
Tradeoffs between Jamming Resilience and
Communication Efficiency in Key Establishment∗

Invited Paper

David Slater, Radha Poovendran, Patrick Tague Brian J. Matt

{dmslater, rp3, tague}@u.washington.edu brian.matt@jhuapl.edu

Network Security Lab (NSL), Dept. of Electrical Engineering Applied Physics Laboratory,

University of Washington, Seattle, WA, USA Johns Hopkins University, Laurel, MD, USA

We address the problem of allowing authorized users, who do not preshare a common key,

to effectively exchange key establishment messages over an insecure channel in the presence

of jamming and message insertion attacks. In this work, we jointly consider the security and

efficiency of key exchange protocols, focusing on the interplay between message fragmen-

tation, jamming resilience, and verification complexity for protocol optimization. Finally,

we present three fragment verification schemes and demonstrate through analysis and sim-

ulation that in comparison with existing approaches, they can significantly decrease the

amount of time required for key establishment without degrading the guaranteed level of

security.

I. Introduction

In wireless networks, a principle necessity is the abil-

ity to securely and effectively communicate with in-

tended receivers. Due to the broadcast nature of the

wireless medium, however, a jamming adversary can

send interfering signals to efficiently stop valid com-

munication [18]. Extensive research has shown that

mounting a jamming attack can be an effective denial-

of-service (DoS) attack, with many proposed tech-

niques available [20, 5, 8].

Numerous protocols have been presented for jam-

ming mitigation, including direct-sequence spread

spectrum (DSSS), frequency hopping spread spec-

trum (FHSS), and beamforming [13, 9]. These tech-

niques rely on pre-shared secrets and specialized hard-

ware, respectively, which are generally unavailable in

∗A preliminary version of this work appears in the 2nd ACM

Conference on Wireless Network Security (WiSec’09) [15].

This work is supported in part by the following grants: ONR

YIP, N00014-04-1-0479; ARO PECASE, W911NF-05-1-0491;

ARL CTA, DAAD19-01-2-001; and ARO MURI, W911NF-07-1-

0287. This document was prepared through collaborative partici-

pation in the Communications and Networks Consortium spon-

sored by the U. S. Army Research Laboratory under the Col-

laborative Technology Alliance Program, DAAD19-01-2-0011.

The U. S. Government is authorized to reproduce and distribute

reprints for Government purposes notwithstanding any copyright

notation thereon. The views and conclusions contained in this

document are those of the author and should not be interpreted as

representing the official policies, either expressed or implied, of

the Army Research Laboratory or the U. S. Government.

a highly dynamic ad-hoc network. Uncoordinated fre-

quency hoppping (UFH) was proposed for this sce-

nario [16], where random frequency hopping tech-

niques are used to avoid jamming activity. While UFH

provides jamming resilience, it results in significantly

lower throughput than key-based techniques, motivat-

ing its use for key exchange, after which keyed fre-

quency hopping can be used.

In order to securely exchange keys in a manner that

prevents adversarial spoofing attacks, the users must

rely on a trusted-third party (TTP) for authorization.

In an ad-hoc network, where the availability of the

TTP is not guaranteed, certificates must given before

deployment in the network. Thus, a key exchange

between authorized users would require sending their

certificates, public keys and private key contributions,

resulting in a large key establishment message. Large

messages have been shown to be critically vulnera-

ble to reactive jamming attacks, where the adversary

listens to the channel and starts jamming as soon as

a signal is detected [19]. The message length is a

critically important parameter in reactive jamming re-

silience, because a longer message gives the adversary

more time to detect and effectively jam. Fragmenting

the message allows greater resilience to reactive jam-

ming, but at the cost of introducing a vulnerability to

pollution attacks.

In a pollution attack [3, 7], an adversary inserts ma-

licious fragments alongside the valid ones, resulting

in decoding error. Prior to key exchange, this ne-

cessitates a protocol to verify packet origins, without

which an exponential search is required to find the

valid subset of fragments. Protocols involving Merke-

trees [17], hash trees used to determine invalid pack-

ets, and distillation codes [6], which allow a receiver

to determine if a group of packets share the same ori-

gin, have been presented in the context of peer-to-peer

(P2P) networks. In the seminal work [16] that showed

the circular dependency between jamming mitigation

techniques and key establishment, a fragment verifica-

tion protocol was proposed which used a hash chain to

verify packet origins, which we refer to as SPCC.

In this work, we analyze the tradeoffs between frag-

mentation overhead and reactive jamming vulnerabil-

ity, and focus on optimizing the communication ef-

ficiency of the key exchange over the packet length.

Furthermore, we seek to determine more efficient

methods for fragment verification, in terms of com-

munication overhead, while maintaining an equivalent

level of security. We propose three candidate fragment

verification protocols, and present an analytical basis

for their communication efficiency, using SPCC as the

baseline protocol.

The rest of the paper is organized as follows. In

Section II, we present our communication and adver-

sarial models and review the UFH protocol. We de-

scribe relevant background information in Section III.

In Section IV, we present our three candidate proto-

cols. In Section V, we analyze the verification pro-

tocols and fine-tune relevant parameters. Then in

Section VI, we perform packet length optimization

and compare the proposed protocols via a simulation

study. We conclude in Section VII.

II. Communication & Adversary
Models

In this section, we state our communication model,

the necessary specifics of UFH, and our adversarial

framework. Then we discuss the metrics used and

define our security parameters. The notation used

throughout this work is summarized in Table 1.

II.A. Communication Model

We consider a sender and receiver in an ad-hoc wire-

less network attempting to securely and efficiently

communicate, who have yet to obtain any shared in-

formation. They do, however, have certificates from

Table 1: A summary of notation used.

