Explicit Design of Sub-Linear Trees with Pre-specified Key Update Communication Bound

Mingyan Li Radha Poovendran Department of Electrical Engineering University of Washington, Seattle, USA

> Work Supported by NSF Faculty Career Award 00-93187 Acknowledgment: Dr. Eric J. Harder

Outline

- Motivation
- Key Management Problem
- Logical Key Hierarchy; One-way Function Tree
- Tradeoff between Key Update Communication and Storage
- Hybrid Tree
- Optimization Problem
- Design Solutions and Algorithm
- Numerical Comparison
- Conclusions

Motivation

Many real-time network applications involve group communications, e.g., video conferencing

- When an identical message is to be sent to multiple receivers, multicast is suitable.
 - Sender resources saved
 - Network resources saved
- Our research focuses on point-to-multiplepoint multicast 08/07/2001

Key Management— Review

- Cryptography is one approach to secure multicast.
- Every group memeber shares the same Session Encryption Key (SEK)
- SEK has to be updated whenever there is a change in membership (addition/deletion of member(s))
- Key Encryption Keys (KEK) are used to encrypt and transmit updated SEK to valid members.
- Key management problem
 - How to ensure that only valid members have an access to SEK at any given time instance
- Key management problem reduces to
 - How to distribute KEKs so that all valid members can be securely reached and updated with the new SEK

- 1. Each member is uniquely assigned to a leaf node
- 2. A KEK is assigned to every node
- 3. A member is assigned the keys from root to its leaf node

- Storage of KEKs
 - Group controller (GC):

$$S(LKH) = \frac{aN-1}{a-1} \Longrightarrow O(N)$$

- Member: $\log_a N + 1$

• Update Comm. : $a \log_a N$ Poovendran

08/07/2001

- 1. Each member is assigned to a leaf node
- 2. Every node x has two keys, unblinded key K_x and blinded key $K_x' = g(K_x)$
- 3. Leaf keys: generated by the GC Internal keys: $K=f(g(K_{child1}),...,g(K_{childa}))$
- 4. A member is assigned the unblinded leaf key and the blinded keys of the siblings of nodes in the key path from leaf to root

- Storage of KEKs
 - GC: S(OFT) = N
 - Member: $(a-1)\log_a N+1$
- Update Comm. : $(a-1)\log_a N$

08/07/2001

LKH and OFT: Similarity and Difference

- Both have a tree structure
 - The height of the tree determines user storage and key update communication related to as $O(\log N)$
- Keys on LKH are independent, while keys on OFT are related by one-way function
 - The GC storage
 - LKH: $\frac{aN-1}{N-1}$, all the keys of a tree are stored
 - OFT: *N*, only the leaf keys are stored; The storage is independent of the tree degree *a*
 - Key update communication
 - OFT trades user computation for the reduction in rekey messages by a factor a/(a-1) when compared with LKH

Minimal Key Storage Scheme

 $K_i = f_i(i)$ *i*: member index *N*: group size

- Each member shares a KEK with the GC
 - Storage
 - GC: O(2) = seed r + SEK
 - Member: 2 keys = KEK + SEK
- Key update communication
 (N-1) when a member leave

Tradeoff between communication and storage

• We want optimal tradeoff between storage and update communication, under suitable conditions

Hybrid Tree of Canetti

(with 24 members, cluster size of 3)

- Group is divided into clusters of size M
- Each cluster is uniquely assigned to a leaf node
- Within a cluster, a minimal storage scheme is used

Canetti's Examples of Hybrid Schemes

	General <i>M</i> , <i>a</i>	Example 1	Example 2
		$a=2, M=O(\log N)$	$a = M = N^{\frac{1}{2}}$
User Storage	$\log_a\left(\frac{N}{M}\right) + 1$	$O(\log N)$	2
Center Storage	$\frac{N}{M} \frac{a}{a-1}$	$O\left(\frac{N}{\log N}\right)$	$N^{1/2} + 1$
Communication	$M - 1 + (a - 1) \log_{a} \left(\frac{N}{M}\right)$	$O(\log N)$	$2N^{1/2}-2$

• To Design a Tree, choose parameters M and a.

