
2824 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 7, NOVEMBER 2001

An Information-Theoretic Approach for Design
and Analysis of Rooted-Tree-Based Multicast Key

Management Schemes
Radha Poovendran, Member, IEEE,and John S. Baras, Fellow, IEEE

Abstract—Recent literature presents several seemingly dif-
ferent approaches to rooted-tree-based multicast key distribution
schemes [6]–[8], [28], [29] that try to minimize the user key storage
while providing efficient member deletion. In this paper, we show
that the user key storage on rooted trees can be systematically
studied using basic concepts from information theory. We show
that the rooted-tree-based multicast key distribution problem can
be posed as an optimization problem that is abstractly identical
to the optimal codeword length selection problem in information
theory. In particular, we show that the entropy of member deletion
statisticsquantifies the optimal value of the average number of
keys to be assigned to a member. We relate the sustainable key
length to statistics of member deletion event and the hardware bit
generation rate. We then demonstrate the difference between the
key distribution on rooted trees and the optimal codeword-length
selection problem with an example of a key distribution scheme
that attains optimality but fails to prevent user collusion [7], [8].

Index Terms—Collusion, entropy, member deletion, multicast
security.

I. INTRODUCTION

M ULTICAST is a preferred communication model when
an identical message has to be delivered to multiple

intended receivers [24]. Multicast communication reduces
overheads of the sender as well as the network medium.
Many new real-time applications, such as stock quote updates,
Internet newscast, and distributed gaming, can all benefit from
multicast communication. Most of the commercial models will
have a single sender and multiple receivers. This is the model
of interest in this paper.

Ability to secure group communications from the rest of the
world is an important issue that needs to be addressed for the
wide deployment of many multicast (also noted in literature
as restricted broadcast) applications [1], [6], [10], [25], [26],

Manuscript received June 14, 1999; revised February 7, 2001. This work was
supported in part by the U.S. Army Research Laboratory under Contract ATIRP-
DAAL01-96-2-002, by DARPA under Contract F30602002510, by the National
Science Foundation under Contract ANI-0093187, and by NSA. The material
in this paper was presented in part at CRYPTO’99, Santa Barbara, CA, August
1999 and at the 1999 IEEE Workshop on Information Theory and Networking,
Metsovo, Greece, June 1999.

R. Poovendran is with the Department of Electrical Engineering, University
of Washington, Seattle, WA 98195 USA (e-mail: radha@ee.washington.edu).

J. S. Baras is with the Department of Electrical and Computer Engineering
and Institute for Systems Research, University of Maryland, College Park, MD
20742 USA (e-mail: baras@isr.umd.edu).

Communicated by D. R. Stinson, Associate Editor for Complexity and Cryp-
tography.

Publisher Item Identifier S 0018-9448(01)08969-6.

[28], [29]. Use of cryptography is a practical approach for se-
curing multicast communications over an untrustworthy net-
work medium [3], [18], [27]. When cryptography is used for se-
curing communications, a session-encrypting key (SEK) is used
to encrypt the data.

Since the data is distributed to multiple receivers, in order to
reduce the amount of encryption at the sender node and to min-
imize the amount of packets over the networks, every intended
receiver as well as the sender should share an identical SEK. In
order to ensure that only the valid members of the group have ac-
cess to the communications, the SEK needs to be changed when-
ever: a) the lifetime of the SEK expires, b) there is a change in
membership of the group, or c) one or more members are com-
promised.

The SEK needs to be updated under membership change for
the following reasons: a) when a new member joins, to ensure
that the new member has no access to the past communication of
the group and b) when a member departs or is deleted, to ensure
that the departed or deleted member does not have access to
future communications.

Ensuring that only the valid members of the group have the
SEK at any given time instance is the key management problem
in secure multicast communications [28], [29].

Since the group is distributed over the untrustworthy network,
whenever the SEK is invalidated, there needs to be another set
of keys called the key-encrypting keys (KEKs) that can be used
to encrypt and transmit the updated SEK to the valid members
of the group.

Hence, the key management problem reduces to the problem
of distributing the KEKs to the members such that at any given
time instant all the valid members can be securely reached and
updated with the new SEK.

DevelopingefficientKEK distribution algorithms and proto-
cols for secure multicast has been an active area of research for
the past three years. Among several techniques that are avail-
able, a virtual tree-based approach, independently derived by
Wallner, Harder, and Agee [28], and Wong, Gouda, and Lam
[29] has led to a family of key distribution schemes for secure
multicast [4]–[8]. This paper shows that these virtual tree-based
KEK distribution models can be studied using basic concepts
from information theory.

In this paper, we show that the rooted-tree-based KEK
distribution problem can be studied as a convex optimization
problem.We then show that this convex optimization problem
is abstractly identical to the optimal codeword length selection
problem from information theory. The main result is that the

0018–9448/01$10.00 © 2001 IEEE

POOVENDRAN AND BARAS: DESIGN AND ANALYSIS OF ROOTED-TREE-BASED MULTICAST KEY MANAGEMENT SCHEMES 2825

optimal KEKs to be updated by the group controller (GC)
under a member deletion is related to theentropy of member
deletion statistics. We also show that the rooted-tree-based
KEK distribution schemes in [28], [29] can be derived as a

– solution of our optimization. We also show where
the optimal codeword length selection problem and the KEK
distribution problem differ by showing that the Kraft inequality
that is necessary and sufficient [9] for optimal codeword-length
selection problem is only a necessary condition for the KEK
distribution problem.

We note that information theory has been used in the past to
study various aspects of cryptographic problems [15], [16], [19],
[26]. However, to our knowledge, this is the first paper to use the
basic results from information theory to analyze multicast key
distribution on the rooted trees.

The paper is organized as follows: Section II presents a re-
view of the non-tree-based key distribution approaches for se-
cure multicast communication and motivates the need foreffi-
cientsolutions. This section also shows that while the member
addition can be handled well by these methods, the member
deletion and illegal collaborations among members, called user
collusion in the literature [11], [14], poses challenges as group
size increases. Section III presents rooted-tree-based KEK dis-
tribution schemes and shows how the member deletion is han-
dledefficientlyby the rooted trees. Section IV presents the nec-
essary definitions and observations that will allow us to formu-
late the KEK distribution on the tree as an optimization problem.
Section V presents our formulation of the problem based on
member deletion statistics and shows that the KEK distribu-
tion on the rooted trees is an optimization problem. Section VI
presents a concrete example of a rooted tree that isefficientwith
respect to user storage but has user collusion problem.

