maximum static network life-
time, it is not the best solution in terms of total transmit power
with the same bottleneck edge constraint. To get smaller total
transmit power with the same optimal static network lifetime,
we may apply LESS algorithm on the topology obtained by
MSNL. However, this approach is not taken in favor of the
computational efficiency of the Prim’s algorithm.
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Topology for Lifetime Maximization

Figure 3. The underlying topology of Example 1. This figure shows the
topology τ = {(i, j ) | Lij (0) ≥ L63(0), i ∈ N, j ∈ ℵi}. A link is drawn with
a solid line, if it is a bidirectional link, i.e., (i, j ) ∈ τ and (j, i) ∈ τ ; other-
wise, it is drawn with a dotted line and the arrow indicates the direction of
flow.

5. Extending dynamic network lifetime

From now on, we look at the problem of maximizing
dynamic network lifetime (DNL). The dynamic (or self-
reconfigurable) network refers to the case when the routing
structure is allowed to change adaptively over time. Intu-
itively, the optimal dynamic network lifetime L◦ will always
be longer than or equal to the optimal static network lifetime
L∗. We will consider {Ei(t)} in the cost metric and hence
the network is naturally modeled as a directed graph. We
note that neither MINMAX nor MINTOTAL transmit power is
a valid figure of merit for dynamic networks, since both ap-
proaches depend solely on the location of nodes (or on the
time-invariant matrix [Pij ]). Thus the current residual battery
energy has no effect on the construction of trees as demon-
strated in Example 1.

If we allow the updates in routing tree, the optimality of
MSNL algorithm discussed in the prior section no longer
holds. For instance, given {Ei(t)}, suppose a time-dependent
spanning tree T(t) is constructed at time t by MSNL algorithm
and is used as a broadcast routing tree for a period �t. The
energy distribution at time t + � t changes to {Ei(t +�t)} =
{Ei(t) − �t · Pi(t)} without considering control overhead.
Since the edge weights change to Pij /Ei(t +�t) accordingly,
the bottleneck edge weight µ(T (t + �t)) may change and
hence the optimality of static network lifetime does not hold
true anymore. However, temporal optimality in lifetime can
be reclaimed with the following strategies:

• Triggered update: whenever the bottleneck edge changes,
the tree is updated. Constantly monitoring the change re-
quires excessive control overhead.

• Periodic update: instead, we can take a proactive approach
such that the tree is updated at every specified update in-
terval �t.

In this paper, we will exclusively use the periodic update
strategy. Trees are updated at time t = k · �t (k = 0, 1, . . .),
and the amount of energy consumed during the time period
(�t · Pi(k�t)) is subtracted from the corresponding residual
energy level Ei(t) using the linear battery discharge model,
i.e., Ei((k+1)�t) = Ei(k�t)−�t ·Pi(k�t)−Econtrol where
Econtrol denotes the energy consumption due to control over-
head. Note that if the update interval is larger than the static
network lifetime of the initial tree T(0), i.e, �t ≥ L(T (0)),
the DNL is equivalent to the SNL. In extending the dynamic
network lifetime, we do not claim the global optimality as in
the previous section and will investigate which optimization
criteria such as MINMAX and MINTOTAL cost provide bet-
ter performance, the choice of better cost metrics, the proper
length of update interval and the trade-offs with control over-
head.

Incorporating and utilizing the residual battery energy into
cost metric results in randomizing the routing structure over
time even for a stationary network, which effectively per-
forms load-balancing [7,12] by distributing energy dissipa-
tion evenly among the nodes throughout the network oper-
ation time and extend network lifetime. Load-balancing of
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battery energy makes the network lifetime less sensitive to
a specific initial energy distribution and what becomes more
important is the whole amount of energy, energy pool, in the
network.

5.1. A case study

Before we proceed further, it is instructive to revisit the
sample example discussed in Example 1. This time, the
network is dynamic. The initial energy is distributed as
[Ei(0)] = [900 200 900 400 700 500 900 900 100 300] as be-
fore. The battery energy level of each node is displayed with
a rectangle where the full capacity is assumed 900.

