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Abstract

We study the problem of designing a storage efficient secure multicast key management scheme based on one-wa
trees (OFT) for a prespecified key update communication overhead. Canetti, Malkin and Nissim presented a hybrid model t
divides a group ofN members into clusters ofM members and assigns each cluster to one leaf node of a key tree. Usi
model, we formulate a constrained optimization problem to minimize the center storage in terms of the cluster sizeM . Due to
the monotonicity of the center storage with respect toM , we convert the constrained optimization into a fixed point equa
and derive the optimalM∗ explicitly. We show that the asymptotic value of the optimalM∗, given asµ + a−1

loge a
loge µ with

µ = O(logN) anda being the degree of a key tree, leads to the minimal storage as O( N
logN

), when the update communicatio
constraint is given as O(logN). We present an explicit design algorithm that achieves minimal center storage for a given
communication constraint.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction and background tions is an active research area [1–14]. The gr
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Developing scalable infrastructure services
secure multicast and secure broadcast commun
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key called the Session Encryption Key (SEK) with t
entire group and use symmetric key encryption (
minimal computation) to distribute data securely to
intended group members. Whenever there is a cha
in membership, the current SEK becomes invalid a
needs to be updated. To encrypt and distribute the
SEK to the valid members of the group, an additio
set of keys called key encryption keys (KEKs) is us

.
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Thus, the problem of controlling the access to mul-
ticast and broadcast communications reduces to the

at
eys
-

in
uni-
date
cal-
oup
the
r to

s the
and
ef-

uch
m-

om-
me

nce,
ms.
ing
-
in
ons
heir
nd

el
me

tion
r
hen

y-
uta-
ned

e
ter

is
rgy
n-
ate
the
tion

was discussed in [2] and [11]. The reduction of the
center storage enables keys stored in the GC to be
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problem of distributing KEKs securely to ensure th
only valid members have access to cryptographic k
at any given instant. Thisis the group key manage
ment/distribution problem [2].

Two of the most important efficiency parameters
multicast key management are key update comm
cation and key storage [2,13,14]. Hence, any candi
solution to a key management problem should be s
able in both these parameters, as a function of gr
sizeN . Key update communication is measured as
number of rekey messages sent by the GC, in orde
update SEK and exposed KEKs, and key storage a
number of keys stored in the GC (center storage)
in a member (user storage). While there are other
ficiency parameters for a secure multicast model, s
as latency, computational cost of the GC and me
bers [11,14], we focus on key storage and update c
munication in this paper. We also abstract away so
implementation details, such as key tree maintena
message format, and choice of encryption algorith

Tree-based key distribution schemes, includ
logical key hierarchy (LKH) [13,14], one-way func
tion tree (OFT) [1,11], and one-way function cha
(OFC) [3], have emerged as the preferred soluti
to the multicast key management problem, due to t
scalability properties. Both update communication a
user key storage grow as O(logN) in these mod-
els, while the center storage increases O(N). Canetti,
Malkin, and Nissim [2] proposed a hybrid mod
which combines LKH and a minimal storage sche
to reduce the GC storage from O(N) to O( N

logN
) and

observed that the product of update communica
and the GC storage is�(N). Their approach howeve
does not address how to minimize center storage w
the key update communication is bounded a priori.

Our main contribution in this paper is that for h
brid trees, we formulate the center storage comp
tion for a given communication bound as a constrai
optimization problem. Based on our formulation, w
derive a fixed point equation for the optimal clus
size. An upper bound on update communication
a common restriction for applications where ene
and/or bandwidth are limited. Our approach will e
able the designer to specify the amount of key upd
communication overhead that can be tolerated by
application. The need for the center storage reduc
loaded into RAM [2], and hence be accessed fas
The manager’s node (center) storage is identified
one of the two bottlenecks that limit the maximu
possible group size [11]. Thus, minimization of t
GC storage will help increase the maximum suppor
group size.

