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Disenrollment with Perfect Forward Secrecy in

Threshold Schemes

Mingyan Li and Radha Poovendran

Abstract

In this paper, we propose a new model for threshold schemes with disenrollment capability (TSDC),

to address the scenarios in which the ability of a coalition to construct future shared secrets is prohibited.

Compared to existing TSDC models, our model provides forward secrecy by adding a constraint that

the broadcast from the dealer is required to activate the reconstruction of any secret. We also present a

TSDC model in which the dealer has the enhanced capability of disenrolling any subset of participants,

to prevent the otherwise unnecessary rekey of the entire group when a large number of participants are

compromised. We establish the lower bounds on the entropy of broadcast messages in both proposed

models, as guidelines on constructing broadcast efficient schemes, and present bound achieving schemes.
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I. INTRODUCTION

A (t, n) threshold scheme is a technique to split and distribute a secret among a group of n

participants (or members) in such a way that any subset of t or more participants can reconstruct the

shared secret by pooling the information they have, while any subset of participants of cardinality

less than t is unable to recover the secret [1], [2]. The information held by a participant is called

a share, which is distributed securely by a trusted third party, called dealer or owner, to the

participant at the time of initialization.

A cryptographic key is one of the secrets that can be protected using a threshold scheme. Since

keys have finite lifetime, knowing the duration of the key use, one can generate multiple keys

with key Ki being used in time period i. Each of these keys is then shared by n members using
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a (t, n) threshold scheme, with only a valid set of t or more members being able to construct the

key Ki at the time period i.

It is preferable, that should it be necessary to delete one or more members or if a compromise

of all keys up to period i occurs, these events will not lead to a compromise of any keys intended

to be used in future time periods. This is called the perfect forward secrecy or simply forward

secrecy property [3]. We intend to study the problem of revoking untrustworthy members in

threshold schemes while preserving forward secrecy.

When one member is compromised or deleted, the share held by the member should be treated

as compromised and known to the public. Then, any (t−1) shares from the valid group members

along with the publicly known share suffice to reconstruct the shared key uniquely. Hence, the

effective threshold of the secret sharing scheme reduces to (t− 1), and the key used at that time

period is protected by the reduced number of shares.

To preserve the same level of security, the same threshold size t needs to be maintained and the

shared key needs to be updated. If a secure channel is available all the time, a dealer can choose a

new shared secret, construct a (t, n− 1) threshold scheme, and deliver new shares securely to the

remaining participants. However, an expensive secure channel is normally set up only to distribute

initial shares and is no longer available after initialization. Hence, the goal is to develop methods

that use a public broadcast channel to update shares in order to maintaining the threshold level t.

The problem of maintaining the threshold via only broadcast in case of share disclosure or loss

was considered in a seminal paper by Blakley, Blakley, Chan and Massey in [4], and the model

presented was called a threshold scheme with disenrollment capability (TSDC). Blakley et al.

formally defined threshold schemes with L-fold disenrollment capability as TSDC schemes that

have the capability of disenrolling L participants successively, one at a time, without reducing the

threshold t. However, their TSDC model addresses an environment where members are deemed

benign and no coalition of colluders arise to derive future shared secret or such a collusive coalition

is harmless. When such a coalition is undesired, forward secrecy needs to be enforced to ensure

no future shared secret can be derived under collusion of members. We present a TSDC model in

this paper to address the problem of disenrolling participants with forward secrecy in threshold

schemes while maintaining the threshold through broadcast.

A TSDC scheme is characterized by the size of a share held by a member and the size of the

broadcast the owner has to use when a member is disenrolled. The share size in any threshold
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scheme is lower bounded by the entropy of the key it is derived from [5]. In [4], Blakley et

al. established a lower bound on the size of total number of shares in a TSDC with L-fold

disenrollment capability.

Broadcast size in a TSDC indicates the communication cost to the dealer under a single member

deletion. In [4], the authors conjectured a lower bound on the size of public broadcast required for

a TSDC. In [6], Barwick et al. presented a revised version of the lower bound on the broadcast

size for a TSDC with L-fold disenrollment capability.

Our contributions: We make four contributions in this paper.

• We first show that the original TSDC model [4] does not guarantee forward secrecy under

collusion by showing that if any (t + j), (j > i) members collaborate in one TSDC scheme,

they can construct keys {K1, K2, · · · , Ki, · · · , Kj}.

• We present an enhancement to the TSDC model to incorporate the condition that the broadcast

from the dealer is required to construct the key Ki at a time period i by t or more valid

members, in order to prevent the exposure of future shared secrets to collusion of participants.

The idea of activating the reconstruction of the shared secret by additional information, rather

than the collection of shares only, was originally proposed in Simmons’ “prepositioned”

threshold schemes (PTS) [7]. However, no dynamic disenrollment is involved in prepositioned

schemes, and no theoretical study on characterizing such threshold schemes was presented [7].

• We provide an enhancement to the dealer’s ability to disenroll multiple members at a time.