Symbol Definition

c number of orthogonal channels

d time to switch between channels

m message length (bits)

k number of message fragments

l packet length (bits)

r packet frame information (bits)

p probability of successful jamming

α Rayleigh reactive jamming parameter

β threshold of complete jamming resilience

γ successful random jamming probability

F successful reactive jamming probability

s verification security level (bits)

T average number of valid packets needed

t average messsage completion time (bits)

Z total number of packets received

h(·) hash function

Hk kth harmonic number, Hk =

k
∑

i=1

1

i

(k, b) erasure code mapping from k to b packets

q probability of sending a header packet

w witness (distillation codes)

an offline trusted third party, allowing them to au-

thenticate key establishment messages from autho-

rized users. They communicate over a set of c orthog-

onal channels, with each being able to simultaneously

transmit on one channel and receive on another chan-

nel. We let d denote the number of bits that could be

sent in the time taken to switch channels.

The sender’s key establishment message of length

m bits is broken into k fragments and each is inserted

into a packet of length l bits. Each packet also in-

cludes all verification information and an additional r
bits of frame information, including packet number.

We assume that there is no general MAC protocol or

feedback channel, due to the adversary’s ability to mo-

nopolize those resources. Thus, the receiver cannot

respond with acknowledgements (ACKs) or requests

(REQs) for specific packets.

We use the UFH protocol for packet transmis-

sion, where the sender continuously cycles through

all k packets, with each subsequent packet being sent

across a random channel. Likewise, the receiver lis-

tens on random channels, but for sufficiently longer

periods such that the time required to switch channels

and the probability of truncating a packet by switch-

���������	�
��
���������	�

����������� �� "! # �%$'&(��)*�	+,�-�.�.�0/"�

����������� �1 '! # ��$*&2��)*�'34�0�65'78)	�.�

9�9 9:8; :8<:-< = ;:0< = >:-?:8>

: ; : <: < = ;: < = >: ?: > 9�9 9

Figure 1: The logical exchange of key establishment

messages between the sender and receiver requires

only two message exchanges. Each message is dis-

assembled into a collection of k fragments fi.

ing can be neglected. This continues until a valid re-

sponse has been received. Since ordinary ACKs are

not available, a valid response is defined to be a full

key establishment message response, which the re-

ceiver sends via UFH after decoding and authenticat-

ing the sender’s message. Figure 1 illustrates a log-

ical representation of the key exchange between the

sender and receiver. One instance of a key establish-

ment message is discussed in [16], where through an

authenticated Diffie-Hellman protocol, the sender and

the receiver includes its identity and public key, a sig-

nature of the public key, a timestamp, a contribution

to the shared key, and a signature of the shared key

contribution.

II.B. Adversarial Model

We consider an adversary capable of jamming pack-

ets both reactively and stochastically, and performing

pollution attacks by broadcasting invalid packets. We

assume that the energy required for the adversary to

insert a packet is greater than that required to jam a

packet, due to the observation that only a fraction of

a packet needs to be jammed in order for the packet

to be incorrectly decoded. Since we only consider

protocols which have cryptographically secure frag-

ment verification methods, where invalid packets are

computationally efficient to identify, we assume that

the adversary prefers solely to jam. Other adversar-

ial models have considered the adversary as capable

of randomly jamming packets with constant probabil-

ity [16] or having a deterministic characterization of

jamming where jamming always succeeds if sufficient

power has been applied to it [8].

The adversary we consider is able to constantly jam

a fraction γ < 1 of the available channels, since γ = 1

would never allow throughput, as in the case of a high-

power wideband jammer. Since the sender and re-

ceiver are on random channels unknown to the adver-

sary, the adversary’s best response is to jam γc chan-

nels at random, which prevents the sender and receiver

from having any recourse better than random. Thus,

with a constant jamming adversary, the probability of

the receiver correctly receiving a packet is (1 − γ)/c,

since the sender and receiver must randomly operate

on the same channel. We assume that c � 1, ensur-

ing that (1 − γ)/c is sufficiently small such that the

probability of receiving multiple valid packets in the

same cycle of k packets is negligible. The implication

here is that each packet reception is independent of all

others.

In addition to constant jamming, the adversary

also listens for valid communication on the remain-

ing channels, transmitting a high power pulse on a

channel as soon as communication is detected on it.

The effectiveness of this reactive jamming technique

is primarily a function of the length of the packet sent,

with a longer packet allowing more time for detection

and a greater portion of the packet to be jammed. It

is secondarily a function of the number of channels

the adversary can eavesdrop on, the detection algo-

rithm itself, the turnaround speed of the adversary’s

hardware, the geometric proximity of the parties, the

coding rate, signal multipath, and others. In general,

the curve mapping jamming power to probability of

jamming success is sigmoidal [11]. Since there is lin-

ear correspondence between message length and re-

active jamming duration, the resulting curve mapping

message length to jamming success should also be

sigmoidal. Thus, we represent the reactive jamming

probability F as a shifted Rayleigh distribution,

F = u(l − β)

(

1 − e−
(l−β)2

2α2

)

, (1)

where u(.) denotes the unit step function, l the length

of the packet, α the Rayleigh parameter which mea-

sures sensitivity to jamming, and β the maximum

packet length completely resilient to reactive jam-

ming. This maximum packet length β is a function of

the time taken by the adversary to detect and send out

a jamming pulse, as well as the squared distance from

the sender and receiver. Packets up to length β can

only be randomly jammed, whereas when l > β, they

are vulnerable to reactive jamming as well. Strictly

speaking, α = 0 does not result in a valid value for

(1), so we take limα→0 F = 1 − u(β − l).

This causes a phase transition to a reactive jamming

success probability of one for l > β. Likewise, for

0 200 400 600 800 1000 12000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet Length (l)

Pr
ob

ab
ilit

y
of

 J
am

m
in

g
Su

cc
es

s
(F

)

Reactive Jamming Curves, β = 300

α = 0
α = 100
α = 200
α = 400

Figure 2: Reactive jamming distributions for various

Rayleigh parameter choices, which maps the length of

a packet to its probability of being reactively jammed,

with β = 300 and α ∈ {0, 100, 200, 400}.