We note that although we make use of the hyb
tree model proposed by Canetti, Malkin and Niss
in [2], our approach differs in that we formulate the d
sign of a hybrid key tree as a constrained optimizat
problem, and derive the optimal solution by solving
fixed-point equation. Unlike [2], we provide an an
lytical technique to select an optimal design param
that trades off between storage and rekey commun
tion overhead.

2. Hybrid one-way function trees

2.1. One-way function trees

Sherman and McGrew [11] and Balenson et al.
proposed a key management scheme by constru
an OFT. Fig. 1 illustrates a binary OFT. Every me
ber is uniquely assigned to a leaf node on the tree,
fixing the number of leaves to be the group sizeN .
For every noden in the tree, there is a node secretXn

and a node keyKn with Kn = g(Xn), whereg(·) is the
right half of a length-doubling pseudorandom functi
H(·) [11]. The root secret,X0, is the group key. Node
secrets are used to derive secrets of higher levels

Fig. 1. A binary OFT tree with 8 members. Each noden in an
OFT is associated with an unblinded node secretXn and a node
key Kn, whereKn = g(Xn) with g(·) being the right half of a
length-doubling pseudorandom functionH(·) [11]. Node keys are
not shown in the figure except for one leaf node.f (Xn) is blinded
node secret, wheref (·) is the left half ofH(·). The node secret o
an interior node and the root are computed as XOR of blinded n
secrets of all its children. For example,X2.1 = f (X3.1) ⊕ f (X3.2).
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lower levels, and node keys are used to encrypt and de-
crypt rekey messages. There are two versions of a node
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secret: unblinded node secretXn and blinded node se
cretf (Xn), wheref (·) is the left half ofH(·) [11].

A member is assigned the unblinded node secre
its associated leaf and all blinded secrets of the
lings of every node along the path from its leaf
the root. Therefore, it can compute all the unblind
node secrets and thus node keys along its path to
root and decrypt necessary rekey messages. In aa-
ary (a > 1) key tree, there are(a − 1) siblings to a
node on each level and the height of the tree is loga N ,
hence, a member needs to store[1 + (a − 1) loga N]
keys. For example, memberM1 in Fig. 1 has to store
{X3.1, f (X3.2), f (X2.2), f (X1.2)}.

The rekey operation after a member revocation
more expensive than that of a member addition [1
hence we consider only member revocation when e
uating the key update communication overhead. In
OFT scheme, if a member is revoked from the gro
its leaf secret becomes invalid and needs to be
dated, and all node secrets along the path from
leaf to the root have to be recomputed. For exam
whenM1 in Fig. 1 leaves the group, the GC choos
a new node secretX′

3.1, and computes new blinde
node secretsf (X′

3.1), f (X′
2.1), f (X′

1.1). To enable
the remaining valid members to obtain the necess
new node secrets, the GC broadcasts{EK3.2(f (X′

3.1)),
EK2.2(f (X′

2.1)), EK1.2(f (X′
1.1))}, whereEK(m) de-

notes the encryption of the messagem using keyK.
The number of rekey messages with one key per m
sage is(a − 1) loga N .

Note that the GC needs to store at least the n
secrets of every member in an OFT scheme, and h
by adjusting the number of leaves in the tree, we
control the GC storage. One approach [2,8] is to as
multiple members to a leaf node of ana-ary tree, to
reduce the number of tree leaves and thus GC stor

2.2. Hybrid trees

In order to reduce the GC storage, authors in
proposed to divide the group ofN members into clus
ters of sizeM with each cluster assigned to a uniq
leaf node of an OFT. Then there are�N/M� clusters,
and we need to build an OFT of height loga�N/M�.
For simplicity, we assumeN is a multiple ofM. Fig. 2
illustrates a binary hybrid OFT. We notice that the h
.