In the original TSDC [4] with L disenrollment stages, the owner is capable of deleting

one member at each stage and hence total L members. However, observing that any subset

of members can collaborate and may have to be disenrolled, the owner needs to have the

capability to delete any subset of members at a time period, as long as the number of the

remaining valid members is greater than t. We propose a new TSDC model that allows

deletion of an arbitrary number of members at any time period, and maximum number of

disenrolled members can be more than the total number of disenrollment stages.

• We derive the necessary lower bounds on the entropy of broadcast messages in our enhanced

models. The bounds serve as guidelines in the search of broadcast efficient TSDC.

Other related work on TSDC includes [8], [9], [10], [11], [12]. In [8], disenrollment of un-

trustworthy participants in general secret sharing schemes that have different subsets of members

allowed to construct a secret was discussed. However, no analytical results on the bounds of
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share size or broadcast size was established. Blundo et al. [9] presented the generalized problem

of enabling participants of different sets to reconstruct different secrets at different times via

an insecure public channel, and established lower bounds on share size. However, they did not

investigate the lower bound on the broadcast size for a TSDC. Charnes et al. [10] presented a

computationally secure TSDC based on an exponentiation version of Shamir threshold scheme,

and the secrecy of the scheme is built on the hardness of the discrete logarithm problem. A

TSDC scheme was proposed to realize disenrollment without changing shares in [11], but was

later shown to be unable to maintain the threshold in [12].

This paper is organized as follows. In Section II, we review the definition of TSDC [4] and

previous results on quantifying share size [4] and broadcast size [6]. We then formulate a TSDC

model with forward secrecy in Section III, and we derive lower bounds on the broadcast size in

such a model in Section IV. In Section V, we present a TSDC model with enhanced capability

of deleting multiple participants simultaneously. Section VI concludes the paper.

II. PRELIMINARIES

For clarity of presentation, the notations used in this paper are listed in Table I in Appendix A.

A. Threshold Schemes

Let K be a shared secret that is a random variable taking values from space K, and Sj be a share

held by participant j, that is a random variable taking values from space S, and j ∈ N = {1, .., n}.

Definition 1: A (t, n) threshold scheme is to share a secret K among n participants so that:

1) The secret K is recoverable from at least t shares. That is, for any set of k (t ≤ k ≤ n)

indices {l1, l2, ..., lk} ⊂ N , a collection of k shares Sl1:lk can reconstruct the secret K,

H(K|Sl1:lk) = 0.

2) The secret K remains uncertain with the knowledge of (t − 1) or less shares. That is,

H(K|Sl1:lk) > 0 for k < t.

A (t, n) threshold scheme is called perfect in an information theoretic sense if (t − 1) or fewer

shares reveal absolutely no information on the secret K. That is, H(K|Sl1:lk) = H(K) for k < t.

A necessary condition for a perfect threshold scheme is given in [5] as:

H(Sj) ≥ H(K) for j = 1, ..., n. (1)
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A perfect threshold scheme is called ideal if share size achieves the lower bound in (1), i.e.,

H(Sj) = H(K),∀j ∈ N .

B. Threshold Schemes with Disenrollment Capability (TSDC)

A threshold scheme with L-fold disenrollment capability (TSDC) addresses the problem of

maintaining a constant threshold through an insecure broadcast channel while disenrolling an

untrustworthy participant at each of L successive updates [4]. Let i = 1, ..., L be the indices

of update stages. At the ith update, let Ki denote the shared secret, Pi denote the broadcast

message, Vi(k) denote the set of indices of k valid participants, and D̃i denote the set of indices

of all disenrolled participants up to and including stage i. Let di ∈ N\D̃i−1 be the index of the

disenrolled participant at the ith update, and vl ∈ N\D̃i for l = 1, ..., n − i be the index of one

of the remaining valid participants.

Definition 2: A (t, n) threshold scheme with L-fold disenrollment capability with n−L ≥ t is

a collection of shares Sj for j = 1, ..., n; shared secrets Ki for i = 0, ..., L; and public broadcast

messages Pi for i = 1, ..., L, that satisfy the following conditions:

1) Initially (i.e., at stage i = 0), the scheme is a (t, n) threshold scheme that shares the secret

K0 among n participants.

2) At stage i for i = 1, ..., L, one additional share Sdi
is disenrolled. Any set of k (t ≤ k ≤ n−i)

valid shares SVi(k) plus the broadcast messages P1, ..., Pi can reconstruct the new secret K,

leading to

H(Ki|SVi(k), P1:i) = 0 for t ≤ k ≤ n− i. (2)

3) At stage i for i = 1, ..., L, given broadcast information P1, ..., Pi and all disenrolled shares

Sd1 , ..., Sdi
, the shared secret Ki remains uncertain if the number of valid shares is less than

t. That is,

H(Ki|SVi(k), Sd1:di
, P1:i) > 0 for k < t. (3)

A (t, n) threshold scheme with L-fold disenrollment capability is called perfect if

H(Ki|SVi(k), Sd1:di
, P1:i) = H(Ki) for k < t. (4)

A perfect TSDC is denoted as PTSDC in the rest of the paper.