α = ∞ we take limα→∞ F = 0, resulting in reactive

jamming being impossible for any length. Figure 2

shows the reactive jamming distributions for various

α values. Combining reactive and constant jamming

leads to the jamming success rate

p = 1 − (1 − γ)

(

1 − u(l − β)

(

1 − e−
(l−β)2

2α2

))

.

(2)

II.C. Security & Communication Effi-
ciency Metrics

In comparing the advantages of our proposed proto-

cols, we maintain a constant cryptographic strength,

in terms of the computation required to directly per-

form cryptanalysis. We define the security level s, in

bits, of a fragment verification protocol as the equiv-

alent hardness of a pre-image attack on a length s
cryptographic hash. We note that depending on the

scheme used, the amount of cryptographic informa-

tion may vary. For instance, while a hash function

may only be length s, the DSA signature of equiv-

alent security level has a length of 4s bits. We as-

sume that the security level used is sufficiently large

to prevent cryptanalysis-based pollution attacks. It

is also assumed that Z key establishment authentica-

tions, where Z is the total number of received pack-

ets, is feasible for the receiver. This ensures that the

receiver cannot be overwhelmed by complete key es-

tablishment messages, which would bypass fragment

verification techniques.

We define the communication efficiency of a partic-

ular protocol as the expected amount of time until the

receiver can verify a sufficient number of fragments to

reconstruct the authentication message, divided by the

bandwidth of the channel. Thus, the expected time t
is measured in bits as

t = T (l + d)
c

1 − p
, (3)

where T is the expected number of packets that need

to be received in order to decode, l + d is the amount

of time spent sending a particular packet and chang-

ing channels, and c/(1 − p) is the expected number

of packets sent per received packet. This metric uses

UFH as its communication model, and assumes pack-

ets are being sent continuously.

III. Background

We review preliminary background information that

will form the technical groundwork for our proposed

fragment verification techniques. We start by dis-

cussing Merkle trees and Distillation codes, which

will be used for determining invalid fragments and de-

termining packet originators. Then we will briefly dis-

cuss erasure coding techniques, which will be used to

reduce redundancy in received packets.

III.A. Merkle Trees

A Merkle tree is a binary tree formed by hashes [10],

which is used to quickly identify malicious fragments.

For a group of k fragments, a Merkle tree of at most

2k − 1 hashes can be formed for verification. Here,

each fragment is hashed to form the leaf nodes of the

tree. Then sibling nodes are paired, and their concate-

nation is hashed to form their parent. Nodes without

a paired sibling are instead paired with an unpaired

node at a higher level. This continues until the root of

the tree, a single hash value, is formed.

When the k fragments are sent, the root of the ver-

ifying Merkle is sent also, with a signature identify-

ing the sender of the root node. In order to verify the

correctness of the entire message, the receiver dupli-

cates the Merkle tree construction and compares the

sent root with the constructed one. If these are un-

equal, then at least one of the k fragments must be in-

valid. To find the invalid packets, the receiver queries

the source for intermediate nodes in the Merkle tree,

which are then compared to the constructed nodes in

order to verify respective subtrees. The sent interme-

diate nodes are shown to be part of the original Merkle

tree by hashing them with their sibling to form their

parent. Thus, invalid packets can be found by a binary

search through the Merkle tree, though it requires a

proper feedback channel.

III.B. Distillation Codes

A distillation code is a public-key based verification

technique that allows the receiver to determine if a

given pair of packets originated from the same source.

This verification does not require knowledge of the

sender’s public key, but can rely instead on a globally

known public key, allowing fragment verification to

occur before message authentication.

Distillation codes are based on one-way accumu-

lators [1, 2], which are two-to-one collision-resistant

functions that for a sequence of elements returns the

same result regardless of what order the elements were

in the sequence. Accumulators can be used to gener-

ate a witness w for a fragment x that can verify that

x ∈ X . We denote an accumulator as h(u, x), map-

ping from U × X to U , with the following property,

known as quasi-commutativity:

h(h(u, x2), x1) = h(h(u, x1), x2) for all x1, x2 ∈ X
(4)

Thus, given an random nonce u and a set X , the re-

turned value for all fragments x ∈ X is identical, re-

gardless of their order in X . We denote this accu-

mulated value as h(u,X). The reader can verify that

the RSA based accumulator h(u, x) = ux mod n in

[1, 2] has the quasi-commutativity property.

The witness w for its associated fragment x can be

used to verify what set of fragments it belongs to, with

each set identifying a single sender. The necessary

property for the witness of x ∈ X is that h(w, x) =
h(u,X). To construct w1 for x1 ∈ X , the sender

takes the set of fragments X , which must necessarily

be chosen in advance, and chooses u arbitrarily. The

sender then accumulates all fragments in X except x1:

w1 = h(u,X − x1) = h(...h(h(u, x2), x3)..., xk)
(5)

This is done similarly for all xi ∈ X , so that:

h(wi, xi) = h(h(u,X − xi), xi) = h(u,X) ∀i (6)

The receiver computes the value h(w, x) for all

packets received, and then partitions them into sets

that share the same value. In order for the adver-

sary to succeed in an insertion attack, it would be

necessary to violate the collision-resistance property

of the accumulator by finding u∗ and x∗ such that

h(u∗, x∗) = h(w, x). Thus, this is a valid fragment

verification technique.

The bandwidth used by RSA based accumulators

is at least the size of the modulus. Since reducing

bandwidth is a key to achieving efficiency, we suggest

Nguyen’s accumulator scheme from bilinear pairings

described in Section 4 of [12] for forming distillation

codes. These accumulators add approximately 2s bits

to the size of a fragment, which is significantly smaller

than the RSA based alternatives.