Following the previous discussion, suppose we apply
MSNL algorithm every 10 second (�t = 10). Incidentally,
the MSNL tree TMSNL(t) at the first interval 0 ≤ t < 10 is
same as BIP tree TBIP shown in figure 2(b). Note that in
this example the optimal SNL was L∗ = 19.23 seconds. Re-
markably, by updating the tree only 4 times which are drawn
in figure 4(a)–(d), the network lifetime can be extended to
45.53 seconds which is 237% of the original static case. In
figure 2(b), node 6 is transmitting to reach node 3. In the next
time interval 10 ≤ t < 20 shown in figure 4(a), since node 2
and 6 have small battery energy, node 1 decides to transmit
with larger transmit power. Next, node 8 in figure 4(b) takes
charge to transmit to node 3. Repeating this way, these fig-
ures demonstrate the load-balancing effect of battery energy
of MSNL algorithm, and show that the network lifetime can
be significantly extended.

Figure 4(e) shows the time evolutionary behavior in terms
of total transmit power for �t = 1. In general, the total trans-
mit power tends to increase as time progresses. We can also
observe that there are oscillations. If we perform an off-line
optimization, we can reduce the oscillations by grouping the
same trees over the period of network lifetime as shown in
figure 4(f) and obtain the same network lifetime. The area
under the curve represents the amount of energy consumed
by all nodes in the network before the first node dies. The dy-
namic network lifetime for various values of updated interval
is plotted in figure 4(g), which shows that reducing the up-
date interval does not provide further improvement. As noted
earlier, if �t ≥ L(TMSNL(0)) = L∗, the DNL is equivalent to
the optimal SNL, which is indicated by curves corresponding
to y = x in figure 4(g).

5.2. Problem formulation

For dynamic network, the transmit power Pi(t) is a time de-
pendent function. The node longevity �i of node i for dynamic
network is the time at which the relation Ei(�i) = 0 holds, or
equivalently, rewriting (10) as

∫ t

0 Pi(τ )dτ = Ei(0) − Ei(t)
and setting t = �i , the node longevity �i is the time at which
the following relation holds:

∫ �i

0
Pi (τ ) dτ = Ei (0) . (13)

The problem of maximizing the dynamic network lifetime
(DNL) is equivalent to maximizing the minimum node
longevity satisfying (13) by finding a set of time-dependent
transmit power {Pi(τ )} which gives a connected topology at
any time. Then the problem can be formulated as:

maximize min
i∈N

{�i} over {Pi(t)} (14)

subject to:
[{Pi(t)} induces a connected topology

at each instance of time.

]
(15)

We refer to the optimal dynamic network lifetime as

L◦ := max
{Pi (t)}

min
i∈N

{�i}.

Considering that the formulation (13) is a functional of
Pi(t) and (14) is an optimization of a system of functionals,
we may need to approach this problem using the calculus of
variation techniques [40]. However, since the constraint (15)
requiring the network connectivity is a graph-theoretical con-
cept, it is very challenging applying the conventional calculus
of variation techniques. Note that finding an optimal solution
to this problem is currently unknown. We do not claim the
global optimality as in previous static network case. Instead
we will rely on heuristics to extend the dynamic network
lifetime.

5.3. Heuristics to extend dynamic network lifetime

In this section, we will discuss two heuristics and its varia-
tions to extend the dynamic network lifetime. The heuristic
approach adopted in this section is not new. Similar ideas can
be found in [7,9,12] including our earlier work [37]. Also
some recent related developments can be found in [43]. How-
ever, the key differences between the earlier works and our
current work are as follows: (i) At each update interval, we
have a clear optimization principle, e.g., maximizing the static
network lifetime; (ii) Unlike the prior work, we investigate the
effect of control overhead in route updates; (iii) The link cost
metric considered is different from that of [12,37] and leads
to up to 25% longer network lifetime than [12], which will be
presented in the simulation section; (iv) We explain the reason
for such gain in lifetime in Section 5; (v) We also provide com-
parison with an upper bound to dynamic network lifetime. Be-
cause EWMA and LESS heavily rely on geometric concepts,
it is difficult to utilize these algorithms in a similar manner.