Fig. 2. A binary hybrid OFT with group sizeN = 12 and cluster size
M = 3. A hybrid OFT consists of a base OFT tree (everything ab
the dotted line) and clusters (below the dotted line). Each clu
assigned to one leaf node of the OFT. A minimal storage key m
agement scheme is used within each cluster. Note that there
leaf nodes in the base OFT, but 12 leaf nodes in the hybrid tree

brid OFT structure consists of two parts, a base OF2

and clusters. An OFT scheme is used as an in
cluster key management scheme to limit key upd
communication, and a minimal storage scheme [2
used as an intra-cluster scheme to reduce GC sto
requirement.

In the hybrid tree presented in Fig. 2, a user need
store(1+ (a−1) loga

N
M

) node secrets required by th
base OFT scheme, plus one KEK required by the m
imal storage scheme withinthe cluster. For example
memberM1 in Fig. 2 stores{X2.1, f (X2.2), f (X1.2)}
as required by the base OFT andX1 by the mini-
mal storage scheme. WhenM1 is deleted, the key
along the path from its base OFT leaf to the ro
need to be updated. The GC chooses a newX′

2.1 and
broadcasts{EK2(X

′
2.1),EK3(X

′
2.1)} to update keys in

the cluster, and{EK2.2(f (X′
2.1)),EK1.2(f (X′

1.1))} for
the base OFT. Therefore, the total number of key
date messages per member leaving, denoted byC, is
(a − 1) loga

N
M

for the base OFT plus(M − 1) for the
cluster, leading to:

C = M − 1+ (a − 1) loga

N

M
. (1)

In a minimal storage scheme, the GC uses a se
key, which we call a seed, as an index of a pseu
random function to generate keys for each user. Th
fore, in a hybrid OFT, the number of keys stored by

2 In the rest of the paper, we refer to the OFT used in a hy
model as a base OFT, and to the original OFT scheme as the
scheme.
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GC, denoted byS, computed as the number of leaves
of the base OFT plus seeds for(N/M) clusters, is
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The update communication of (1) and also the left-
hand side of (5), is a convex function ofM and attains
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S = 2N

M
. (2)

3. Minimization of center storage under
communication constraint

We want to design a hybrid OFT with the min
mal center storage by choosing the optimal cluster
M, while keeping the update communication unde
given constraint. Based on the computation of the
update communication (1) and center key storag
(2), we formulate the constrained optimization as:

minimize

(
2N

M

)
w.r.t. M (3)

subject to the communication constraint:

M − 1+ (a − 1) loga

N

M
� β(N), (4)

whereβ(N) is the constraint on the number of rek
messages per update and is an application depen
design parameter. We note thatβ(N) is general to rep
resent an arbitrary constraint on the rekey messa
However, to have feasible solutions,β(N) must sat-
isfy the inequality given later in (6).

Note that the constrained optimization given by
and (4) allows explicit derivation of the optimal clust
size for a given communication constraint, howev
such derivation is not readily attainable from [2] whe
the product of the GC storage and update commun
tion is given as�(N).

Theorem 1. The optimal cluster size M that min-
imizes the storage function S = 2N

M
, while satisfy-

ing the update communication budget C = M − 1 +
(a −1) loga

N
M

� β(N), is obtained by the largest root

of the equation M − λ lnM = µ, where λ = (a−1)
lna

and
µ = 1+ β(N) − (a − 1) loga N .

Proof. Since the storage is a monotonically decre
ing function ofM, the largest value ofM satisfying
the update communication constraint will be the
lution. Hence, the optimal value of the cluster size
computed by

M∗ − λ lnM∗ + λ lnN − 1 = β(N). (5)
t

.

its minimum value[λ(1 + ln N
λ
) − 1] at M = λ. The

factor β(N) must satisfy the following inequality t
solve (5),

β(N) �
[
λ

(
1+ ln

N

λ

)
− 1

]
(6)

� log2 N + 1.914. (7)

The equality of (7) is achieved ata = 2. After some
algebra, it can be shown that for large values ofN , the
asymptotic lower bound ofβ(N) approaches(a − 1) ·
loga N . Eq. (5) can then be rewritten as:

M∗ − λ lnM∗ = µ. � (8)