III.C. Erasure Coding

Erasure coding [14] adds redundancy to messages in

order to provide resilence to erroneous and missing

fragments, requiring only a fraction of the resulting

coded to be received correctly in order to successfully

decode. A number of coding techniques have been

presented, including both perfect codes such as Reed-

Solomon [14], and near-optimal erasure codes such as

Tornado coding [4]. A (k, b) erasure coding scheme

takes k message fragments and adds b − k redundant

fragments, resulting in b coded fragments.

In perfect coding schemes, a total of k correctly re-

ceived fragments are required for message reconstruc-

tion, at a computational complexity of O(b2). Near-

optimal erasure codes have a decoding complexity of

O(b), but require a + ε correctly received fragments.

Since a primary focus of this work is reducing the

packet receptions necessary, we focus solely on per-

fect erasure coding, and ensure b is at a computation-

ally feasible level. Erasure coding can only correct

for known errors, so in order to utilize this technique,

the receiver needs to be able to verify which received

packets were valid.

IV. Verification Protocols

We present three approaches for efficient verification

of message fragments. The first scheme focuses on

minimizing communication time through reducing the

packet space devoted to verification information. The

purpose of the second scheme is to reduce commu-

nication time without impacting receiver or sender

complexity. The final approach directly optimizes for

communication time, keeping the complexity static

even under adversarial attack.

IV.A. Hashcluster Scheme

We propose Hashcluster, which provides fragment

verification by forming a hash chain from the mes-

sage fragments. The message is split into clusters of n
packets, with the nth packet in each cluster containing

the hash of the next n packets. The final cluster can

have from 1 to n packets, with the final packet con-

taining a hash of the entire message, as shown in Fig-

ure 3. In this scheme, each packet of length l includes

r bits of frame information and a message fragment

@�A BDC.E�F8G�H"I�J	K
L K�G1M8N�O,F-P�E6C

@�A BDC.E6F8G�H*Q�J	K
L K�G1M*N�ORF8P	E6C

S M"CTE�U*A B�C1E%F8G�J�K
V L K6GTM*N	O,F8P	E6C

W W WW W W X"Y Z.[\ W W W X*Y Z.] \ W W W X*Y ^�\

Figure 3: The Hashcluster scheme is illustrated for

arbitrary sized clusters. The last packet in each cluster

contains the hash of all packets in the next cluster, and

the final cluster contains a hash of the entire message.

of up to l − r bits, with every nth packet containing a

length s hash. The number of packets then, for a mes-

sage of length m, is k = dm/(l − r − (s/n))e. Since

the message is fragmented among all of the packets in

the chain, and a single missing packet will invalidate

the verification method due to the hash structure, all

packets are required for message reconstruction. The

SPCC scheme, proposed in [16], corresponds to the

case when n = 1.

In order for an adversary to modify the message

fragment contained in a packet, they would be re-

quired either to perform a pre-image attack to match

the modified message with the final hash, or to re-

place the final hash to match the modified message.

Since pre-image attacks are cryptographically infea-

sible with the given security level, the former type

of fragment insertion is impossible. However, since

each cluster contains a hash of each subsequent clus-

ter, it would be necessary to modify every cluster’s

hash prior to modifying the final packet. Thus, in a

full received chain, either all packets originated from

a single source, or all clusters were modified. In the

worst case, the maximum number of key establish-

ment authentications is when the adversary repeatedly

modifies all clusters, which results in Zn/k autheni-

cations, which is considered feasible for n ≤ k.

Since clusters are hashed instead of individual

packets, it is necessary to attempt to verify every com-

bination of packets in a cluster. To verify a hash clus-

ter of length n packets, the receiver is forced to try a

polynomial number of combinations of degree n, re-

sulting in (Z/n)n hash operations in the worst case,

where Z is the total number of packets received. In the

absence of adversarial insertion, however, the num-

ber of hash operations reduces to dk/ne. Thus, the

trade-off is a significant increase in receiver compu-

tational complexity during an insertion attack. For

moderate values of n this becomes an unsurmount-

able challenge. Furthermore, as n grows, the fraction

of space devoted to hash values decreases, thus dimin-

ishing the gain in further increasing n.

IV.B. Merkleleaf Scheme

We present Merkleleaf, a scheme where a partial

Merkle tree is used to verify the data fragments. The

aim of this approach is to increase communication ef-

ficiency without effecting sender or receiver complex-

ity. Since the receiver is unable to query the sender

for specific Merkle nodes and sending the entire tree

would require significant overhead, our approach is to

reduce the Merkle tree to the set of leaf nodes. The

sender transmits the leaves of the Merkle tree in a

header message and sends the key establishment infor-

mation in a separate data message. Since both must be

received to decode and respond, they are sent in con-

junction with each other. The header message is bro-

ken into fragments and sent using the SPCC scheme,

implying that all header fragments must be received

in order to decode. With the header message received

successfully, the hashes of all data packets are known

and can therefore be verified in any order. Individual

verification of data packets lends itself to erasure cod-

ing, which avoids the necessity of receiving all data

fragments by only requiring a subset of coded frag-

ment receptions. An overview of the scheme is shown

in Figure 4.

The ordered triple (a, k, b) can be used to represent

the Merkleleaf configuration, with a header packets

sent by the SPCC scheme. The message data is then

broken into k = dm/(l − r)e fragments, and encoded

using a (k, b) perfect erasure code. The size of b is

bounded by b(l − r − s)a/sc, the size of the header

message. Increasing the header message size allows

for greater coding gain and therefore a reduction in

redundancy, but also increases the number of needed

packet receptions. The probability of sending a header

packet is denoted by q, with a corresponding probabil-

ity of 1 − q for a coded data packet.