Throughout this paper, we will use the term Group Controller
(GC) to denote the entity that manages the key distribution
problem. We will denote the group size by. We now describe
the non-tree-based KEK distribution schemes.

II. NON-TREE-BASED KEK DISTRIBUTION SCHEMES

We noted that since every member of the group shares the
same SEK, when the group membership changes, the SEK
needs to be updated. One inefficient but secure way to update
the SEK is to allow the GC to share a unique KEK with every
member. When there is a change in group membership, the GC
uses the individual KEK of every valid member to encrypt the
new SEK and update all the valid members. The cost of SEK
updates grows linearly with the group size.

In [13], a proposal called Group Key Management Protocol
(GKMP) was proposed. In this scheme, the entire multicast
group shares the same SEK and a group KEK. It is also
implicitly assumed that every member of the group shares a
unique KEK with the GC. When a new entity sends a “join”
request, the GC first establishes a shared KEK denoted KEK
unique to that member. The GC generates a new SEK denoted
SEK and a KEK that will be distributed to the entire group.
The GC then encrypts the SEKand the KEK with the old
KEK of the entire group and transmits. Every member except
the newly admitted one can decrypt the message and extract

the new SEK and KEK . The GC then encrypts the SEK
and KEK with KEK and transmits. This allows the new
member to update the SEKand KEK . Hence, the member
join event requires two encryptions under GKMP. When a
member is deleted, the current SEK and the KEK are known
to the deleted member. Hence, the old group KEK cannot be
used to update the new SEK and group KEK. The GC has to
individually contact every member and update the SEK and the
group KEK. Hence, under member deletion, the GC needs to
perform computations and communications whereas
every member stores only three keys.

Another extreme of the key distribution is to generatesub-
sets of members and assign a unique SEK to every subset. Every
member will need to store SEKs. When a member is
deleted, the index of the subset that contained all the valid mem-
bers except the deleted member is identified and transmitted. All
the members of that subset use the unique SEK of that subset
and continue the communication. For this model, under member
deletion, there is no need for update key encryption. When a new
member joins, the storage for every member goes up by a factor
of two under this model.

From the previous two examples, we note that there is a
tradeoff between the update messages under member deletion
and the number of keys to be stored.

In [20], a hierarchical clustering scheme was proposed to re-
duce the amount of key update messages under member dele-
tion. In this method, a given group is divided into clusters that
are locally controlled by a cluster controller (CC). Each cluster
has its own SEK and KEKs. Hence, any membership change
is contained within the cluster. This strategy relies on a set of
“trustable” intermediate nodes that can act as CCs. The CCs
control the intercluster communications.

In [1], a key distribution scheme based on core-based trees
(CBT) was proposed. The tree structure is also assumed to be a
physical one in nature. Hence, every intermediate tree node rep-
resents a member of the group. Any group member of the tree
is permitted to distribute the SEK and KEK shared by the entire
group. Clearly, allowing any member to distribute the SEK and
KEK reduced the computational overheads at the GC. However,
permitting any member to distribute the SEK and KEK required
placing same amount of “trust” on every member. Such an as-
sumption is too restrictive in practice.

Two independent seminal papers [28], [29] presented
rooted-tree-based KEK distribution schemes that are based on
building a virtual or logical tree hierarchy for key distribution.
These rooted trees do not depend on any trust assumption
about the logical node. The virtual tree-based solutions have
led to a family of solutions with seemingly differentefficient
values for the number of keys to be updated under member
deletion. We now present the review of the rooted-tree-based
key distribution.

III. REVIEW OF THE ROOTED-TREE-BASED KEY

DISTRIBUTION SCHEMES

The first use of rooted-tree-based key distribution approach
for secure multicast communication was independently pro-
posed in [28] and [29]. A rooted binary tree was used in [28]

2826 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 7, NOVEMBER 2001

Fig. 1. The logical key tree of [6]–[8], [28], and [29].

and key graphs were used in [29]. Both these approaches
construct a logical tree or a key graph based on the size of the
group without making any assumptions regarding the relation-
ship among the keys used. The key storage requirements of the
GC of these two schemes grow as while the key update
communications as well as the storage requirements of the
users grow1 as . We now discuss the rooted tree-based
key distribution schemes.

A. Distribution of Keys on the Tree

Fig. 1 presents a rooted binary key distribution tree for a
group with eight members. The logical tree is constructed such
that each group member is assigned to a unique leaf node of the
tree. Every node of the logical tree is assigned a KEK. The set
of KEKs assigned to the nodes along the path from a leaf node
to the root are assigned to the member associated with that leaf
node. For example, member in Fig. 1 is assigned key en-
crypting keys .

Since the root key is shared by all the members, if there is
no change in group membership, can be used to update the
SEK for all the members. We note that some of the tree-based
key distribution schemes [8] use the root key as the session key
as well as the group KEK. In the security area, use of same key
for different functionality is often prohibited to prevent security
breaches.

The tree-based structure also induces a natural hierarchical
grouping among the members. By assigning the members to ap-
propriate nodes, the GC can form desired hierarchical clusters
of members and selectively update, if needed, the keys of the
group. For example, in Fig. 1, members and
exclusively share the key . The GC can use the key to
selectively communicate with these members. The GC may de-
cide such clustering of the members on the tree based on appli-
cation-specific needs. Indeed, the GC can reach allsubsets
of users in a group of size . In order to be able to selectively
disseminate information to a subset of group members, the GC
has to ensure that the common key assigned to a subset is not
assigned to any member not belonging to that subset.