Solution to OFT design problem. The fixed-point
equation (8) is a contraction mapping in the range
interest[λ,∞]. We set the initial value ofM to be
M0 = µ. After some algebra, a series approximat
to M is given by:

M∗ = µ

∞∏
i=1

(
1+

(
λ

µ

)i

lnµ

)
. (9)

The asymptotic value ofM whenN → ∞, denoted by
M∞, is given by:

M∗∞ = lim
N→∞ µ

∞∏
i=1

(
1+

(
λ

µ

)i

lnµ

)

= lim
N→∞

[
µ + λ lnµ + O

(
lnµ

µ

)]

= µ + λ lnµ

= 1+ β(N) − (a − 1) loga N

+ (a − 1) loga

[
1+ β(N) − (a − 1) loga N

]
.

(10)

WhenN → ∞, the largest root of Eq. (5) converges
M∞, and grows as O(logN). We can derive the sam
solution using Newton’s method. By settingM0 = µ,
the first-order approximation isM1 = µ + λ lnµ. Let-
ting N → ∞ yields the same solution as (10).

The asymptotic optimal cluster sizeM∗∞ (10) is
monotonically decreasing with respect toa when
µ � N . First, we note thatλ = (a−1)

lna
> 0 is increasing

with a andµ = 1 + β(N) − λ lnN > 0 is decreasing
with a, i.e., ∂λ

∂a
> 0 and ∂µ

∂a
< 0. Whenµ � N , which
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in most cases holds due to the fact that the communi-
cation budgetβ(N) is normally stringent, then

r-
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Hybrid OFT design steps.
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[2],

GC
an

g

∂M∗∞
∂a

= ∂µ

∂a
+ ∂λ

∂a
lnµ + λ

µ

∂µ

∂a

<
∂µ

∂a
+ ∂λ

∂a
lnµ

= −∂λ

∂a
lnN + ∂λ

∂a
lnµ � 0.

Therefore,a = 2 maximizesM∗∞ and thus minimizes
the center storage whenµ � N .

The corresponding GC storage forN → ∞, de-
noted byS∞, is

S∞ = 2N

µ + λ lnµ




= 2N if β(N) = λ lnN,

≈ 2N
(β(N)−(a−1) loga N)

otherwise.

(11)

We note that forβ(N) = λ lnN = (a − 1) loga N ,
which is the communication cost for an OFT, theS∞
of a hybrid OFT is 2N , which agrees with the GC sto
age in an OFT. When the update communication
the hybrid OFT is constrained to grow the same or
as an OFT, i.e.,β(N) = O(logN), the constraint opti-
mization leads to the optimal growth of the GC stora
as O( N

logN
) which is far better than O(N) growth.

The hybrid model presented in [2] achieves
same level of scalability without optimization. How
ever, [2] did not present any explicit formula to com
pute the optimal cluster size as we have in (9). We n
present an explicit design procedure based on our
sign solution.

Table 1

The GC storage reduction and key update communication increase
(1) Initial design data: group sizeN , maximum allow-
able rekey messages per updateβ(N), and degree
of the treea (chosen to bea = 2 if not specified
since a binary OFT andM∗∞ jointly minimize the
GC storage).

(2) Check the condition given in (6). If satisfied, go
step 3. Otherwise, the design is not feasible.

(3) Compute the optimal cluster sizeM using (9),
whereλ andµ are defined in Theorem 1.

(4) Construct a hybrid tree of degreea and cluster
sizeM.

4. Design examples

As a design example, we have a group size ofN =
1,000,000, and a constraint on the number of rek
messagesβ(N) = 40 and choose the degree of the t
a = 2. UsingM = O(logN) given in [2] and choosing
base to be 2, the computed cluster sizeM is approx-
imately 20. Based on (1) and (2), a binary tree w
cluster size 20 requires 100,000 keys to be store
the GC, while the number of rekey messages is ab
35, which is less than 40. If we use (9) to calcul
the optimal cluster size, we haveM∗ = 25 and the GC
storage is 80,000 keys with 40 messages per upd
We note the optimal cluster sizeM∗ = 25 achieves fur-
ther reduction in GC storage by 20% compared to
while maintaining the communication constraint.