IV.C. Witnesscode Scheme

We propose Witnesscode, an alternative approach

based on distillation codes [6], which can be used to

individually verify all packets without a header mes-

sage. This allows erasure coding to be performed over

all the packets and sets no limit on the number of cod-

ing fragments, which can therefore nearly eliminate

the redundancy of received fragments. To frame this

in the context of our communication model, the sender

will generate a set of coded fragments to send, with as-

sociated witnesses computed for each of them. Each

packet will include a single pair, allowing the receiver

to independently verify each fragment received.

_"`

acb8d*e	b-f�g�d8h0i�bkj6l

g�d8h0i�bkj0m `

n n n
o0p
o8q r�s t

o�u
o8q v�t

oku w p
o8q r'x t

oky
o8q r�z t

o s
o8q r y t

g�d8h8i�b-j�m4{|g�d8h0i�bkj0m4} g�d*h0i�bkj0m�~%� ` g�d8h-i
b0jkm�~

"�"� � `_ }_ {

�(� dkj�d��DfTd8����b0��j�l ��� �2��� e�� ���(��f.d8����b-��j6l

a(b*d8e	b-f���b*l�l1d8��b��

o p o uo0s

o*q � p t o"q �Ts t o8q �.� to8q �T� w p to*q �Ty t n n n

Figure 4: The Merkleleaf scheme is illustrated. The

header packets are chained together using the SPCC

scheme, forming a collection of hashes of the encoded

data fragments. Upon collecting the header packets,

the receiver can verify any encoded data fragment.

The arrows between packets and fragments represents

the relationships due to hash operations.

The sender generates a set of k = dm/(l−r−2s)e
data fragments, and encodes these with a (k, b) era-

sure code, resulting in b coded fragments. Then wit-

nesses are formed for each at a cost of b(b − 1) one-

way accumulator operations. Since this code is not

constrained by a header message for coding length,

the coding size is bounded only by the one-way ac-

cumulator computation at the sender and the Reed-

Solomon decoding complexity of O(b2) at the re-

ceiver.

V. Analysis of Proposed Protocols

In order to analyze the parameters used for the pro-

posed schemes prior to optimizing for packet length,

we use the metric T , the expected number of re-

ceived packets necessary for decoding. Throughout

the analysis and simulations, we use a security level

of s = 112 bits for packet validations, which results

in 112 bit hashes and 224 bit witnesses. Modifying

the security parameter would merely scale the rele-

vant results, assuming symmetric hashes and bilinear

pairing based accumulators, so it was kept constant

throughout the analysis. We set the frame information

to r = 40 and consider message sizes in the range

0 ≤ m ≤ 4000 bits.

V.A. Hashcluster Analysis

We will first analyze the Hashcluster scheme, where

we focus on reducing the storage space devoted to

0 500 1000 1500 2000 2500 3000 3500 40000

20

40

60

80

100

120

Message Bits (m)

Ex
pe

ct
ed

 P
ac

ke
t R

ec
ep

tio
ns

 (T
)

Hashcluster Comparison: l = 300

SPCC (n = 1)
Hashcluster (n = 2)
Hashcluster (n = 3)
Hashcluster (n = 4)
Hashcluster (n = ∞)

Figure 5: The average number of packet receptions for

the Hashcluster scheme is evaluated as a function of

the cluster size n, with the SPCC scheme representing

the performance baseline of n = 1.

hashes, thus requiring fewer fragments and lowering

received fragment redundancy. As shown by the au-

thors of [16], requiring all packets to be received in

conjunction with using UFH as a communication pro-

tocol introduces a significant amount of redundancy

in received packets. While the receiver only needs

k distinct valid fragments to decode the message, an

expected number of kHk fragments will be received,

where

Hk =
k

∑

i=1

1

i
, the harmonic number of k. (7)

As k → ∞ (with δ = 0.5772..., the Euler-Mascheroni

constant), this becomes

Hk ≈ ln(k) + δ. (8)

The gain in increasing n is in reducing the fraction

of the packets devoted to hash information, thereby

reducing the total number of fragments and the total

transmit time. An auxiliary benefit of this is a reduc-

tion in the size of Hk and therefore the fraction of

redundant packet receptions. Figure 5 shows l = 300
bits (n = 1 is the SPCC scheme, and n = ∞ cor-

responds to when the entire message is contained in

a single cluster). Here, the worst case computation

is (Z/n)n hash operations, where Z is the number of

received packets. Since the most significant gain in

efficiency is from n = 1 to n = 2, and raising n fur-

ther gives little gain in efficiency but instead increases

the complexity of the receiver by a polynomial degree

at each step, we focus solely on the n ∈ {1, 2} cases

for the remainder of the simulation. We assume that
1
4Z2 operations is reasonable for the receiver.

V.B. Merkleleaf Analysis

For the Merkleleaf scheme, both the header message

and the erasure coded data need to be received in or-

der to decode. Since the header packets are combined

using the SPCC scheme, the time to receive them is

aHa. In contrast, the coded data packets are received

more efficiently. For a (k, b) code with k data pack-

ets and (b − k) coding packets, only k packets need

to be received in order to decode. Thus, the expected

number of receptions is

b
∑

i=b−k+1

b

i
= b(Hb − Hb−k)), (9)

which is significantly lower than kHk. If we take b →
∞, then by (8) and L’Hopital’s rule, we get

lim
b→∞

b((ln(b) + δ) − (ln(b − k) + δ)) = k. (10)

The expected number of packets T is then a combi-

nation of the expected header packet receptions and

the expected data packet receptions. Specifically,

the receiver must receive all of the k header packets

and any a of the b erasure coded message packets.