Using the notation to denote the encryption of mes-
sage with key , and the notation to de-
note the secure exchange of messagefrom to , GC can

1Recent literature presents approaches that make certain assumptions about
the relationship among the keys on ad-ary tree and significantly reduce the
group controller key storage requirements [6]–[8] while maintaining the user
key storage and the update communication asO(log N).

selectively send a messageto members by the
following transmission:

GC

If, however, the key is invalidated for any reason, GC
needs to update the invalidated key before being able to
use a common key for members and . The tree
structure allows this operation to be completed with two update
messages. The GC can do so by first generating a new version of

, denoted , and then performing two encryptions, one
with and the other with . The following two messages
are needed to update key to the relevant members of the
group:

GC

GC

B. Member Deletion in Rooted Trees

Since the SEK and the root KEK are common to all the
members in the group, they need to be invalidated each time
a member is deleted. Also, since more than one KEK may be
shared with other valid members, they need to be updated. In
the event where there is bulk member deletion, the GC has to:
a) identify all the invalid keys, b) find the minimal number of
valid keys that can be used to transmit the updated keys, and c)
update the valid members with the new keys.

The general principle behind the member deletion for a-ary
(in Fig. 1) is discussed below using member in Fig. 1
as an example. Member is indexed by the set of four keys

. Deleting member leads to inval-
idating these four keys and SEK, generating new key
encrypting keys, and updating the appropriate valid members
who shared the invalidated keys with member. When is
deleted, the following updates are necessary: a) all the member
need new root key and new session key SEK, b) members

– need to update , and c) member needs to
update .

The following observations can be made toward the rooted-
tree-based key distributions.

• Since each member is assigned
keys, deletion of a single member requires
keys to be invalidated.

• Since each node of the rooted tree is assigned a key, and
every member shares nodes with at least one more
member, the total number of KEKs to be updated under a
member deletion is .

• For a -ary tree with depth , the GC has to
store

number of keys. Setting leads to the binary tree for
which the required amount of storage is .
This result can be independently checked by noting that
a binary tree with leaves has nodes. Hence,
the GC has to store the SEK as well as KEKs,
leading to keys.

POOVENDRAN AND BARAS: DESIGN AND ANALYSIS OF ROOTED-TREE-BASED MULTICAST KEY MANAGEMENT SCHEMES 2827

Fig. 2. A generic key distribution tree.

In [7], [8], binary rooted-tree-based key distributions which
require2 the GC to store a total of distinct keys were
proposed. For a-ary tree, the approach in [7], [8] will require

keys to be stored at the GC. However, the number of
keys that need to be updated under a single member deletion re-
mains at as in [28], [29]. Hence, the results in [8] reduce
the storage requirements of GC by

(1)
number of keys without increasing the key storage requirements
at the end user node. When the tree is binary, the reduction in
storage due to approach in [7], [8] is . For large

, the reduction in storage is , but it comes at the cost of
additional security problems under multiple member deletion,
discussed later in Section VI.

IV. PRELIMINARY OBSERVATIONS

We first show the need to optimize the rooted tree using a
worst case example. Consider the binary rooted tree shown in
Fig. 2. Every member is assigned to a unique leaf node. We
assume that the group size is. In this tree, the average number
of keys to be updated after a member deletion is computed as

(2)

Hence, the average number of keys to be invalidated grows as
for this model. However, in [6]–[8], [28], and [29] a vir-

tual tree was built based on the group size. Every member
was assigned keys based on the observation that formembers,

keys are sufficient for a-ary rooted tree. For this model,
the average number of keys to be updated grows as .

From the results in [6]–[8], [28], and [29], we note that the
average number of keys to be updated is almost equal to the
average number of keys that are assigned to the deleted member
(except for the leaf node key). Hence, the average number of
keys to be updated (or stored by a user) can be considered as an
efficiency parameter for these multicast key distribution models.
The goal of this paper is to develop a systematic approach to
compute the optimal value of the average number of keys to be
updated by GC (or stored by a user). In order to compute the
optimal value of the average number of keys to be generated by
the GC, we study the member deletion process. We show that the
ability of the GC to reach every member under member deletion

2We will discuss the approach of [8] in Section VI.

in the rooted trees leads to a natural constraint that can be used to
compute this optimal value. We also show that the optimization
problem arising in the context of key assignment is abstractly
equivalent to the optimal codeword-length selection problem.

We first define the necessary terminology and proceed to for-
mulate the necessary optimization problem.

A. Cover-Free Key Distribution

In assigning keys to members, the GC needs to ensure that
every valid member can be securely reached under member
deletion. The GC also needs to make sure that illegal collab-
oration among two or more members does not enable them to
coverall the keys assigned to a valid member. This cover-free
property has been used in the context of broadcast encryption
and traitor tracing in [11], [14]. In the context of tree-based key
distribution, the cover-free property requires that regardless of
how many members are being deleted (or how many collude)
simultaneously, every valid member should be able to securely
communicate with the GC. We formally define the cover-free
property among sets below.

Definition: Given a collection of sets a
nonempty set is said to be cover-free if

(3)

where, , . When , there is no
cover-free key distribution for key set . For cover-free condi-
tion, .

B. User Indexing and Key Indexing

Let denote the binary user index
(UID) string where ’s take the value “” or “ .” In order to
delete a member, the GC has to have a lookup table that con-
tains a unique UID and the list of cryptographic keys assigned to
the member to be deleted. Deleting a specific member involves
deleting, and possibly updating, some of the keys assigned to
that member. Since the GC should be able to securely com-
municate with every valid member, after deleting one or more
members, every member should be assigned a unique set of keys
(keys need to be in one-to-one correspondence with the UID of
that member). Hence, if we concatenate the set of keys assigned
to a member and form a key index (KID),3 every member should
have a unique KID.

Although the KID and the UID need to be in one-to-one
correspondence, a KID needs to satisfy additional constraints
that a UID does not need to satisfy. We first illustrate this by
an example. Consider the alphabets used for UID gen-
eration and the keys used for KID generation. The
UIDs “ ” and “ ” can be generated and assigned uniquely to
two different members. The KIDs and , however,
cannot be assigned to two different members. If we do assign
them to two different members, the keys assigned to a member

3In forming the KID, we ignore the root key and the session key that are
common to all the members. Unless explicitly mentioned,we also ignore these
two keys in all the computations that follow.