In order to be able to collectively reconstruct Ki, each participant must have a component in

his share corresponding to Ki. Let S
(i)
j denote such a component and we call S

(i)
j a subshare of
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participant j. Note that Sj is a collection of components to reconstruct K0, ..., KL, i.e., Sj is the

union of all its subshares over L disenrollment stages, denoted by Sj = {S(0)
j , S

(1)
j , ..., S

(L)
j }.

Without component S
(i)
j , Ki cannot be reconstructed even if all the rest subshares S

(−i)
j =

{S(0)
j , S

(1)
j , ..S

(i−1)
j , S

(i+1
j , ..., S

(L)
j } are collected from more than t valid participants. Hence, sub-

shares satisfy

H(Ki|S(i)
Vi(k), P1:i) = 0 for t ≤ k ≤ n− i; (5)

H(Ki|S(−i)
Vi(k), P1:i) = m for t ≤ k ≤ n− i; (6)

where S
(−i)
Vi(k) denotes a collection of S

(−i)
j ’s with j ∈ Vi(k).

The necessary condition (1) can be extended to subshares as

H(S
(i)
j ) ≥ H(Ki) for j = 1, .., n i = 0, ..., L. (7)

C. Bounds of Share and Broadcast Size in TSDC

Blakley et al. [4] established a lower bound on the entropy of each share as follows.

Theorem 1: (presented as Theorem 4 in [4]) Let S1:n, P1:L, K0:L form a (t, n) PTSDC and

H(Ki) = m for i = 0, 1, ..., L. Then,

H(Sj) ≥ (L + 1)m for j = 1, 2, ..., n. (8)

A PTSDC in which each share achieves its lower bound is called share minimal [6], i.e.,

H(Sj) = (L + 1)m, for j = 1, ..., n, (9)

where H(Ki) = m for i = 0, ..., L. For a share minimal PTSDC, we showed each subshare

achieves its minimal size [13], i.e., equation (7) holds with equality for i = 0, 1, ..., L and ∀j ∈ N .

Using union bound based arguments in [14], it follows that the individual subshares of a member

are independent in a share minimal PTSDC.

In [4], Blakley et al. also conjectured on the lower bound of the entropy of broadcast. A

modified version of the conjecture was proven by Barwick et al. [6] as follows.

Theorem 2: (presented as Theorem 2 in [6]) Let S1:n, P1:L, K0:L form a (t, n) share minimal

PTSDC satisfying properties (2), (4), and (9), then
i∑

l=1

H(Pl) ≥
i∑

l=1

min(i, n− i− t + 1)m for i = 1, ..., L. (10)
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III. ADDING FORWARD SECRECY

In this section, we reexamine the TSDC model and present a scheme from [4] that satisfies

Definition 2 but allows any (t + i) colluders to construct any keys K1, K2, · · · , Ki.

Scheme 1: (Presented in [4])

• Participant j holds the share Sj = {S(0)
j , S

(1)
j , ..., S

(L)
j }, where subshare S

(i)
j

corresponds to a share of a (t + i, n) ideal PTSDC sharing secret Ki.

• At stage i, the dealer broadcasts Pi = {S(i)
d1

, S
(i)
d2

, ..., S
(i)
di
}.

Scheme 1 satisfies Definition 2 presented in Section II-B and thus is a valid TSDC. From

Scheme 1, if t + i < L participants collude and the dealer knows the identities of the colluding

participants, then the dealer can revoke every colluding participant1 by discarding intermediate

subshares S
(l)
j ’s for l = 1, ..., (t + i) of all the group members, and broadcasting the subshares of

the disenrolled members {S(t+i)
d1

, S
(t+i)
d2

, ..., S
(t+i)
dt+i

}, where dl’s are indices of colluding participants.

The new shared secret among the group becomes Kt+i and is reconstructible by t shares from

remaining valid members of the group.

However, the problem lies in the observation that if (t + i) participants were to collaborate by

exchanging their shares, they can construct keys K1, ..., Ki regardless of the current time period.

The dealer has no mechanism to prevent this from happening.

A. Preserving Forward Secrecy

To prevent any colluding parties from obtaining future keys, i.e., to provide forward secrecy,

we seek a model in which not only are a threshold number of shares needed, but side channel

information from the dealer is also needed to reconstruct the key Ki at time period i. Since

the dealer has only the broadcast channel available after the group initialization, we enhance the

TSDC model by incorporating the condition that broadcast Pi from the dealer is necessary in

reconstructing the secret Ki. The reconstruction of Ki should not be possible without Pi even

if all the shares are available. This can be formalized in terms of the mutual information as the

following condition to ensure forward secrecy:

I(Ki; S1:n, P1:i−1) = 0 for i = 1...L. (11)

1We assume that the dealer is able to identify all colluding participants, the mechanism of identification of compromised

participants is out of the scope of this paper.
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Condition (11) states that the mutual information of Ki and all shares Sj for j = 1...n and all

previous broadcast message P1, ..., Pi−1 is zero. By jointly considering (2) and (11), we note that

(11) expresses the importance of broadcast message Pi at stage i. Without the broadcast Pi, the

new shared secret Ki cannot be derived even if all shares Sj and all previous broadcast messages

P1, ..., Pi−1 are known. Hence, forward secrecy is preserved in TSDC.