With probability q a header packet is sent, uniformly

from the set of k header packets, and with probabil-

ity (1 − q), a data packet is sent, likewise uniformly

from the set of b data packets. The joint expectation

is derived in [15] as T = g(0, 0), where g(x) is given

recursively by:

g(x) =
1 + p(x, xi+)g(xi+) + p(x, xj+)g(xj+)

1 − p(x, x)
(11)

g(i, j) = 0 when i = k and j ≥ a (12)

With the following definitions:

p(x, xi+) = q

(

1 −
i

k

)

(13)

p(x, xj+) = (1 − q)

(

1 −
j

b

)

(14)

p(x, x) = 1 − q

(

1 −
i

k

)

− (1 − q)

(

1 −
j

b

)

(15)

The number of (a, k, b) triplet combinations is typ-

ically small, so the optimal allocation is found by

searching all possibilities. The function T was experi-

mentally determined to be convex in q. Therefore, for

a given triplet, the optimal q was found using gradient

descent methods.

For instance, consider l = 376 and m = 2016.

This leaves space for two hash values in each header

0 500 1000 1500 2000 2500 3000 3500 40000

10

20

30

40

50

60

Message Bits

Ex
pe

ct
ed

 P
ac

ke
t R

ec
ep

tio
ns

 (T
)

Witnesscode Comparison: l = 400

SPCC
Witnesscode (b = 64)
Witnesscode (b = 256)
Witnesscode (b = 1024)
Witnesscode (b = ∞)

Figure 6: The average number of packet receptions

for the Witnesscode scheme is evaluated for various

coding values b, with the SPCC scheme included for

reference. The case of b = ∞ represents the optimal

coding case with infinite computational overhead.

packet. Thus, if there are a header packets, the num-

ber of coded packets is b = 2a, with k = 6 data pack-

ets. The possible triplets (a, k, b) are {(3, 6, 6), (4, 6,

8), (5, 6, 10), (6, 6, 12), (7, 6, 14), (8, 6, 16)}, with (3,

6, 6) equivalent to the SPCC scheme due to a lack of

coding. Values of a ≥ 9 would be pointless, because

the header message could contain the data message.

Here, the optimal solution was (k, a, b) = (4, 6, 8) and

q = 0.461.

V.C. Witnesscode Analysis

For the Witnesscode scheme, the coding parameter

should be adjusted so that the computational complex-

ities at the sender and receiver are still feasible. As

shown in Section IV.C, the sender and receiver have

a computational complexity of O(b2), where b is the

total number of coded packets. To determine an ad-

equate tradeoff between computation and communi-

cation, we show the results of several values of b in

Figure 6, with l = 400 . The SPCC scheme is given

alongside for reference.

As can be seen in Figure 6, the Witnesscode points

quickly converge to the optimal for modest values of

b. For the remainder of this work, when we discuss

and simulate this scheme, it is in reference to the b =
256 case, because it is extremely close to the infinite

case in terms of communication efficiency, and has a

reasonable computational complexity.

VI. Performance Evaluation

We present our packet length optimization techniques

and provide a simulation study to evalutate the pro-

posed schemes. For the following simulations, we let

s = 112, r = 40, and d = 64.

VI.A. Packet Length Optimization

In order to provide thorough evaluation of the can-

didate schemes and comparison with respect to the

SPCC scheme, we use the metric based on the ex-

pected number of bits sent, defined in (3). Finding the

optimal values of l through taking the derivative of t,
we note that t is proportional to (1 − γ)/c, implying

that γ and c have no effect on this optimization. Thus,

for simplicity we scale t by c/(1 − γ).

min
l

T (l + d)
c

1 − p

t = T (l + d)/

(

1 − u(l − β)

(

1 − e−
(l−β)2

2α2

))

(16)

By evaluating the two cases of the unit step function

this becomes

t =







T (l + d)e
(l−β)2

2α2 if l > β

T (l + d) if l ≤ β
(17)

Depending on the jamming characteristics, the

communication efficiency can be dramatically im-

proved by using longer packet lengths. While larger

packets result in a higher sensitivity to reactive jam-

ming techniques, doing so reduces the number of

message fragments. This in turn lowers the num-

ber of expected packet receptions T , and in addi-

tion reduces the impact of frame information and time

spent switching channels. On the other hand, drasti-

cally increasing packet length will result in exponen-

tially diminishing throughput. The gain in optimizing

for packet length becomes more pronounced as α in-

creases, relative to β. When β � α the gain from

increasing l beyond that of β is essentially zero. This

is especially seen in the case when α = 0, where any

packet longer than β is jammed with probability one.

In general, a closed-form solution for the optimal

value of l for a particular scheme is not expressible.

However, for certain conditions on the parameters,

these equations can be simplified.

For the Witnesscode scheme, if we take b and m
as large, then by (10) the expected number of packets

can be approximated as T = k = m
l−r−2s . In order to

find the optimal value of l in t, insert this value of T
into (17) and solve for l.

d

dl

l + d

(l − r − 2s)(1 − F)
= 0 (18)

If l < β, then by (17):

d

dl

l + d

l − r − 2s
=

−r − 2s − d

(l − r − 2s)2
= 0 (19)

This implies that the optimal value of l is not found

in this region, with the possible exception of the end-

point l = β. For the second case, l ≥ β, we have:

d

dl

l + d

l − r − 2s
e(l−β)2/2α2

= 0 (20)

Using the product rule for the exponential term and

simplifying, we get:

−(d − r − β − 2s)l2 + (−βd + (β − d)(r + 2s))l

+ l3 − (βd(r + 2s) − (r + 2s + d)α2) = 0
(21)

This can then be solved using the cubic equation.

Then, given (19) and (21), when a real root exists to

the cubic equation and is > β it is the asymptotic

limit. Otherwise the the limit is the endpoint, l = β.