(1) MST + Inverse Link Longevity = WMST: This metric
corresponds to the best effort (greedy) approach to extend
the lifetime by applying MSNL algorithm at each update
interval �t. A snapshot of tree TMSNL(t) by the MSNL is
made as already explained in detail using the case study in
Section 5.1. Note that MSNL is equivalent to MINMAX inverse
link longevity:

MSNL = DMST + inverse link longevity

= Min Max inverse link longevity,
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Figure 4. A case study for the topology in figure 2. α = 2 and �t = 10, (a) TMSNL(t) for 10 ≤ t < 20, (b) TMSNL(t) for 20 ≤ t < 30, (c) TMSNL(t) for
30 ≤ t < 40, (d) TMSNL(t) for 40 ≤ t < 45.53, (e) total power vs. time, (f) oscillation reduction when off-line optimization, and (g) network lifetime vs.
update interval in linear and log scales.

where the edge weight is given as the inverse link longevity
Wij (t) = L−1

ij (t) = Pij /Ei(t). In fact, this algorithm covers a
class of link cost metrics (Pij /Ei(t))µ where µ> 0, because xµ

for µ > 0 is a monotonic increasing function of x and DMST
algorithm only depends on the ordering of link weights. The
obtained trees will be identical regardless of the value µ. Since
we will consider the general link cost metric, we will call

the class of algorithms with these cost metrics as Weighted
MST (WMST). Indeed, the optimization criteria chosen in
this heuristic correspond to MINMAX cost.

(2) BIP + Inverse Link Longevity = WBIP: Another heuristic
adopted here is a variant of BIP algorithm. The same link
cost metric Wij (t) = Pij /Ei(t) is used as above. However,
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the decision made by BIP at each step of the algorithm is
the minimum incremental inverse link longevity L−1

ik (t) −
L−1

ij (t) = (Pik−Pij )/Ei(t) instead of the minimum incremen-
tal power (Pik − Pij ). We refer to the algorithm as Weighted
BIP (WBIP). A time-dependent (dynamic) tree at each in-
stance of time is found. Considering this cost can be inter-
preted as a normalized transmit power, the computational
complexity at each update is the same as BIP algorithm O(n3).
As the BIP algorithm is for minimizing the total transmit
power, we can interpret that the BIP heuristic “loosely” cor-
responds to MINTOTAL normalized transmit power.

If all nodes have almost the same initial battery energy,
the tree selected at the beginning is very close to BIP tree.
However, over time, the optimization problem evolves and
deviates from the original MINTOTAL transmit power. This,
in turn, leads to an increase in the total transmit power to
reach every node in the network. To improve the lifetime
performance, we also apply post sweeping [5] at each update
interval of the dynamic routing trees and call these as WBIP
with sweep (WBIPSW) and WMST with sweep (WMSTSW),
respectively.

5.4. Control overhead vs. update interval

Regardless of whether an on-demand or a proactive scheme
is used, to make use of tree-based algorithms such as MSNL,
WMST or WBIP, every node needs to keep track of up-to-
date global state information such as the location of all other
nodes and their current residual battery energies. Maintain-
ing such information by exchanging control packets incurs
control overhead. The algorithms for dynamic networks con-
sidered in this paper are deterministic and centralized. Hence,
at least in theory, the knowledge of initial global information
makes possible for every node to calculate the future routing
trees and to estimate other nodes’ battery level subsequently
without demanding further update communication overhead.
However, in practice, such a scheme is very limited in that, if
there are other causes of energy consumption such as simul-
taneous unicast or multicast traffics in different channels, the
estimation will not be correct and algorithms will not work
properly. The periodic update scheme adopted in this paper
does not have such shortcomings, since the information is
used only over one update period.

Suppose the bit rate over the wireless link is denoted Rb

and the necessary state information is maintained by flood-
ing periodic beacon signals of short control packets of length
L bits. We assume that these control packets consist of the
broadcast session ID, node ID, current battery energy level, x
and y axis coordinates, and parity checksum. Let’s assume the
control packets are transmitted at a fixed transmit power level
Pcontrol. Each node needs to flood n control packets at every
update interval and hence overall O(n2) control packets are
required for the whole network. The amount of energy con-
sumption by the control packets Econtrol per node per update
interval is Econtrol = Pcontrol

Ln
Rb

. Note that energy consump-
tion by control overhead depends on the size of networks and
hence Ei((k + 1)�t) = Ei(k�t) − �t · Pi(k�t) − Pcontrol

Ln
Rb

.