We now present Scheme 2 that satisfies (11) and ensures forward secrecy by preventing a set

of (t + i) colluders from reconstructing keys K1, ..., Ki.

Scheme 2: (A TSDC with forward secrecy)

• The dealer generates the secrets Ki’s to be shared, and random strings Ri of length

m = H(Ki), computes (Ri + Ki) for i = 1, ..., L.

• The dealer generates all subshares S
(i)
j with j = 1, ..., L and distributes Sj =

{S(0)
j , S

(1)
j , ..., S

(L)
j } to participant j, where S

(i)
j is a share of a (t+ i, n) ideal perfect

threshold scheme sharing Ki + Ri.

• At update i, the dealer broadcasts Pi = {Ri, S
(i)
d1

, ..., S
(i)
di
}. With the broadcast, a set

of t shares from valid participants suffices to recover Ki + Ri and thus to decipher

Ki using Ri.

Note that Scheme 2 satisfies forward secrecy condition (11) since Pi is needed to remove the effect

of Ri from the reconstructed secret Ki + Ri. If (t + i) participants collude after initialization, the

dealer can send the broadcast message {S(t+i)
d1

, ..., S
(t+i)
dt+i

, Kt+i+Rt+i+K1}, disenrolling the (t+i)

colluding participants and updating the shared secret to K1. We note that K1 is not disclosed to

the colluders in Scheme 2 and can still be used as a shared secret.

Scheme 2 can be regarded as an enhanced version of Scheme 1 [4], with additional forward

secrecy. Unlike Scheme 1, shared secret and shares are encrypted by a one-time pad, and one-time

pad keys Ri’s are released only via broadcast at disenrollment. Hence, the future key exposure

due to collusion, exhibited in Scheme 1, is prevented by enforcing broadcast from the dealer in

the reconstruction of shared keys in Scheme 2. The forward secrecy is achieved at the expense

of increasing the size of broadcast message by that of a shared secret.

IV. LOWER BOUNDS ON BROADCAST ENTROPY

To establish lower bounds on the entropy of broadcast in a TSDC satisfying (2), (4) and (11),

we consider two cases, (i) no constraints on the share size; (ii) the size of each share achieves its
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lower bound (9), i.e., share minimal PTSDC.

Theorem 3: Let S1:n, P1:L, K0:L form a (t, n) TSDC satisfying properties (2), (4) and (11), and

H(Ki) = m for i = 0, 1, ..., L, then

H(Pi) ≥ H(Ki) = m i = 1, ..., L. (12)

Proof:
H(Pi) ≥ I(Pi; Ki|S1:n, P1:i−1)

(a)
= H(Ki|S1:n, P1:i−1)−H(Ki|S1:n, P1:i−1, Pi)

= H(Ki)− I(Ki; S1:n, P1:i−1)

(b)
= H(Ki) = m.

The second term of (a) is zero due to (2) and equation (b) holds because of forward secrecy

condition (11).

Now we consider share minimal perfect threshold schemes with L-fold disenrollment, i.e., the

case in which H(Sj) = (L + 1)m for j = 1, .., n. It will be proven for this case,

H(Pi) ≥ min(i + 1, n− i− t + 1)m i = 1, ..., L, (13)

if all previous broadcast Pl’s satisfy lower bounds min(l + 1, n− l − t + 1)m for l = 1, .., i− 1.

In order to establish the bound (13), we first prove some lemmas as follows.

Lemma 1: In a (1, n) share minimal PTSDC with forward secrecy (11), any i + 1 subshares

S
(i)
l1

, ..., S
(i)
li+1

are independent.

Proof: Let vl denote the index of one valid participant at stage i. A (1, n) PTSDC satisfies

the following two equations in terms of subshares.

H(Ki|S(i)
d1:di

, P1:i) = H(Ki) = m (14)

H(Ki|S(i)
vl

, P1:i) = 0, (15)

where (14) and (15) are obtained from (4) and (5), respectively.

Substituting X = Ki, Y = S(i)
vl

, Z = S
(i)
d1:di

and W = P1:i into Lemma 5 (see Appendix B), we

establish from (15), (14), and H(S
(i)
j ) = H(Ki) that

I(S(i)
vl

; S
(i)
d1

, ..., S
(i)
di

) = 0. (16)
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Assume that there is one set of i+1 subshares {S(i)
l1

, ..., S
(i)
li+1
}, which are not independent. That

is, in {S(i)
l1

, ..., S
(i)
li+1
}, there is at least one subshare that is not independent of the rest i subshares.