Table 1 presents a numerical comparison of
storage and key update communication between
OFT, the hybrid OFT [2], and the hybrid OFT usin
of hybrid OFT schemes with asymptotic optimal cluster size compared to
m
OFT schemes, and hybrid OFT schemes in [2] for different initial design data (degreea, group sizeN , communication (comm.), and maximu

(max.) allowable rekey messages per updateβ(N))

Degreea,
group sizeN ,
max. allowable
messagesβ(N)

Hybrid OFT with optimal cluster sizeM∗ Comparison with OFT Comparison with hybrid OFT [2]
M = O(logN), base chosen to bea

M∗∞ by (10) GC storage update comm. GC storage
reduction

update comm.
increase

GC storage
reduction

update comm.
increase

(2,210,17) 10 17 188 90.0 36.2 8.4 4.8
(2,220,34) 18 34 1.12× 105 94.4 38.5 6.6 3.4
(3,210,19) 11 19 175 90.9 30.8 46.1 22.7
(3,230,59) 27 59 7.8× 107 96.3 34.6 30.7 15.4
(4,210,22) 12 22 167 91.7 27.2 59 26.0
(4,220,44) 20 44 1.01× 105 95.0 29.4 51 21.1
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the asymptotic optimal cluster value (10) for different
sets of parameters: degreea and group sizeN . To il-
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Horng demonstrated that when an evicted member col-
ludes with the next joined member, they can recover

ddi-
il-

to a
ey
ates
r by
ves

om-

on
he
ed
ed
r-
he
(3)
hy-
.,

ed

e
ang-
lustrate, we setβ(N) = (1 + λ) lnN which leads to
M∗∞ = 1+ lnN +λ ln(1+ lnN) andS∞ ≈ 2N

lnN
. From

columns 5, 6, 7, and 8 of the table, we note that
asymptotic optimal cluster sizeM∞ can lead to ove
90% reduction in GC storage compared to the val
obtained in [1], and on average 30% reduction co
pared to [2], with update communication increase
about 30 and 15%, respectively.

5. Related work and new developments

5.1. Hybrid models

Heyman et al. considered another hybrid tree mo
with clusters ofM members assigned to leaf nodes
a base key tree [5]. The intra-cluster scheme in
is a power set key management that assigns one
for each possible subset ofM members, resulting in
2M − 1 keys for M members and 2M−1 for each
member. The amount of update communication is
duced to 1+(a−1) loga

N
M

, because only one messa
within the cluster is needed to inform the remaini
members of the ID of the key to be used for revocat
of one or multiple members. However, key storage
quirements for both the center and the users incre
exponentially with respect to cluster size. In our stu
we minimize the center storage while increasing
communication cost by only a constant factor.

A hybrid tree model that trades off collusion r
silience for reduction in key storage and key upd
communication was proposed in [4], while we assu
perfect collusion resistance. Members are categor
into static and dynamic based on their duration
membership and level of trust [10]. Each static me
ber serves as subgroup manager for a cluster of
namic members, to achieve better “1affects n scalabil-
ity” [10] and to alleviate the management of mass jo
and leaves of dynamic members. We do not ass
such heterogeneity in member dynamics and trust

5.2. Security of OFT

Recently, after the submission of our paper, Ho
[6] identified a security weakness on the OFT [1,1
the group key used between the deletion and the a
tion. Ku and Chen [7] found out that such a vulnerab
ity is due to the fact that the blinded secrets known
removed member will be used in the future group k
establishment and proposed a remedy that invalid
all the blinded secrets known to a deleted membe
changing the leaf secrets. The improved OFT achie
collusion resilience at the expense of increasing c
plexity of rekeying.