Possessing the most up-to-date information provides better
chance to build a more efficient routing solution. However,
there is a trade-off with the update interval: if broadcast tree
is updated too often, the benefit of having current state infor-
mation diminishes and most of the energy will be consumed
exchanging control packets instead of payload broadcast ses-
sion traffic.

5.5. Impact of initial energy distribution on network lifetime

The general form of the edge weight function Wij (t) including
the initial energy Ei(0), the residual energy Ei(t), and the
pairwise transmit power Pij of each node i first appeared in
Chang et al. [10] as

Wij (t) = Pλ
ijEi (0)µ Ei (t)−ν (16)

with non-negative weighting factors λ, µ, ν. When λ = 1 and
µ = ν (normalized residual energy), the average and the worst
case performance of unicast routing is shown to be the best by
simulations [10]. Recent papers (see for example [12]) have
also adopted the same following cost metric for the simulation
of broadcast routing:

Wij (t) = Pij

(
Ei (0)

Ei (t)

)µ

. (17)

We now discuss some implications of including the initial
energy Ei(0) in the general edge weight function (16).

(1) If µ �= ν, in general, placing the initial energy Ei(0)
in the numerator is counter-intuitive, because the edges
incident to a node with larger initial energy are assigned
larger costs and hence the node with larger initial energy
tends to be assigned with smaller transmit power or no
power, which is not desirable.

(2) If µ = ν, it may appear that Ei(0)/Ei(t) does have a
meaningful interpretation as an inverse of normalized
residual energy. However, when lifetime is considered,
the following situation illustrates some problem of this
case: suppose nodes i and j start with initial energy E and
E/100, respectively and after transmitting for some time
both nodes have 10% of the initial energy. The ratio is the
same Ei(0)/Ei(t) = Ej (0)Ej (t) but the absolute residual
energy Ei(t) of node i is 100 times larger than that of node
j. Although it is better to assign large transmit power to
node i, the metric can not differentiate this case. There-
fore, it is still not a good strategy because normalization
does not clearly reveal the absolute residual energy.

(3) Previous literatures using the results of [10] have ignored
the fact that [10] performs off-line optimization. The main
results in [10] imply that, to maximize the network life-
time for unicast, the rate of the flow in each link should be
assigned a certain rate to satisfy their optimization crite-
ria. This approach is hard to translate to an actual routing
protocol (e.g., routing table), because the unpredictable
future traffic (flow) in the real situation cannot be assigned
with an optimal flow rate. In the off-line optimization as
in [10], the knowledge of the initial energy distribution
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{Ei(0)} can be fully utilized and hence it does have a
positive impact on the aggregated network lifetime. How-
ever, for an on-line optimization discussed in the previous
sections, the inclusion of initial energy distribution is dis-
couraged, because it has a detrimental effect on network
lifetime as will be shown by simulation in Section 7.3.
What really counts at the current update interval is the
(absolute) residual energy level Ei(t). Therefore, except
for some special occasions such as EDEN, it is safer in
real situations to assume the initial energy as a random
variable and not to include it in the deterministic cost
metric design. In the case of EDEN, {Ei(0)} has no impact
and is redundant. Simulation results with and without
initial energy will be given in the following section.

5.6. Upper bound to optimal dynamic network lifetime

Because of dynamic nature of this problem, conceptually,
what we want to achieve is to fully and efficiently utilize the
energy pool with minimum possible power just enough for
network connectivity. In order to provide an absolute mea-
sure of comparison among different optimization metrics, we
propose a straightforward upper bound to the optimal dynamic
network lifetime as follows.

Lemma 4. L◦
U :=

∑
i∈N Ei (0)

minT ⊂G{∑i∈N Pi } is an upper bound to the
optimal dynamic network lifetime L◦, i.e.,

L◦
U :=

∑
i∈N Ei(0)

min
T ⊂G

{∑
i∈N Pi

} . (18)

Proof: Assuming recharging the battery is not an option,
we cannot spend more energy than the available initial energy
pool

∑
i∈N Ei(0). Also, to form a routing (spanning) tree, no

matter what kind of tree we use at each update interval, at least
the minimum amount of power minT ⊂G{∑i∈N Pi} should be
spent to satisfy the network connectivity. Hence, the dynamic
network lifetime cannot exceed this upper bound L◦