Without loss of generality, we assume that S
(i)
l1

is dependent on S
(i)
l2

, ..., S
(i)
li+1

,

I(S
(i)
l1

; S
(i)
l2

, ..., S
(i)
li+1

) > 0 (17)

For a valid (1, n) threshold scheme, the dealer should be able to disenroll any subset of i

participants at stage i. Hence, the indices of the deleted members can be random. One possible

value of these indices is given by {d1, d2, · · · , di} = {l2, ..., li+1}. All remaining indices correspond

to the valid members. Therefore, we note that the equation (17) can be written as:

I(S(i)
vl

; S
(i)
d1

, ..., S
(i)
di

) > 0, (18)

leading to a contradiction with (16).

Lemma 2: In a (1, n) share minimal PTSDC with forward secrecy,

H(Pi) ≥ min(i + 1, n− i)m, (19)

if all previous broadcast messages meet their lower bound on entropy, i.e., H(Pw) = min(w +

1, n − w) for w = 0, ..., i − 1. When H(Pi) achieves its minimum at (i + 1, n − i)m, then

I(Pi; S
(l)
j ) = 0 for l = i + 1, ..., L and j = 1, ..., n, i.e., Pi is independent of subshares used to

reconstruct future shared secrets.

Proof: The proof is built on the fact H(S
(i)
Vi(u)|Ki, P1:i) = 0 with u = min(i + 1, n − i),

which is proved in Appendix C. We will prove the lower bound of H(Pi) by induction.

At stage k = 1, there are n− 1 valid participants, u = min(k + 1, n− k) = min(2, n− 1)

H(P1) ≥ I(Pi; S
(1)
Vi(u)|K1)

= H(S
(1)
Vi(u)|K1)−H(S

(1)
Vi(u)|K1, P1)

(a)
= H(S

(1)
Vi(u), K1)−H(K1) = H(S

(1)
Vi(u)) + H(K1|S(1)

Vi(u))−H(K1)

(b)
= H(S

(1)
Vi(u)) + H(K1)−H(K1)

(c)
=

u∑

l=1

H(S(1)
vl

) = um = min(2, n− 1)m

Equation (a) holds because H(S
(1)
Vi(u)|K1, P1) = 0. Without P1, H(K1|S(1)

Vi(u)) = H(K1) and hence

(b) holds. Equation (c) holds due to the independence of S(i)
vl

’s for l = 1, ..., i + 1 shown in

Lemma 1.
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Now we show if H(P1) = min(2, n−1)m, then I(P1; S
(l)
j ) = 0 for l = 2, ..., L and j = 1, ..., n.

H(P1) ≥ I(P1; S
(l)
j , K1, S

(1)
Vi(u))

≥ I(P1; S
(l)
j ) + H(S

(1)
Vi(u)|K1, S

(l)
j )−H(S

(1)
Vi(u)|K1, P1, S

(l)
j )

= I(P1; S
(l)
j ) + H(S

(1)
Vi(u)|S(l)

j ) + H(K1|S(l)
j )−H(K1)

(d)
= I(P1; S

(l)
j ) + H(S

(1)
Vi(u))

= I(P1; S
(l)
j ) + min(2, n− 1)m

Equation (d) holds because of independence of subshares of one participant and forward secrecy

condition (11). From H(P1) ≥ I(P1; S
(l)
j ) + min(2, n− 1)m, a necessary condition for H(P1) to

achieve its lower bound is I(P1; S
(l)
j ) = 0 for l = 2, ..., L.

Assume Lemma 2 is true for stage k = i−1, i.e., H(Pi−1) ≥ min(i, n− i+1)m if all previous

broadcast messages reach their lower bound on entropy, i.e., H(Pw) = min(w + 1, n − w) for

w = 0, ..., i− 2, and I(Pi−1; S
(l)
j ) = 0 for l = i, ..., L.

When k = i, u = min(k + 1, n− i) = min(i + 1, n− i)

H(Pi) ≥ I(Pi; S
(i)
Vi(u)|Ki, P1:i−1)

= H(S
(i)
Vi(u)|Ki, P1:i−1)−H(S

(i)
Vi(u)|Ki, P1:i)

= H(S
(i)
Vi(u), Ki|P1:i−1)−H(Ki|P1:i−1)

= H(S
(i)
Vi(u)|P1:i−1) + H(Ki|S(i)

Vi(u), P1:i−1)−H(Ki|P1:i−1)

= H(S
(i)
Vi(u)) = um = min(i + 1, n− i)m

The proof of I(Pi; S
(l)
j ) = 0 for l = i + 1, ..., L when H(Pi) achieves its minimum at (i +

1, n− i)m is similar to the base case (k = 1) and thus is omitted.

Now we can establish the lower bound of H(Pi) for a share minimal PTSDC.