2828 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 7, NOVEMBER 2001

can be completely covered by the keys assigned to the other
member.Although this is a special type of set covering resulting
from the permutations of the keys, this is crucial in defining the
KIDs.From this example, we note the following property of the
KIDs: Any permutation of the keys forming a KID will lead to
a KID that is completelycoveredby the original KID. We use
this property in formally defining the KID.

Definition: Key index (KID) of a member is a string
generated by the concatenation of the keys assigned to the
member , taken in any order. If the number of keys assigned
to member is denoted by , then there are possible
different KID strings that can be generated using thesekeys.
Given a KID, all the KIDs that are generated by permuting
and concatenating its keys are equivalent with respect to the
cover-free property. If the set of keys generating KIDis
denoted by , and the set of keys generating KIDis denoted
by , we denote KID KID if .

From Fig. 1, the member is assigned four KEKs
. Since is common to all the

members, it can be ignored in defining the KIDs. Hence, the
KID of is . Since there are six different ways
to concatenate these keys, there are five additional KIDs gener-
ated by permuting and concatenating the keys forming KIDs of

. This equivalence among the KIDs generated by permuting
a set of keys is a feature that separates the conventional UIDs
from KIDs.

C. Key Indexing and Kraft Inequality

We noted that in order for GC to securely communicate with
every valid member under member deletion, every member
should be assigned a unique UID as well as a KID. For a key
assignment on the rooted trees, cover freeness is the require-
ment that the KID (UID) of a member should not be aprefix
of the KID (UID) of any other member. On the rooted tree,
this condition can be mathematically stated using the Kraft
inequality.

Theorem 1 (Kraft Inequality for KIDs):For a -ary rooted
key tree with members and KIDs satisfying the prefix con-
dition, if we denote the number of keys forming the KID of
member by , for a secure multicast group with users,
the set satisfies the Kraft inequality given by

(4)

Conversely, given a set of numbers satisfying
this inequality, there is a rooted tree that can be constructed such
that each member has a unique KID with no prefixing.

Proof: Well known, and available in [9] and [12].

While this prefix-free condition is necessary and sufficient for
indexing a member using UID, this is only a necessary condition
for the KID to be cover-free. We first illustrate this difference.
Consider the set of keys used to form the
KIDs , and
assigned to members and respectively. It can
be verified that no KID is a prefix of another. Also, the KID

lengths satisfy the Kraft inequality since .
Since no KID is a prefix of another, if a key set of a single
member is deleted, there is at least one key in each of the re-
maining key sets that is not contained by the key set of the
deleted member. Hence, a single user deletion does not invali-
dateall keys of other members and the key assignment is prefix-
free. However, it can be verified that in the above given example,
the union of any two sets of KIDs will cover the keys forming
all other KIDs. Hence, collaboration or deletion of two or more
members will compromise the keys of all other members.

Hence, the prefix-free property and Kraft inequality are only
necessary for being able to reach a valid member under member
deletion.

We note that this result can be explained by the fact that the
Kraft inequality is a property exhibited by the tree structure and
is independent of the nature of the elements of KID.Hence, the
selection of KIDs satisfying the prefix condition is not sufficient
to safeguard against failure of the key distribution scheme under
member deletion or user collusion. We present an example [8]
later in Section VI.

D. Making KIDs Cover-Free

If a KID assignment is cover-free, it has to be prefix-free.
We showed that prefix-free does not imply cover-free. We now
pose a question,how to construct a prefix-free KID assignment
on the tree that is also cover-free?In order to provide a con-
dition that a KID is cover-free, we need to consider the defini-
tion of the cover-free condition given earlier. Since every valid
member needs to be able to securely communicate with the GC
under deletion of one or more members, even if all the
members are deleted, the remaining single member should be
securely reachable. In terms of the parameters given ear-
lier, setting leads to the cover-free condition for
the valid member with key set as

(5)

with . Since , the lowest possible value of
is , with the physical interpretation that the setshould

have at least one key that is different from the union of all other
key sets.

In order to construct the tree-based key assignment scheme
that satisfies this condition, we consider the manner in which the
members are assigned to a logical tree. In a logical tree of [28],
[29] each member is assigned to a unique leaf node. There is a
unique path from the leaf to the root of the tree. Every member
shares all the keysexceptthe leaf node key with at least one
more member. Hence, choosing the leaf node keys to be distinct
will make sure that the key set of member has at least one
element that is not covered by the union of all other key sets.

Hence, if wechoose all the leaf node keys to be distinct,
rooted-tree-based prefix-free KID assignment will benecessary
and sufficientto: a) prevent user collusion from completely
disabling the secure communication, and also b) reach a valid
member under deletion of arbitrary number of members. Since
there are leaf nodes, the number of keys to be stored by the

POOVENDRAN AND BARAS: DESIGN AND ANALYSIS OF ROOTED-TREE-BASED MULTICAST KEY MANAGEMENT SCHEMES 2829

GC grows as when there is no additional relationship
among keys.4

With these preliminary observations, we now show how to
minimize the average number of keys to be regenerated by the
GC under member deletion.

V. PROBABILISTIC MODELING OFMEMBER DELETION

Using to denote the length5 of the KID of member , we
note that in the rooted-tree-based key distribution model [28],
[29], member shares number of KEKs with two or more
other members. This count includes the rooted KEK and ex-
cludes the leaf node key of member. In the event the member

is deleted, the number of keys to be updated is also. Hence,
if we can minimize , this will minimize the user key storage.

In the rooted-tree-based key distribution of [28], [29], each
member shares keys (excluding the root key and the
SEK) with two or more members. At the time a member is
deleted, keys are to be updated and communicated to
other members. The only key that needs not be updated under
member deletion is the leaf node key of a deleted member.
Hence, we note that the user key storage and the keys to be
updated under member deletion grows as for the
rooted-tree-based key-distribution schemes in [28], [29] that
do not make use of the physical process of member deletion in
assigning the keys. We now show that the use of the statistics
of the member-deletion process will enable us to further reduce
the user key storage and hence the key update requirements of
the rooted-tree-based models [28], [29].