Our Formulation

 Given Prespecified update communication value, design an optimal hybrid tree
 —compute the value of cluster size M

Use of Hybrid Tree

- Storage of GC: Storage(tree)+Storage(cluster)
 - LKH-GC: $S(LKH) = \frac{aN M}{(a 1)M} + \frac{N}{M} = \frac{(2a 1)N}{(a 1)M} \frac{1}{a 1}$ OFT-GC: $S(OFT) = \frac{N}{M} + \frac{N}{M} = \frac{2N}{M}$
- Update communication under member deletion: Comm(tree) + Comm(cluster)

 - LKH-Comm: $C(LKH) = M 1 + a \log_a \frac{N}{M}$ OFT-Comm: $C(OFT) = M 1 + (a 1) \log_a \frac{N}{M}$
 - Binary OFTs, i.e., a=2, lead to least key update communication for a member addition/deletion
- How to find optimal cluster size M to minimize the storage of • GC while the update communication is upper bounded by $\beta \log N$ with β being a scalar factor?

Optimization of Hybrid Tree

- Optimization problem (structurally LKH and OFT have same form)
- LKH: $\min_{M} \frac{(2 a 1) N}{(a 1) M}$ s.t. $M - 1 + a \log_{a} \frac{N}{M} \leq \beta \log_{a} N$ • OFT: $\min_{M} \frac{2 N}{M}$ s.t. $M - 1 + (a - 1) \log_{a} \frac{N}{M} \leq \beta \log_{a} N$ where the communication scale factor $\beta \geq 1$
- Storage is a monotonically decreasing function w.r.t. *M*, the largest value of *M* satisfying the communication constraint will be the solution.

• Solve for
$$M$$
 by $M - 1 + \lambda \ln\left(\frac{N}{M}\right) = \beta \log_a N$
 $\lambda(LKH) = a / \ln a \qquad \lambda(OFT) = (a - 1) / \ln a$

Design Solution of Cluster Size M

• The 1st order approximation of the optimal M

 $M = (\beta - \lambda \ln a) \log_a N + \lambda \log_e((\beta - \lambda \ln a) \log_a N) \quad (*)$

where $\lambda(LKH) = a / \ln a$ $\lambda(OFT) = (a-1) / \ln a$

- Design Procedure
 - Given a, N, and β
 - Compute M using (*)
 - Build hybrid tree of degree *a*
- The asymptotic storage when *M* is optimal

$$S(LKH) = \frac{(2a-1)}{(a-1)(\beta - a)} \left(\frac{N}{\log_{a} N}\right)$$
$$S(OFT) = \frac{2}{(\beta - a + 1)} \left(\frac{N}{\log_{a} N}\right)$$

Numerical Comparison for LKH for the case $\beta = \ln a + a$

(Degree <i>a</i> , Group Size <i>N</i>)	# of Keys in GC by LKH	# of Keys in GC by Hybrid LKH	Storage reduction	Comm. increase
$(2, 2^{10})$	2047	444	78.3%	1.7%
$(2, 2^{20})$	2097151	226920	89.2%	13.2%
$(3, 2^{10})$	1535	370	75.9%	3.4%
$(4, 2^{10})$	1365	345	74.7%	1.7%
$(4, 2^{20})$	1398101	176490	87.4%	13.2%

Numerical Comparison for OFT for the case $\beta = \ln a + a - 1$

(Degree <i>a</i> , Group Size <i>N</i>)	# of Keys in GC by OFT	# of Keys in GC by Hybrid OFT	Storage Reduction	Comm. increase
$(2, 2^{10})$	1024	205	80.0%	31.4%
$(2, 2^{20})$	1048576	104858	90.0%	45.4%
$(3, 2^{10})$	1024	325	68.3%	19.1%
$(4, 2^{10})$	1024	410	60.0%	11.6%
$(4, 2^{20})$	1048576	209715	80.0%	23.9%

Conclusions

- An explicit design procedure for a given communication budget is presented for hybrid tree schemes (hybrid LKH, hybrid OFT).
- The reduction in storage of GC from *O*(*N*) to *O*(*N*/log*N*) is proved.
- More details of our work in CISS'01 handout