Theorem 4: Let S1:n, P1:L, K0:L form a (t, n) TSDC satisfying properties (2), (4), (9) and (11),

then

H(Pi) ≥ min(i + 1, n− i− t + 1)m i = 1, ..., L. (20)

if all previous broadcast messages Pl’s for l = 1, .., i− 1 achieve their lower bounds as

min(l + 1, n− l − t + 1)m.
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Proof: As shown in [6], if {S1:n, P1:L, K0:L} form a (t, n) share minimal PTSDC, then

{Sl1:ln−t+1|SVi(t−1), P1:L|SVi(t−1), K0:L|SVi(t−1)}

form a (1, n − t + 1) share minimal PTSDC, where (·|SVi(t−1)) represents the conditioning on

SVi(t−1) and {l1, ..., ln−t+1} = N\{Vi(t−1)}. For the (1, n−t+1) TSDC, we have H(Pi|SVi(k)) ≥
min(i + 1, n − t + 1 − i)m from Lemma 2, if all previous broadcast messages meet their lower

bound on their entropy.

Since H(Pi) ≥ H(Pi|SVi(k)), then (20) holds.

Comparing Theorem 2 and Theorem 4, we notice that when adding forward secrecy condition

(11) to prevent unwanted key disclosure, the lower bound on broadcast size (20) is different from

(10) as expected.

To construct a scheme that achieves the lower bound on broadcast size (20), we will first propose

Scheme 3, and then show that by combining Scheme 3 and Scheme 2, we can obtain Scheme 4

that achieves the lower bound on the share size and the broadcast size.

Scheme 3:

• On initialization, the dealer randomly chooses strings R
(i)
j of length m, and

distributes Sj = {S(0)
j , R

(1)
j , ..., R

(L)
j }, where S

(0)
j is a share of a (t, n) threshold

scheme and R
(i)
j is used as an one-time pad key for participant j at stage i.

• At update stage i, given the shared secret Ki, the dealer computes the unique

polynomial of degree t − 1, denoted as fi(·), passing t points {vl, R
(i)
vl

)} for

l = 1, ..., t. Let b
(i)
t = Ki − fi(0) and b

(i)
l = fi(vl) + Ki − fi(0) − R

(i)
l for

l = t + 1, ..., |Vi|, the broadcast message is pi = {b(i)
t , b

(i)
t+1, ..., b

(i)
|Vi|}. For participant

vl with l = 1, ..., |Vi|, new subshare S(i)
vl

is obtained as

S(i)
vl

=





R
(i)
l + b

(i)
t for l = 1, ..., t

R
(i)
l + b

(i)
l for l = t + 1, ..., |Vi|.

It follows S(i)
vl

= fi(vl) + Ki − fi(0) for l = 1, ..., |Vi|. Therefore, t new subshares

are sufficient to recover Ki.

In Scheme 3, the share size is of length (L + 1)m and the broadcast size at the ith update is

(|Vi| − t + 1)m = (n− i− t + 1)m bits.
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Scheme 2 has the property of increasing the broadcast size with the disenrollment stage, while

Scheme 3 has the property of decreasing the broadcast size. The appropriate combination of these

two schemes will result in a bound achieving scheme in a constructive manner, thus realizing

the proven lower bounds. We now present a scheme that achieves both the lower bound on share

size (8) and the bound on broadcast size (20).

Scheme 4: (A bound achieving TSDC with forward secrecy)

• The share held by participant j after initialization is

Sj = {S(0)
j , ..., S

(l)
j , R

(l+1)
j ..., R

(L)
j },

where l = bn−t
2
c and S

(i)
j is a share of a (t + i, n) share minimal perfect threshold

scheme sharing Ki + Ri, and R
(i)
j is a random string of length m.

• At the ith disenrollment, the dealer broadcasts

Pi =




{Ri, S

(i)
d1

, ..., S
(i)
di
} for i = 1, ..., bn−t

2
c

{b(i)
t , b

(i)
t+1, ..., b

(i)
|Vi|} for i = bn−t

2
c+ 1, ..., L,

where b
(i)
t , b

(i)
t+1, ..., b

(i)
|Vi| are calculated according to Scheme 3.

It can be verified that Scheme 4 is a share minimal PTSDC with forward secrecy that achieves

both lower bounds on share size (8) and broadcast size (20).

When comparing Scheme 4 with the bound (10) achieving scheme (Example 4) in [6], the major

difference is that when L < bn−t
2
c, Scheme 4 reduces to Scheme 2, while Example 4 reduces to

Scheme 1, where forward secrecy is not considered. Hence, the broadcast size of Example 4 is

smaller than Scheme 4 by the entropy of a shared secret when L < bn−t
2
c.

We note however, that in the original TSDC, if (t + L) members collaborate, the entire set of

keys will be exposed and the group has to be rekeyed. The use of forward secrecy condition (11)

only ensures that the dealer plays a role in the disenrollment and it does not prevent the rekey of

the group. For example, Scheme 2 ensures that as long as the number of colluders is less than L,

the dealer can reach the remaining valid members using a broadcast channel and update shared

keys. However, when the number of colluders exceed (L − 1), the dealer has no mechanism to

selectively disenroll or reach the remaining valid members to update the keys. Hence, the rekey

of entire group is inevitable. This is not a satisfactory condition. To enable the dealer reach any

valid subset as long as the subset is of the size t or more, we propose an enhanced TSDC that
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allows the dealer to simultaneously revoke multiple members.