In the case of the Hashcluster and SPCC schemes,

on the other hand, when m is large, from (8), we get:

T =

(

m

l − r − s/n

) (

ln

(

m

l − r − s/n

)

+ δ

)

(22)

This contains a logarithmic term that cannot be

reduced further or canceled through differentiation,

leaving an equation involving polynomial and loga-

rithmic terms in l. Therefore, we must rely on nu-

meric methods for computation. Figure 7 shows the

general shape of packet length curves for the SPCC

scheme with m = 2000 and β = 300. Since the

curves are nearly convex, with several piecewise con-

vex sections, it is possible to efficiently optimize over

l using numeric methods.

We now look at the results from optimizing over

the packet length for the various protocols. We vary

the parameter α, with α = 0 as a baseline, represent-

ing the case where packet sizes are at or below the

jamming threshold β, and thus are sufficiently small

to provide immunity to reactive jamming. First, we

show the effect that increasing α has on the t versus

l curves for the SPCC case. Figure 7 shows the time

taken by various packet lengths, for different jamming

parameters. As can be seen, the optimal l value for

each of these curves (resulting in the min value for the

corresponding t), increases with α.

Finally, we look at the impact that packet length

optimization has on the communication efficiency,

for different jamming characteristics, with α ∈
{0, 100, 200, 400} and β = 300. Figure 8 shows the

effect of this optimization. As can be seen, this can

significantly reduce the time spent for communica-

tion. For the SPCC scheme, the α = 400 takes nearly

0 100 200 300 400 500 600 700 800 900 10000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 x 105

Packet Length (l)

Ti
m

e
to

 C
om

pl
et

e
(t)

Packet Length Comparison, m = 2000, β = 300

SPCC (α = 0)
SPCC (α = 100)
SPCC (α = 200)
SPCC (α = 400)

Figure 7: Tradeoff between fragment verification and

reactive jamming resilience, mapping packet length l
to message exchange time t, with m = 2000, β =
300, and α ∈ {0, 100, 200, 400}.

0 500 1000 1500 2000 2500 3000 3500 40000

0.5

1

1.5

2

2.5

3

3.5

4 x 104

Message Length (m)

Ti
m

e
to

 C
om

pl
et

e
(t)

SPCC Optimization, β = 300

α = 0
α = 100
α = 200
α = 400

Figure 8: Time t to complete the message exchange

after performing packet length optimization on the

SPCC scheme. α is varied among 0, 100, 200, 400

and β = 300. The α = 0 case represents the perfor-

mance baseline of the optimization.

half the time as α = 0, indicating that under variable

reactive jamming conditions this optimization can re-

sult in a significant gain in communication efficiency.

VI.B. Protocol Comparison

Next we compare the SPCC, Hashcluster (n = 2),

Merkleleaf, and Witnesscode (b = 256) schemes,

with their parameters as derived in Section V. We

show (α, β) ∈ {(0, 300), (100, 300), (400, 400)} in

Figures 9, 10, and 11, respectively.

To describe the benefits to each scheme, we begin

with SPCC. First, as is clear from the preceding fig-

ures, when the message is small (less than 1000 bits),

the SPCC scheme has an efficiency roughly equiva-

lent to the other three schemes. Since it is the simplest

to implement and has the least computational require-

ments for the sender and receiver, it would be prefer-

able in this case. The reason for the SPCC scheme

performing well for small messages is that the number

0 500 1000 1500 2000 2500 3000 3500 40000

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5 x 104

Message Length (m)

Ti
m

e
to

 C
om

pl
et

e
(t)

Protocol Comparison: α = 0, β = 300

SPCC
Hashcluster (n = 2)
Merkleleaf
Witnesscode (b = 256)

Figure 9: The expected time t to complete a mes-

sage exchange for all four protocols, with α = 0 and

β = 300. The Witnesscode scheme does significantly

worse than the other schemes and Hashcluster does

significantly better, due to their respective fraction of

data spent on verification.

of packets is likewise small, thus reducing the proba-

bility of receiving additional redundant packets.

The Hashcluster scheme is fairly computationally

challenging, though this computation is only done in

the presence of an adversary inserting erroneous pack-

ets. During normal operation, or in the presence of

a jamming adversary, only the non-redundant pack-

ets received need to be verified. Thus, as long as the

verification is computationally feasible during inser-

tion attacks, the adversary will choose to spend its en-

ergy jamming instead, and the computation will never

need to be done. The Hashcluster scheme performs

especially well for small values of α and β. In this

constrained environment, the small fraction of pay-

load data devoted to verification frees up a significant

portion of the packets for message data.

The Merkleleaf scheme out-performs the SPCC

scheme for larger values of m, though it has a similar

verification complexity. The only additional compu-

tation of note is the Reed-Solomon coding on the data

packets. However, since the code length b takes small

values for all m considered, the O(b2) decoding op-

eration is insignificant. Thus, when it is computation-

ally infeasible to use the Hashcluster or Witnesscode

schemes, this becomes the optimal approach. For

small values of m (less than about 1500), the Merkle-

leaf scheme simplifies to the SPCC scheme, where

only the header message is sent. For large values of

m, α, and β, it can perform equivalently to the Hash-

cluster scheme.

Finally, the Witnesscode scheme has its greatest

benefit for large m, α, and β. Due to the witness be-

ing twice the size of a typical hash, small values of α
and β constrain the fragment size, greatly limiting the

0 500 1000 1500 2000 2500 3000 3500 40000

0.5

1

1.5

2

2.5

3

3.5 x 104

Message Length (m)

Ti
m

e
to

 C
om

pl
et

e
(t)

Protocol Comparison: α = 100, β = 300

SPCC
Hashcluster (n = 2)
Merkleleaf
Witnesscode (b = 256)

Figure 10: The expected time t to complete a mes-

sage exchange for all four protocols, with α = 100
and β = 300. The SPCC and Merkleleaf schemes

are behave similarly for m < 1500, after which they

diverge due the coding gain in the Merkleleaf scheme.

fraction of the packet payload devoted to the message.