U . �

Lemma 5. The optimal static network lifetime L∗ is strictly
upper bounded by L◦

U , i.e.,

L∗ = max
T ⊂G

{
min
i∈N

{
Ei (0)

Pi

}}
< L◦

U . (19)

Proof: First, we show that left-hand side of (19) is less
than

∑
i∈N Ei(0)/minT ⊂G{∑i∈N Pi}. Let a = (a1, . . . , an)

be a sequence of positive numbers and b = (b1, . . . , bn). be
a sequence of nonnegative numbers where there is at least
one nonzero element such that bj �= 0 for 1 ≤ j ≤ n and
also there is at least one zero element such that bk = 0 for
1 ≤ k ≤ n. If m = mink{ ak

bk
} = mink,bk �=0{ ak

bk
}, then we have

successively for all 1 ≤ k ≤ n, 0 < mbk ≤ ak , if bk �= 0, and
0 = mbk < ak , if bk = 0, and m

∑n
k=1 bk <

∑n
k=1 ak . Since

there is at least one nonzero element in b,
∑n

k=1 bk �= 0.
Hence min1≤k≤n{ ak

bk
} < (

∑n
k=1 ak)/(

∑n
k=1 bk).

Given a routing tree T in a directed graph G, there exists
at least one leaf node (with zero transmit power). {Pi} can
be calculated from the tree T. Also for the graph G to be
connected, there is at least one node with nonzero transmit
power. Let ai = Ei(0) and bi = Pi , then these satisfy the
condition for a and b. Because the inequality mink{ ak

bk
} <

(
∑

k ak)/(
∑

k bk) holds for arbitrary trees, (19) immediately
follows. �

Because the upper boundL◦
U does not contain the notion of

first node failure, it is presumably a quite loose upper bound to
the optimal dynamic network lifetime. Since finding a MINTO-
TAL transmit power broadcast routing tree is NP-complete, the
upper bound (18) can not be found with polynomial-time al-
gorithms. Hence we will approximate the denominator in (18)
with LESS algorithm, currently the best known approxima-
tion, in our simulation. We will demonstrate that using the
heuristics presented in Section 5.3, we can achieve approxi-
mately half of this upper bound to dynamic network lifetime
on average.

6. Simulation results for static network lifetime

In this section, we perform simulations using the network
model discussed in Section 2.1. Within a 1000×1000 m2 net-
work deploy region, the network configurations (locations of
nodes) are randomly generated according to uniform distri-
bution. All the generated nodes participate in the group of
a single broadcast session. The source node S is chosen ar-
bitrarily among them. The initial battery energy distribution
{Ei(0)} is drawn according to uniform probability distribution
unif (η, ξ ) ranging from the minimum value η to the maximum
value ξ which denotes the full battery capacity. The simula-
tion results are for stationary (non-mobile) network topolo-
gies as in wireless sensor networks. We consider only energy
consumption by RF transmit power of transceivers. We do
not consider control overhead to setup the routing tree, be-
cause energy consumption incurred by the control overhead
at the initialization stage is negligible compared to energy
consumption by session-oriented broadcast. Each point in
figure 5(a) and (b) represents an average value of 100 different
randomly generated network topologies (α = 2). The same
random seeds are used for valid comparison of each metric.
The initial energy {Ei(0)} is distributed according to three uni-
form probability distributions: (i) unif (107, 107)=constant,
(ii) unif (0.5×107, 107), and (iii) unif (0, 107). The perfor-
mance of MSNL, MST, BIP, EWMA, and LESS algorithms
is compared in terms of the total transmit power and the static
network lifetime.3 Note that, except MSNL algorithm, all al-
gorithms produce static trees that are independent of time.

In figure 5(a), the performance comparison of static trees in
terms of total transmit power is presented. Because the total
transmit power of MSNL depends on both network topol-
ogy (locations of nodes) and initial energy distribution, one

3From now on, we will use the terms for the algorithms and the corresponding
trees obtained by them interchangeably.
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Figure 5. Performance comparison of various power-efficient algorithms including MSNL, MST, BIP, EWMA, and LESS (α = 2) in terms of (a) mean total
transmit power, and (b) mean static network lifetime.

curve for each energy distribution is shown. For other algo-
rithms, since they only depend on locations, only one curve
is shown regardless of initial energy distribution. In general,
the total transmit power of all trees decreases as the num-
ber of nodes per unit area increases. Hence, per node aver-
age transmit power will decrease even more rapidly. From
figure 5(a) and (b), one can infer that to prolong the static net-
work lifetime, a large quantity of nodes (e.g., sensors) should
be densely deployed in the target environment, because it will
result in extended lifetime with small total transmit power.
We can observe the superior performance of LESS in terms
of total transmit power. Notice that, when all the nodes have
identical energy of 107 units (EDEN), the curves in figure 5(a)
and (b) by MST and MSNL overlap perfectly, which is con-
sistent with the theoretical result given in Section 4.2.