V. SIMULTANEOUS DISENROLLMENT OF MULTIPLE PARTICIPANTS

In this section, we present a disenrollment model in which the dealer has the capability to

disenroll any arbitrary number of participants at each stage, as long as the number of remaining

participants is larger than t. We call the capability of disenrolling more than one participant at

each stage enhanced disenrollment capability, and use Di and D̃i to denote the set of indices

of all disenrolled participants at stage i for i = 0, 1, ..., L, and up to stage i, respectively, i.e.,

D̃i = {D1, ..., Di}. The enhanced disenrollment capability can be expressed as:

H(Ki|SVi(k), SD̃i
, P1:i) = H(Ki) for k < t. (21)

To have L stages in such a disenrollment model, condition |D̃L| ≤ n− t should hold, so that there

are at least t valid participants after L deletions, i.e., |VL| ≥ t.

Now we derive a lower bound on the entropy of broadcast in a TSDC satisfying (2), (11) and

(21). If there is no constraint on the share size, it is proven in Theorem 3 that H(Pi) ≥ H(Ki).

Since only conditions (2) and (11) are used in the proof, the conclusion holds for a TSDC with

enhanced disenrollment capability (21). Now we consider the case when the size of each share

achieves its lower bound (9), i.e., share minimal PTSDC.

To establish the lower bound on broadcast entropy, we first introduce two lemmas.

Lemma 3: In a TSDC satisfying (2), (9), (11) and (21), n subshares S
(i)
1 , ..., S(i)

n are independent,

where n is the total number of initial participants.

The proof is similar to that of Lemma 1, and thus is omitted due to space limitation.

Lemma 4: In a TSDC satisfying (2), (9), (11) and (21),

H(S(i)
vl
|Pi, S

(i)
Vi(k)) =





m for k ≤ t− 1

0 for k ≥ t
(22)

if each broadcast message achieves its lower bound.

Proof: We identify four cases in (22), (a) k < t− 1, (b) k = t− 1, (c) k = t, and (d) k > t.

Before proving (22) for these four cases, we make the following observation.

To have a TSDC in which each broadcast message is of its minimum possible size, only Pi

out of {P1, ..., Pi} contributes to the reconstruction of Ki, i.e., H(Ki|SVi(k), Pi) = 0 for k ≥ t. If

Pw with w < i also helps in the reconstruction of Ki, then the redundancy in Pw regarding Ki
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can be removed to have a shorter Pw without affecting the reconstruction of Kw. However, this

contradicts with the fact that each broadcast message achieves its lower bound.

Now we consider the four cases one by one to prove (22).

Case (a): k = t− 1.

H(S(i)
vl
|Pi, S

(i)
Vi(t−1)) ≥ I(S(i)

vl
; Ki|Pi, S

(i)
Vi(t−1))

= H(Ki|Pi, S
(i)
Vi(t−1))−H(Ki|S(i)

vl
, S

(i)
Vi(t−1), Pi)

= m− 0 = m

On the other hand, H(S(i)
vl
|Pi, S

(i)
Vi(k)) ≤ H(S(i)

vl
) = m.

Case (b): k < t− 1.

H(S(i)
vl

) = m ≥ H(S(i)
vl
|Pi, S

(i)
Vi(k)) ≥ H(S(i)

vl
|Pi, S

(i)
Vi(t−1)) = m

Both the steps follow from the facts that the conditioning reduces entropy and k < t− 1.

Case (c): k = t. Since H(Ki|S(i)
Vi(t)

, Pi) = 0,

H(S(i)
vl
|Pi, S

(i)
Vi(t)

) = H(S(i)
vl
|Pi, S

(i)
Vi(t)

, Ki) ≤ H(S(i)
vl
|Pi, S

(i)
Vi(t−1), K).

Let X = Ki, Y = S(i)
vl

, and Z = {Pi, S
(i)
Vi(t−1)}, from Lemma 6 in Appendix B, we have

H(S(i)
vl
|Pi, S

(i)
Vi(t−1), Ki) = 0.

Case (d): k > t. We have 0 ≤ H(S(i)
vl
|Pi, S

(i)
Vi(k)) ≤ H(S(i)

vl
|Pi, S

(i)
Vi(t)

) = 0.

Therefore, (22) holds for all four cases.

Theorem 5: Let S1:n, P1:L, K0:L form a (t, n) TSDC satisfying properties (2), (9), (11) and (21),

and |VL| ≥ t, then

H(Pi) ≥ (|Vi| − t + 1)m i = 1, ..., L. (23)

If all previous broadcasts achieve their lower bounds, i.e., H(Pw) = (|Vw|−t+1)m for 1 ≤ w < i,

where Vi denotes the set of indices of all valid participants at stage i.