A. Relating Statistics of Member-Deletion Process to the Key
Distribution on the Rooted Tree

Let denote the probability of deletion of member .6

We assume that this probability is computable either empirically
or is knowna priori. This paper does not make an attempt to
develop methods for computing. Noting that every time a
member is deleted, all the keys assigned to that member are
deleted, we make the following observations.

• Since every member is assigned to a unique leaf node, and
every leaf node is also assigned a unique key, probability

of deletion of a member is identical to the proba-
bility of deletion of the leaf node key assigned to.

• Since every member has a unique KID and the KIDs are
formed by concatenating the keys assigned to a member,
the probability of deletion of member is identical to
the probability of deletion of the KID of member .

Hence, we note that the probability of deletion of a member is
identical to the probability of deletion of its node key as well as
its KID. Given the knowledge about the probability of member
deletion, we define theentropy of member deletionby the fol-
lowing formula.

4Reduction of the key storage requirements of the group controller as a sub-
linear function of group size was presented in [5] using pseudorandom func-
tions. In our study, we assume that the keys are distinct and have no relationship
among them.

5Recall that the number of KEKs except the root KEK is noted as the length.
6We use the term deletion in general to denote deletion, voluntary leaving,

and revocation under compromise.

Definition: The -ary entropy of the member deletion is

(6)

where is the probability of deletion of member . A word
of caution is in place since this formula of entropy is often used
to describe the rates in the source coding literature. We use it in
the context of its physical interpretation which is the amount of
uncertainty about the member deletion statistics.

Since the member deletion event and the leaf node key dele-
tion event have identical probabilities, the-ary entropy of the
member deletion event is the same as the entropy of the leaf key
deletion event. Similarly, the entropy of KID deletion is iden-
tical to the entropy of member deletion. We will use the term
entropy of member deletion event instead of entropy of leaf key
deletion or entropy of KID deletion since they are equivalent.

In summary, a main outcome of these observations is that the
entropy of the KID deletionis identical to theentropy of member
deletionwhich is a physically observable process, and can be
completely characterized once the entropy of member deletion
is known.

B. Assigning Optimal Number of Keys per Member

When a member is deleted with a probability , the group
controller has to generate and updatekeys that were shared
with other members. Hence, on average, the GC has to generate
and update

(7)

number of keys. This is also the average number of keys that a
member needs to be assigned. As noted earlier, we have chosen
not to count the session key and the root key that are updated
for every member deletion. The GC has to find an optimal key
assignment that will minimize the average number of keys to
be updated over the duration of the session. However, as noted
earlier, any key assignment needs to satisfy the Kraft inequality.
Hence, the optimization problem arising from the multicast key
distribution on the rooted tree models of [28], [29] is

(8)

subject to the constraint

(9)

This problem can be written as a Lagrangian optimization
problem as

(10)

where is a Lagrangian multiplier. This optimization problem
is identical to the well-known optimal codeword-length selec-
tion problem [9] for prefix coding in the context of information
theory. This problem is well-studied and the optimal strategy
yields the Shannon entropy of the random variable being coded
as the optimal codeword length [9]. Since the abstract mathe-
matical formulations are identical, we can use identical argu-

2830 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 7, NOVEMBER 2001

ments to derive the optimal number of keys to be assigned to a
member on the rooted tree. The derivation is standard [9], and
leads to the following conclusion.

In the context of key distribution on the rooted trees, the
optimal number of keys to be updated is the entropy of the
member deletion process.We summarize this result as Theorem
2 without repeating the proofs [9].

Theorem 2: Let denote the probability of deleting member
. Let the group size be . Let the degree of the rooted tree

of key distribution [28], [29] be . Then, for a rooted-tree-based
key distribution satisfying at least the Kraft inequality, the op-
timal average number of KEKs,7 denoted by ,
to be assigned to a member, is given by the-ary entropy

(11)

of themember deletionevent. Including the root key and SEK,
the optimal average number of keys per member is given by

. For a member with probability of deletion , the
optimal number of keys to be assigned (excluding the root key
and the session key) is computed from (10) as

(12)

The number of keys assigned to memberwith deletion prob-
ability , including the SEK and the root key, is given by

(13)

Although the UID and the KID assignments need to satisfy
a set of different requirements, the following features of key
assignment are a direct consequence of the optimization results
and hold for optimal KIDs as well as UIDs.

Lemma 2:

1) A member with higher probability of deletion should be
given fewer keys compared to a member with lower prob-
ability of being deleted. If , then

2) There must be at least two members with the longest KID
strings.

3) Since the number of KEKs to be regenerated by the GC
needs to be an integer and the value of may not be
an integer, thetrue average number of keys per member
differs from by a finite value. In fact, it differs from
the true value by at most one digit . If the member deletion
probabilities are -adic then the optimal value of the keys
to be regenerated is exactly .

Sketch of the Proofs:

1) The logarithm being a monotone function, if ,
then . Hence ,
leading to .8

7Excluding the root key and the session key.
8Since the members with higher probability of being deleted are assigned

fewer keys in this strategy, the GC can adaptively react to any possible coordi-
nated attack effort by members to increase the frequency of rekeying by simply
forcing deletion by leaving and joining at very high rates. The GC will be able
to assign a lower number of keys to members with higher probabilities of being
deleted. In the traditional models [28], [29], there is no explicit mechanism to
include this knowledge into the key distribution.

2) In order to prove this, we note that the KIDs need to be
unique with a minimum possible number of keys. Hence,
if there is only one member with the largest number of
keys on the rooted trees, then we can reduce the largest
number of keys held by at least one and still ensure that
all members have a unique set of keys assigned. However,
this reduction will contradict the optimality of the indi-
vidual KID lengths. Hence, at least two members should
be assigned the largest number of keys.

3) The proof follows by bounding the average number of
keys to be regenerated by the GC . It is
given below.

(14)

Hence, the KID length will be at most one unit more than
the entropy of member deletion. Since the SEK and the
root KEK are common to all the members, we note that
the average number of keys to be updated is at most three
more than the entropy of member deletion event.

C. Maximum Entropy and the Rooted-Tree-Based Key
Assignment

We now interpret the rooted-tree-based key distribution re-
sults reported in [7], [8], [28], and [29] with respect to the re-
sults derived in the previous subsection.