Figure 5(b) summarizes the lifetime performance of static
trees for various distributions of the initial battery energy
{Ei(0)} and the size of the networks n. In general, the static
network lifetime increases linearly as a function of the net-
work size per 1×1 km2 region. If a network has a larger ini-
tial energy pool

∑
i∈N Ei(0), then the lifetime also increases.

When the initial energies are not equal (unif (0,107) and
unif (0.5×107, 107)), MST is no longer optimal and MSNL al-
ways produces longer lifetime, as expected. The separation of
MSNL from other algorithms becomes even more significant
when {Ei(0)} is uniformly distributed from 0 to 107 energy
units. This is because the max-min lifetime is heavily depen-
dent on the nodes with very scarce initial energy. On average,
MST performs better than BIP, EWMA, and LESS. This is
due to the fact that BIP, EWMA and LESS algorithms are
optimized for a global network property (MINTOTAL transmit
power), whereas the MST algorithm is optimized for a local
node property (MINMAX transmit power).

Figure 5 shows a favorable adaptive property of MSNL.
When every node has sufficient energy, a tree with relatively
smaller total transmit power is chosen. On the other hand,
when there exist nodes with scarce energy, more emphasis

goes to extending the network lifetime guarding against
premature death of nodes. Therefore, MSNL trade-offs
between network lifetime and total transmit power depending
on the current residual battery energy status. In summary, the
simulation results support the hypothesis, to maximize the
static network lifetime, we should incorporate the residual
battery energy in the cost metric, and MSNL constitutes the
optimal solution.

7. Simulation results for dynamic network lifetime

The simulation results and analysis on dynamic network life-
time are presented in this section.

7.1. Network lifetime vs. update interval without
control overhead

In order to show the effect of update interval (�t) on dynamic
network lifetime (DNL), we do not consider control overhead
at each update interval Econtrol = 0, and hence battery energy
is updated as Ei((k + 1)�t) = Ei(k�t) − �t · Pi(k�t). The
choice of update interval is a crucial parameter when design-
ing an energy-efficient routing protocol. Figure 6 summarizes
the typical average behavior of the dynamic network lifetime
of each algorithm (WMST, WMSTSW, WBIP, and WBIPSW)
as a function of update interval for network sizes of n = 20,40,
and 60 per 1 × 1 km2. The initial energies are distributed
according to unif (0, 107). Each point in the figures appearing
after figure 6 represents an average value of 100 different ran-
domly generated network topologies. Obtaining each point
requires a significant number of computations. For instance,
in WBIPSW case, for �t = 0.1, the network lifetime is ap-
proximately 320 seconds on average. This translates to 3200
tree updates. Since each point is an average of 100 topologies,
to compute the average values, about 320,000 applications
of BIP algorithm along with sweep procedures are required.
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Figure 6. Mean dynamic network lifetime as a function of update interval �t for α = 2, n = 20, 40, 60 and unif (0, 107) battery energy distribution. (a)
Linear scale update interval (b) log scale update interval.

Due to the complexity, we provide the results up to network
size n = 60.

Figure 6 provides the most useful insights into this prob-
lem. Two sub-figures corresponding to linear and log scales
of update intervals are presented to clearly visualize its ef-
fect. As is clear from the linear scale plot, figure 6(a),
the general tendency is DNL decreases as the update in-
terval becomes larger. In other words, the network life-
time generally increases, if the routing tree is updated more
frequently. As noted earlier, if �t ≥ L(T (0)), DNL is es-
sentially equivalent to SNL. Additionally, for WMST and
WMSTSW, if �t ≥ L(TMSNL(0)) = L∗, DNL corresponds to
optimal SNL. This fact is emphasized in figure 6 with a dot-
ted curve (y = x). Hence, if the lifetime curves intersect
with this linear curve, they become flat after the intersec-
tion and the values correspond to the SNL of initial trees
as already shown in figure 4(g). Because figure 6 is an av-
erage of 100 realizations, it does not exhibit such a sharp
transition.