Proof:

H(Pi) ≥ I(Pi; S
(i)
Vi

, Ki)

= I(Pi; S
(i)
Vi

) + I(Pi; Ki|S(i)
Vi

)

=
|Vi|∑

w=1

H(S(i)
vw
|S(i)

v1:vw−1
)−H(S(i)

vw
|S(i)

v1:vw−1
, Pi) + H(Ki|S(i)

Vi
)−H(Ki|S(i)

Vi
, Pi)

(a)
= |Vi|m− tm + m− 0 = (|Vi| − t + 1)m
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Note that (a) holds due to Lemma 3, Lemma 4 and conditions (2) and (11).

Comparing Theorem 4 and Theorem 5, the lower bound on broadcast in a disenrollment model

of revoking multiple participants simultaneously is higher than that of deleting one at each stage.

It indicates that larger broadcast size is traded for enhanced disenrollment capability.

Using Scheme 3, the dealer is capable of revoking multiple members simultaneously, and

the broadcast size achieves the lower bound (23). Unlike Scheme 2 where participants store

the shares corresponding to shared secrets, participants are predistributed random string R
(i)
j ’s

used for the decryption of new subshares from broadcast in Scheme 3. The dealer can disenroll

multiple participants by not including their updated subshares in the subsequent broadcast message.

Contrary to Scheme 2, the disenrollment of multiple members can be realized without abandoning

any components of predistributed shares. It follows that enhanced disenrollment capability can lead

to storage reduction for the disenrollment of multiple participants simultaneously, at the expense

of larger broadcast size.

VI. CONCLUSIONS

We proposed a TSDC model with forward secrecy, in order to prevent a collusion of participants

in TSDC from extracting any future key. We have shown that when all the keys to be protected

are of equal length, the lower bound on the cost of providing forward secrecy by enforcing

broadcast from the dealer is equal to the entropy of a key used in the system. We also presented

an enhancement to TSDC models that allows the dealer to simultaneously disenroll multiple

members and demonstrated that the enhanced disenrollment capability is achieved at the expense

of increased broadcast size.
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APPENDIX A: TABLE OF NOTATION

TABLE I

H(·) Shannon entropy [14] i index for update stages

I(·) mutual Information [14] j index for participants

t threshold Ki secret to be shared at stage i

n total number of participants Sj share held by participant j

L maximum allowable disenrollments Pi broadcast message at stage i

m entropy of shared secrets, w.l.o.g, we assume H(Ki) = m for all i

N set of all the indices of n participants, i.e., N = {1, ..., n}
di index of the disenrolled participant at stage i if only one disenrolled each time

Di set of indices of all disenrolled participants at stage i

D̃i set of indices of all disenrolled participants up to stage i, i.e., D̃i = {D1, ..., Di}
Vi set of indices of all valid participants at stage i, Vi ∪ D̃i = N

Vi(k) set of indices of k valid participants at stage i, Vi(k) ⊆ Vi

vi,l index of a valid participant at stage i, or simply vl when no confusion is caused

S
(i)
j subshare of participant j corresponding to the shared secret Ki

R random string used to hide a shared secret or a share

|X| cardinality of X, for example, |Vi|+ |D̃i| = n

Xa:b set {Xa, Xa+1, ...Xb} for a < b
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APPENDIX B: USEFUL LEMMAS

The proofs of following lemmas are in our technical report [13].

Lemma 5: Let X, Y, Z and W be random variables. Given H(X|Y, W ) = 0, H(X|Z, W ) =

H(X), and H(X) = H(Y ), then I(Y ; Z) = 0, where H(·) denotes Shannon entropy and I(·)
denotes mutual information.

Lemma 6: Let X,Y and Z be random variables. Given H(X|Y, Z) = 0 and H(X|Z) =

H(Y |Z), then H(Y |X, Z) = 0.

APPENDIX C: PROOF OF CLAIM 1

Claim 1: In a (1, n) share minimal PTSDC satisfying (11), H(S
(i)
Vi(u)|Ki, P1:i) = 0, where

u = min(i + 1, n− i).

Proof: Let Svl
denote one valid share in the set {Sv1 , ..., Svk

}.

H(S(i)
vl
|P1:i) ≥ I(S(i)

vl
; Ki|P1:i)

= H(Ki|S(i)
vl

)−H(Ki|S(i)
vl

, P1:i)

= H(Ki) = m

Since H(S(i)
vl
|P1:i) ≤ H(S(i)

vl
) = m, we have H(Svl

|P1:i) = m. From (14), we obtain H(Ki|P1:i) =

H(Ki) = m. By letting X = Ki, Y = S(i)
vl

and Z = P1:i and applying Lemma 6, we obtain

H(S(i)
vl
|Ki, P1:i) = 0.

0 ≤ H(S
(i)
Vi(u)|Ki, P1:i) ≤

u∑

l=1

H(S(i)
vl
|Ki, P1:i) = 0 (24)

Therefore, H(S
(i)
Vi(u)|Ki, P1:i) = 0.
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