We showed that the average number of keys to be updated by
the GC is

We now try to find the maximum value of the average number
of keys to be generated. This problem is posed as

(15)

subject to the condition

(16)

This problem can be posed as the Lagrangian optimization
problem with respect to the variable

(17)

where is a Lagrangian multiplier. Some algebra yields the
solution to this problem as . The members of the group
have equal probability of being deleted. For this value of the

POOVENDRAN AND BARAS: DESIGN AND ANALYSIS OF ROOTED-TREE-BASED MULTICAST KEY MANAGEMENT SCHEMES 2831

probability of member deletion, the maximum entropy value is
given by

When the member deletion probability of is , the
optimal number of keys to be assigned to is .

However, the schemes in [7], [8], [28], [29] assign
keys per member on the tree. Since we showed that the entropy
is the average number of keys to be assigned to a member, and
the entropy is maximized when all the members have the same
probability of being deleted, the key assignments in [7], [8],
[28], [29] correspond to the strategy of assigning maximal av-
erage number of keys to every member.

In terms of the design of the rooted-tree-based schemes, what
we have shown is that when there is no prior knowledge about
the probabilities of member deletion, the assignment of
number of keys per member corresponds to the optimal strategy
that assumes the worst case in terms of the average number of
key assignments. This can be written as the following –
problem:

(18)

The following theorem summarizes the problem and the solu-
tion.

Theorem 3: For a -ary rooted-tree-based multicast key dis-
tribution scheme with members and a member with prob-
ability of deletion , the average number of keys to be regen-
erated by the GC is upper-bounded by up to addition of
a constant (the session key). This upper bound is reached when
the entire group has identical probability of being deleted.

D. Impact of Using Incorrect Probability on Key Length

In Fig. 2, we presented the effect of an unbalanced rooted
tree on the number of keys to be assigned and to be invalidated.
We note that this quantity can be completely characterized using
basic results from information theory as well. Let us assume that
the true deletion probability of member is and the used
probability of deletion for member is . Hence, the optimal
number of keys to be assigned to , denoted by , is given by

(19)

On average, the number of keys that are assigned due to this in-
correct computation, denoted by, is bounded above and below
by

(20)

where

is the information divergence [9], which is a measure of how
far apart are two distributions. Hence, on average, the redun-
dant number of keys assigned due to incorrect probabilities is

. This is stated as a theorem below.

Theorem 4: Let and denote the true and assigned
deletion probabilities of member , respectively. The average
number of redundant keys to be assigned on the rooted-tree-
based key distribution is , where

E. Bounds on Average KeyLength

We now relate the hardware bit generation rate to the entropy
of member deletion. We noted that the average number of KEKs
to be regenerated by the GC is given by the entropy of member-
deletion process. Since the total number of keys to be generated
by the GC also includes the session key SEK, on average, the
total number of key digits generated by the GC is . If we
assume all the keys have identical length, and GC generates
digits per unit of time, then the number of digits to be generated
by the GC and the key length are related by the inequality

(21)

Hence, the average key length is bounded by

(22)

When a member with deletion probability is deleted,
from (14), the GC needs to update keys. Since

will attain its maximum value when attains its
smallest value , the maximum number of keys need
to be updated when a member with probability of deletion

is deleted. Hence, the bound on key length is

(23)

Combining (22) and (23), we have the following.

Theorem 5: For a rooted-tree-based multicast key distribu-
tion scheme in [28], [29], with a group size of and member
deletion probabilities , if the bit generation rate of GC
is , then the sustainable key length that can be updated in unit
time is

(24)

F. Relationship to the One-Way-Function-Based Key Selection
Schemes on the Tree

In [28], [29], there is no specification about the manner in
which the KEKs are generated. New results on using pseudo-

2832 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 7, NOVEMBER 2001

random one-way functions for KEK constructions on the rooted
tree were reported in [2], [6].

In [5], a hybrid scheme that combines the scheme that clusters
a multicast group into clusters of size and building a rooted
tree with a unique cluster at each leaf node was proposed. Each
cluster member is assigned a unique key that is generated using
a pseudorandom function [17], [21] with a common seed [5],
thus, reducing the storage for members of the cluster to a
single seed. Since each cluster is assumed to be of uniform size

, for a group of size , there are clusters. Since each
cluster is assigned to a unique leaf node of the rooted tree of
degree , the depth or the height of the tree is

(25)

For the cluster of size , the number of keys to
be stored by the GC is

(26)

Since there cannot be any more entropy than that provided by
themember revocation event, our formulation based on entropy
will yield the lowest average cost of key generation when there
are no additional relationships among keys. The only way to fur-
ther reduce the average communication or storage overhead in
key generation is to introduce relationships (for example, using
pseudorandom functions) among the keys generated as in [5],
[6].

We do, however, note that in our formulation, since we
minimize the average number of keys assigned based on the
member-deletion probabilities, the optimal KID length
of member will be larger than when the deletion
probability is small. Hence, the number of keys to be updated
upon deletion of member will be quite large.

Hence, the use of additional relationships among the KEKs,
such as the manner in which they are generated, can help in
further reducing the amount of keys to be stored by the GC.
Our approach, however, does not attempt to minimize the key
storage of GC, which was one of the main results in [5].

VI. A ROOTED-KEY DISTRIBUTION WITH USERCOLLUSION

We now describe a rooted-tree-based key distribution scheme
[8] that satisfies the maximum entropy bound for the
number of keys assigned to a member while attempting to min-
imize the storage of the GC.9 We use this scheme [8] to illus-
trate that while a key distribution scheme may attain optimality
in user storage, it may not be collusion-free.

Let denote a binary UID of the members.
Each of the bit is either a zero or a one. There arepossible
different UIDs for this sequence. In [7], [8], the following direct
mapping between the KIDs and the UIDs was proposed. In [7],
[8], when , 3 bits are needed to uniquely index
all eight members. The authors then proceeded to note that since
each bit of the UID takes two values, these two values can
be mapped to a pair of distinct keys. For example, when

9Minimizing the GC storage with additional constraints has been studied in
[5], where additional assumptions have been made about the key generation and
there is an increase in the amount of keys also stored by every member.