However, as can be observed from the log scale plot, fig-
ure 6(b), there exists an upper bound in the network lifetime
we can achieve with the heuristic approaches. There is almost
no gain, if the update interval is less than 1, �t ≤ 1, which is
common to all metrics we considered. The post sweep proce-
dure has a positive impact on network lifetime, but the gain
is quite negligible considering the additional computational
power. What is more important is the choice of optimiza-
tion metrics (WMST or WBIP). Note that also there exists a
threshold value τ : if �t < τ , WBIP is beneficial; otherwise,
�t > τ , WMST shows better performance. This implies that
when the residual battery energy is ample compared to the en-
ergy consumption at each interval Ei(k�t) � �t · Pi(k�t),
MINTOTAL optimization is preferable. Otherwise, MINMAX

principle gives better results. Figure 6 suggests that no sin-
gle optimization metric performs better than the other in ev-
ery range of update intervals. Since the results presented
in this section do not account for the energy consumption

due to control overhead, the network lifetime performance of
any stateless routing scheme which doesn’t require periodic
maintenance of state information should be compared with
this result.

7.2. Network lifetime vs. network size (density)

Figure 7(a) summarizes the dynamic network lifetime perfor-
mance as a function of node density (number of nodes per 1×1
km2 region), where different algorithms and link cost metrics
are compared for an update interval of �t = 1. Note that in
figure 6 this value of update interval (�t = 1) lies within the
region in favor of WBIP over WMST. Hence, WBIPSW con-
sistently outperforms WMSTSW on average, although not by
a large margin (LWBIPSW > LWMSTSW > LWBIP > LWMST).
The dynamic network lifetime increases almost linearly as
the network density increases. Simulation results correspond-
ing to α = 3 and 4 is omitted due to limited space. Nev-
ertheless, let us briefly summarize the results. The behav-
ior is quite different from α = 2 case. First, the lifetime
curves seem to be superlinear (i.e., xβ , β > 1) instead of lin-
ear. Second, WMST performs better than WBIP on average
(LWMSTSW > LWMST > LWBIPSW > LWBIP). This is because
the penalty for using larger transmit power is much larger for
α = 3 and 4. According to figure 7(a), we can interpret that the
increase in network lifetime as the number of node increases
is largely due to increase in initial energy pool

∑
i∈N Ei(0).

Figure 8(a) shows the average of the ratio of dynamic
network lifetime by simulations vs. the upper bound to op-
timal dynamic lifetime (Lalgorithm/L◦

U ) as a function of net-
work sizes when �t = 1. On average, the periodic tree up-
date scheme achieves roughly a half of the upper bound
L◦

U . Considering (18) is quite a loose upper bound, we sus-
pect our scheme is quite close to the theoretically achievable
limit.

Figure 8(b) shows the percentage of lifetime curve of
WMST as a function of total number of updates over the
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Figure 7. (a) Dynamic network lifetime vs. network size (�t = 1, α = 2). (b) Dynamic network lifetime as a function of weighting factor µ in
Pij (Ei (0)/Ei (t))µ (�t = 1, α = 2, n = 40).
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Figure 8. (a) Mean ratio of Lalgorithm/L◦
U (b) Percentage of maximum achievable lifetime.

whole lifetime. This figure shows that with a single tree update
(two routing trees are used over the lifetime period), about
40∼50% of the maximum achievable lifetime (in our simu-
lations, using WBIPSW updated at every �t = 0.1 second).
If the tree is updated 10 times over the whole lifetime, about
74∼85% can be achieved. To achieve 90% of the maximum
achievable lifetime, the number of required updates is 13, 28,
72 and 33 for n = 20, 40, 60, 100, respectively. From this
data, the reasonable number of updates seems to be around
10∼100 times.