Since the security of a hybrid OFT is dependent
that of the underlying OFT, the hybrid model using t
OFT [1,11] is subject to the collusion attack identifi
by Horng. However, adopting the solution propos
in [7] for a hybrid OFT, eliminates the security vulne
ability. Fig. 3 illustrates the collusion attack and t
remedy. The constrained optimization formulation
and (4) can be easily extended to the improved
brid OFT, by modifying the left-hand side of (4), i.e
the update communicationC. In the improved hybrid

Fig. 3. The collusion attack [6] on the hybrid OFT and the improv
OFT [7] as a remedy. Consider the scenario that memberM1 leaves
at time t1 and M12 joins at t2 with t2 > t1. Let X′

n and X′′
n de-

note the new secret of noden at t1 and t2. Before t1, M1 holds
node secretsX1, X2.1, and blinded secretsf (X2.2) andf (X1.2).
When M1 leaves att1, X2.1 is updated, and so areX1.1 and X0
due to bottom up key derivation in an OFT. However,f (X1.2)

known to M1 remains valid, i.e.,f (X′
1.2) = f (X1.2). Note that

X′
0 = f (X′

1.2) ⊕ f (X′
1.1) = f (X1.2) ⊕ f (X′

1.1). WhenM12 joins
at t2, node secretX2.4 is updated and so areX1.2 andX′

0. The rest
node secret remain the same fromt1 and hencef (X′′

1.1) = f (X′
1.1).

M12 is assignedX′′
12, X′′

2.4, f (X′
2.3) andf (X′

1.1). If M1 contributes
f (X1.2) andM12 offersf (X′

1.1), they can collectively computeX′
0

used during[t1, t2]. A remedy [7] is to rekey all the blinded nod
secrets known to a deleted member after each eviction by ch
ing leaf secrets. For example, upon deletingM1, not onlyX2.1 but
alsoX2.2 andX2.3 are changed. The update ofX2.3 invalidates the
f (X1.2) held byM1 and thus prevents the collusion attack.
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model, the update communication of deleting a mem-
ber is the cost to change its associated leaf secret, plus
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computation calls for further research. It is also
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the cost to update all the(a−1) loga
N
M

blinded secrets
it holds. Therefore, the update communication ov
head is

C =
(

(a − 1) loga

N

M
+ 1

)

×
(

M + (a − 1) loga

N

M

)
− 1.

Derivation of the analytical optimal clusterM∗ in the
improved hybrid OFT remains an open problem.

5.3. Lower bound on update communication

In [9], Micciancio and Panjwani established a tig
lower bound on the update communication in m
ticast key distributions as log2 N . The fact that the
bound matches one of the communication effici
schemes, OFC [3], up to a small additive consta
proves the optimality of this bound. Using the h
brid OFT, the lower bound of update communicat
(7) also matches the bound up to an additive cons
term. Superseding previous results including 3 log3 N

in [12], this bound [9] provides guidance in search
optimal key distribution schemes.

6. Conclusions

In this paper, we formulated the design probl
of a hybrid OFT key management scheme as a c
strained optimization problem in order to minimi
the center key storage under a key update comm
cation budget. We derived the optimal cluster sizeM∗
by solving the equation of the formM∗−λ lnM∗ = µ,
with λ and µ are model parameters. We presen
an explicit design algorithm using the optimal clus
size, when update communication is prespecified.
design methodology can be generalized to other
based key management schemes, such as LKH, O
and the improved OFT that are perfect collusion
silient, with proper adjustment of the expressions
center storage and update communication.

Compared to OFT, the hybrid OFT with the optim
cluster size achieves reduction in GC storage at the
pense of more rekey messages per update and
computation at the center. The tradeoff between ce
,

e

equally important to evaluate other practical perf
mance metrics such as cost of batch operations, re
chronization, rekeying for undetected compromise
the future study. It remains an open question wheth
is possible to develop a collusion resistant scheme
GC storage lower than O( N

logN
) while maintaining the

update communication as O(logN). Such a schem
may need exploration of additional relationships
tween keys, while preserving collusion resistance.
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