On the other hand, a large m implies a large number

of packets, which was where the inefficiency in the

first three schemes was located. In this case, however,

the gain from coding is significant, because the proba-

bility of getting a redundant packet is reduced to near

zero. On the other hand, the computational complex-

ity is non-trivial and must be performed regardless of

whether the adversary is or is not inserting packets.

VII. Conclusion

In this work, we addressed the problem of efficient

key exchange between authorized users in an insecure

wireless network. We considered an adversary capa-

ble of performing both reactive jamming and mes-

sage insertion attacks. Our approach was to opti-

mize for the communication efficiency of the key ex-

change while maintaining the desired level of secu-

rity, focusing on the tradeoff between resilience to

reactive jamming and fragment verification complex-

ity. We then proposed three verification schemes to

further improve communication efficiency which can

be tailored to specific network scenarios: Hashclus-

ter, Merkleleaf, and Witnesscode. Future work will

address the problem of outperforming a random com-

munication model in jamming avoidance prior to key

exchange.

References

[1] N. Barić and B. Pfitzmann. Collision-free accu-

mulators and fail-stop signature schemes with-

out trees. Advances in Cryptology – EURO-

CRYPT ’97, pages 480–494, 1997.

0 500 1000 1500 2000 2500 3000 3500 40000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 x 104

Message Length (m)

Ti
m

e
to

 C
om

pl
et

e
(t)

Protocol Comparison: α = 400, β = 400

SPCC
Hashcluster (n = 2)
Merkleleaf
Witnesscode (b = 256)

Figure 11: The expected time t to complete a mes-

sage exchange for all four protocols, with α = 400
and β = 400. The Witnesscode greatly outperforms

the other protocols for m > 1200, due to a large cod-

ing gain, and the Merkleaf and Hashcluster schemes

perform similarly for all m.

[2] J. Benaloh and M. de Mare. One-way accu-

mulators: a decentralized alternative to digital

signatures. Advances in Cryptology – EURO-

CRYPT ’93, Proc. of the Workshop on the Theory

and Applications of Cryptographic Techniques,

pages 274–285, 1994.

[3] L. Buttyán, L. Czap, and I. Vajda. Securing cod-

ing based distributed storage in wireless sensor

networks. In IEEE Workshop on Wireless and

Sensor Network Security (WSNS), Atlanta, GA,

USA, Sept. 2008.

[4] J. W. Byers, M. Luby, M. Mitzenmacher, and

A. Rege. A digital fountain approach to reli-

able distribution of bulk data. ACM SIGCOMM

Computer Communication Review, 28(4):56–67,

1998.

[5] V. Gupta, S. Krishnamurthy, and M. Faloutsos.

Denial of service attacks at the MAC layer in

wireless ad hoc networks. Military Communi-

cations Conference (MILCOM 2002), 2:1118–

1123, 2002.

[6] C. Karlof, N. Sastry, Y. Li, A. Perrig, and J. D.

Tygar. Distillation codes and applications to

DoS resistant multicast authenication. In The

11th Annual Network and Distributed System

Security Symposium (NDSS 2004), San Diego,

CA, USA, Feb. 2004.

[7] J. Liang, R. Kumar, Y. Xi, and K. W. Ross.

Pollution in P2P file sharing systems. Proc.

IEEE 24th Annual Joint Conference of the IEEE

Computer and Communications Societies (IN-

FOCOM 2005), 2, 2005.

[8] G. Lin and G. Noubir. On link layer denial of

service in data wireless lans. Wireless Commu-

nications and Mobile Computing, 5(3):273–284,

May 2005.

[9] W.-T. Lin and K.-B. Yu. Adaptive beamforming

for wideband jamming cancellation. IEEE Na-

tional Radar Conference, pages 82–87, 1997.

[10] R. Merkle. Protocols for public key cryptosys-

tems. In Proc. 1980 IEEE Symposium on Secu-

rity and Privacy (S&P ’80), pages 150–159, Apr.

1980.

[11] F. Meshkati, H. Poor, S. Schwartz, and N. Man-

dayam. An energy-efficient approach to power

control and receiver design in wireless data net-

works. pages 1885–1894, 2005.

[12] L. Nguyen. Accumulators from bilinear pairings

and applications. Topics in Cryptography - CT-

RSA 2005, pages 275–292, 2005.

[13] R. A. Poisel. Modern Communication Jamming

Principles and Techniques. Artech House, 2004.

[14] R. M. Roth. Introduction to Coding Theory.

Cambridge University Press, 2006.

[15] D. Slater, R. Poovendran, P. Tague, and B. J.

Matt. A coding-theoretic approach for efficient

message verification over insecure channels. In

Second ACM Conference on Wireless Network

Security (WiSec ’09), Zurich, Switzerland, Mar.

2009.

[16] M. Strasser, C. Pöpper, S. Čapkun, and

M. Čagalj. Jamming-resistant key establish-

ment using uncoordinated frequency hopping. In

Proc. 2008 IEEE Symposium on Security and

Privacy, Oakland, CA, USA, May 2008.

[17] C. Wong and S. Lam. Digital signatures for

flows and multicasts. In Proc. on the 6th Interna-

tional Conference on Network Protocols (ICNP

’98), pages 198–209, Oct. 1998.

[18] A. D. Wood and J. A. Stankovic. Denial of

service in sensor networks. IEEE Computer,

35(10):54–62, Oct. 2002.

[19] W. Xu, K. Ma, W. Trappe, and Y. Zhang.

Jamming sensor networks: Attack and de-

fense strategies. IEEE Network, 20(3):41–47,

May/June 2006.

[20] W. Xu, W. Trappe, Y. Zhang, and T. Wood. The

feasibility of launching and detecting jamming

attacks in wireless networks. In Proc. of the

6th ACM International Symposium on Mobile Ad

Hoc Networking and Computing, pages 46–57,

2005.