7.3. Impact of initial energy distribution

Using the general cost metric (16), we investigated how the
inclusion of initial energy factor Ei(0) in the cost metric af-
fects the dynamic network lifetime. Specifically, we ran ex-
periments assuming λ = 1 and µ = v, hence we use the form
(17) in our simulations. Figure 7(a) compares the performance

in terms of network lifetime with and without incorporating
the initial energy in the cost metric for various network sizes.
The weighting factor µ takes the values from {0.5,1,2} and
α = 2 and �t = 1 are used. For this update interval, it was
shown in figure 6 that WBIP is generally better than WMST.
We can observe that the link cost metrics of WMST or WBIP
without initial energy (i.e., Pij/Ei(t) or �Pij /Ei(t)) produce
longer network lifetime compared to Pij (Ei(0)/Ei(t))µ or
�Pij (Ei(0)/Ei(t))µ for every value of µ we considered. This
justifies the arguments given in Section 5.5.

In figure 7(b), for fixed values of n = 40, α = 2 and �t =
1, the weighting factor µ was varied from 0.5 to 50 and
the cost metrics Pij (Ei(0)/Ei(t))µ and �Pij (Ei(0)/Ei(t))µ

are compared. When µ = 2, 4, 6, the lifetime is longer than
other values. However, whichever value of weighting factor
µ is used, the lifetime of WMST or WBIP without initial
energy in the cost metric was longer by approximately 25%.
Therefore, these results seem to suggest that the inclusion of
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Figure 9. Dynamic network lifetime as a function of update interval �t including control overhead (n = 20, 40, 60, 100, and α = 2). (a) Linear scale update
interval, (b) log scale update interval.

initial energy should be avoided in an on-line optimization
problem.

7.4. Impact on energy consumption by control overhead

In the previous sections, we investigated the enhancement in
network lifetime purely in terms of the cost and optimization
metric design problem at an algorithm level to isolate the
effect of each metric on lifetime. Also the simplified energy
dissipation model (10) (energy consumption by RF transmit
power) was considered. For algorithms to be translated to a
protocol level description, the energy consumption by control
overhead cannot be ignored. In this simulation, we suppose the
bit rate is Rb = 1 Mbps and the length of control packet as L =
100 bits. Let’s assume the control packets are transmitted with
power Pcontrol = 500α . Then, the amount energy consumption
by the control packets Econtrol per node per update interval for
α = 2 is Econtrol = Pcontrol

Ln
Rb

= 25n. While these values are
chosen quite arbitrarily, we believe it is enough to demonstrate
the overall effect of the control overhead.

In figure 9, the impact on network lifetime of the energy
dissipation by control overhead is shown. If the update interval
is very small (e.g., �t = 0.1), as the network size becomes
larger, most of node energies are consumed due to control
overhead and lifetime becomes significantly reduced. Figure 9
suggests the following:

• Considering the energy consumption by control overhead,
the update interval cannot be arbitrarily small.

• There exists a certain peak value of update intervals which
achieves the maximum lifetime: e.g., �t = 2, 8, 12, 44 for
n = 20, 40, 60, 100, respectively. The corresponding total
number of updates over the lifetime is 46, 23, 19, 7 for
different values of network size.

• Because the required total number of updates to get maxi-
mum lifetime is relatively small, the MINMAX optimization
criteria such as WMST and WMSTSW produces better re-

sults than WBIP and WBIPSW, which is loosely related to
the MINTOTAL optimization criteria.

8. Conclusions

We addressed the problem of maximizing the network life-
time of a single broadcast session over wireless stationary ad
hoc networks. We noticed that the prior related research is
overly biased to minimizing the total transmit power. Based
on this observation, among min-max and min-total strate-
gies, we investigated which optimization criterion generally
provides better network lifetime performance. For that pur-
pose, we first categorized networks as static or dynamic net-
works, dependent upon whether or not routing structure is
self-configurable, then separately solved the corresponding
problems.

For a static network, we formulated the lifetime maximiza-
tion problem as a min-max optimization problem and solved
using graph-theoretic approaches. An optimal polynomial-
time heuristic algorithm based on the minimum spanning tree
(MST) was presented. For a dynamic network, we extended
the solution obtained from the static network case and devel-
oped several cost metrics and heuristics that lead to prolonged
network lifetime. Even in this case, we found the min-max
strategy provides comparable to or better results than the min-
total strategy in terms of network lifetime. We also analyzed
the impact of various parameters such as control overhead and
update interval on network lifetime and compared that with
an upper bound to network lifetime.
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