TABLE I
A KEY DISTRIBUTION WITH COLLUSION IN [7], [8]

Fig. 3. Key distribution in [7] and [8].

is “ ,” it is represented by key , and when it is “ ,” it is
represented by . Table I reproduces the mapping between
the index (ID) bit number and the key mapping for the case in
[7] for where, the key pair represents the
two possible values of the bit of the member index.

Fig. 3 presents the corresponding binary tree for the key as-
signment. This rooted tree has the special structure that at any
given depth from the root, two new keys are used. At depth
from the root, the two new keys and
are duplicated times. For example, at depth two from the
root, KEKs and are duplicated across the tree twice.
The total number of keys to be stored by GC in this scheme
is . For a -ary rooted tree, the total number of keys
to be stored by GC in this scheme is . Every member
has to store only keys (excluding the root key and the
session encryption key) and the GC needs to regenerate
keys under member deletion. Hence, this scheme is indeed an
optimal solution with respect to a single member deletion and
also has significantly less storage for the GC than that of sem-
inal schemes.

Although the total number of keys to be stored by the GC
is , deletion of more than one member may bring this
key distribution scheme to halt. In the case of Fig. 3, this hap-
pens if the members and (or and) need to be
deleted. The KID of member is and the KID
of member is . The union of the keys forming
these two KIDs includes all the keys used for key distribution
on the tree. The corresponding keys to be deleted are shown in
Fig. 4. Hence, if these two members need to be simultaneously
deleted, the GC is left withno keyto securely communicate with
the rest of the valid members. The compromise recovery under
simultaneous deletion of and requires that theentire
group rekey itself.

POOVENDRAN AND BARAS: DESIGN AND ANALYSIS OF ROOTED-TREE-BASED MULTICAST KEY MANAGEMENT SCHEMES 2833

Fig. 4. Deletion of membersM ,M in [7], [8].

Apart from member deletion, the key assignments in [7], [8]
and their variations also allow the members to collaborate and
compromise the system. We now interpret the user collusion on
the rooted tree in [7], [8].

A. Interpretation Based on Minimal Number of Key
Requirements

In Section IV-D, we noted that the sufficient condition for
cover freeness requires that all theleaf nodes are assigned
distinct keys. Since the total number of keys to be stored in
[8] is for a group of size , this model can be made
cover-free if

(27)

(28)

At equality, the group size should be a power of. Setting
, where is an unknown to be determined, leads to the

equation

(29)

(30)

We note that satisfies this equation with for
. Table II summarizes the values ofthat satisfy

for different values of .
The proof consists of two steps. The first step is to show that

if at , , then for all , , and
hence . The second part of the proof is to show that for

, are feasible solutions and for , is
the only solution.

We first prove that if , , then

(31)

(32)

(33)

(34)

TABLE II
VALUES OFk THAT SATISFY k = d

The first three steps are self-explanatory and the last step follows
from inductive expansion of inequalities on. Hence, we have
shown that if at , , then , .
This in turn implies that there is no integer for which

. Since the integers satisfy partial order, and
is an integer, if for and , , then

(35)

We note that for , satisfy . When
, if , . Hence, the group size does not

satisfy inequality (24). From inequality (28), we can conclude
that for a binary tree, if the group size is more than four, there
cannot be a collusion free key distribution using the method in
[8].

If we set and , we have

Hence, for , , there is no integer which
satisfies the inequality (24). Making use of the fact that if

then , we conclude that for
, the only value of for which holds is .

Hence, we have shown that the key distribution in [8] will be
collusion-free if the group size is identical to the degree of the
rooted tree.

B. Another Interpretation of the Collusion Problem

The second interpretation of the collusion problem in [8] is
based on the notion of sets, and is also discussed under the cat-
egory of complementary variables in [10], [28]. In complemen-
tary variable approach, every member of the group is identified
by a unique key. This unique key is distributed to everyone in
the group excluding the member identified by that key. When a
member is deleted, the index of the member is broadcast. For the
next session, all the valid members set the key corresponding to
the deleted member as the new session key. Under this model,
for a set of members, all the members will have keys
that correspond to other members and no member will have the
key corresponding to itself. If we consider any two members,
the union of the keys stored by them will cover the keys stored
by the entire group. Hence, this key assignment does not scale
beyond deletion of one member. The scheme in [8] can be in-
terpreted as a complementary variable approach as detailed in
what follows.

If we use the notation to denote the unique key pair
representing the two possible binary values taken by the UID bit

, we note that the collusion or compromise of two members
holding keys and , respectively, will compromise the in-
tegrity of the key pair . In a -ary rooted-tree-based key
distribution in [8], each digit can take possible values between

and the sum of these values is given by . Let the
value of the th-bit location of a member be denoted as .

2834 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 7, NOVEMBER 2001

Then, a set of members can collude and compromise all the
keys corresponding to the bit locationif

(36)

VII. CONCLUSION AND DISCUSSION

This paper showed that the recently proposed [28], [29]
rooted-tree-based secure multicast key distribution schemes
can be systematically studied using basic information-theoretic
concepts. By using the member deletion event as the basis
of our formulation, we showed that the optimal number of
keys assigned to a member is related to theentropy of the
member deletion statistics. We derived the necessary and
sufficient condition for the key assignment to be collusion-free
and in general “cover-free.” In particular, we showed that the
cover-free condition on the rooted trees requires that the leaf
node keys be all distinct when there is no additional relationship
among keys. Under this condition, the storage requirements
of the group controller is linear in group size. We then
proved that the currently available known rooted-tree-based
strategies [28], [29] and their variations [7], [8] correspond
to the maximum-entropy-based key assignment among all
the rooted-tree-based strategies. Hence, the key distribution
schemes in [7], [8], [28], and [29] correspond to a –
key assignment strategy. We also derived a relationship between
the average key length, probability of member deletion event,
and the hardware digit generation rate.

ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers for useful
suggestions that significantly improved the presentation on the
cover-free conditions. They also wish to thank the reviewers for
suggestions to highlight the difference between our approach
and the ones using pseudorandom function trees, [5]. R. Pooven-
dran would like to acknowledge the many useful discussions
with Dr. E. Harder that helped during the course of this work
and revision. R. Poovendran would also like to thank Prof. A.
Ephremides and Prof, J. Massey for providing early references
on the rooted-tree-based analysis of algorithms.

REFERENCES

[1] A. Ballardie, “Scalable multicast key distribution,” report, RFC 1949,
May 1996.

[2] D. Balenson, D. A. McGrew, and A. Sherman, “Key establishment in
large dynamic groups: One-way function trees and amortized initializa-
tion,” IETF Draft, draft-balenson-groupkeymgmt-oft-00.txt, Feb. 1999.

[3] M. Brumester and Y. Desmedt, “A secure and efficient conference key
distribution system,” inAdvances in Cryptology—Eurocrypt’94 (Lec-
ture Notes in Computer Science). Berlin, Germany: Springer-Verlag,
1994, vol. 950, pp. 275–286.

[4] R. Canetti and B. Pinkas, “A taxonomy of multicast security issues,”
Internet draft, Apr. 1999.

[5] R. Canetti, T. Malkin, and K. Nissim, “Efficient communication-storage
tradeoffs for multicast encryption,” inProc. Eurocrypt 99, pp. 456–470.

[6] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas,
“Multicast security: A taxonomy and efficient reconstructions,” inProc.
IEEE INFOCOM’99, pp. 708–716.

[7] G. Caronni, M. Waldvogel, D. Sun, and B. Plattner, “Efficient security
for large and dynamic groups,” inProc. 7th Workshop Enabling Tech-
nologies. Cupertrino, CA: IEEE Comp. Soc. Press, 1998.

[8] I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and D. Saha, “Key man-
agement for secure internet multicast using Boolean function minimiza-
tion techniques,” inProc. IEEE INFOCOM’99, pp. 689–698.

[9] T. Cover and J. Thomas,Elements of Information Theory. New York:
Wiley, 1991.

[10] A. Fiat and M. Naor, “Broadcast encryption,” inAdvances in Cryp-
tology—CRYPTO’92 (Lecture Notes in Computer Science). Berlin,
Germany: Springer-Verlag, 1993, vol. 773, pp. 481–491.

[11] E. Gafni, J. Staddon, and Y. L. Yin, “Efficient methods for integrating
traceability and broadcast encryption,” inAdvances in Cryp-
tology—CRYPTO’99 (Lecture Notes in Computer Science). Berlin,
Germany: Springer-Verlag, 1999, vol. 1666, pp. 372–387.

[12] R. Gallager,Information Theory and Reliable Communication. New
York: Wiley, 1968.

[13] H. Harney and C. Muckenhirn, “GKMP architecture,”Request for Com-
ments (RFC), vol. 2093, July 1997.

[14] R. Kumar, S. Rajagopalan, and A. Sahai, “Coding constructions
for blacklisting problems without computational assumptions,” in
Advances in Cryptology—CRYPTO’99 (Lecture Notes in Computer
Science). Berlin, Germany: Springer-Verlag, 1999, vol. 1666, pp.
609–623.

[15] J. L. Massey, “An information-theoretic approach to algorithms,” inIm-
pact of Processing Techniques in Communications, ser. NATO Advanced
Study Institutes Ser. E91, 1985, pp. 3–20.

[16] H. N. Lendal, Y. J. B. Khun, and J. L. Massey, “An information-the-
oretic approach to homomorphic substitution,” inAdvances in Cryp-
tology—Eurocrypt’89 (Lecture Notes in Computer Sceince). Berlin,
Germany: Springer-Verlag, 1990, vol. 434, pp. 382–394.

[17] M. Luby, Pseudo-Random Functions and Applications. Princeton, NJ:
Princeton Univ. Press, 1996.

[18] A. Menezes, P. van Oorschot, and A. Vanstone,Handbook of Applied
Cryptography. Boca Raton, FL: CRC Press, 1997.

[19] U. M. Maurer, “Secret key agreement by public discussion from
common information,”Trans. Inform. Theory, vol. 39, pp. 733–742,
May 1993.

[20] S. Mittra, “Iolus: A framework for scalable secure multicasting,” in
Proc. ACM SIGGCOM’97, Sept. 1997, pp. 277–288.

[21] M. Naor and O. Reingold, “From unpredictability to indistinguisha-
bility: A simple construction of pseudo-random functions from MACs,”
in Advances in Cryptology—Crypto’98 (Lecture Notes in Computer
Science). Berlin, Germany: Springer-Verlag, 1998, vol. 1462, pp.
267–282.

[22] R. Poovendran and J. S. Baras, “An information theoretic approach for
design and analysis of rooted-tree based multicast key management
schemes,” inAdvances in Cryptology—CRYPTO’99 (Lecture Notes in
Computer Science). Berlin, Germany: Springer-Verlag, 1999, vol.
1666, pp. 624–638.

[23] , “An information theoretic approach to multicast key manage-
ment,” in Proc. IEEE Information Theory and Networking Workshop,
Metsovo, Greece, June 1999.

[24] B. Quinn, “IP multicast applications: Challenges and solutions,” Internet
draft, Nov. 1998.

[25] M. Steiner, G. Tsudik, and M. Waidner, “Diffie–Hellman key distribu-
tion extended to group communication,” in3rd ACM Conf. Computer
and Communications Security, 1996.

[26] D. R. Stinson and T. V. Trung, “Some new results on key distribution
patterns and broadcast encryption,”Des., Codes Cryptogr., 1999.

[27] D. R. Stinson,CRYPTOGRAPHY: Theory and Practice. Boca Raton,
FL: CRC, 1995.

[28] D. M. Wallner, E. J. Harder, and R. C. Agee, “Key management for
multicast: Issues and architectures,” Internet draft, Sept. 1998.

[29] C. K. Wong, M. Gouda, and S. S. Lam, “Secure group communications
using key graphs,”IEEE/ACM Trans. Networking, vol. 8, pp. 16–31,
Feb. 2000. Also inProc. ACKM SIGCOMM’98, Vancouver, BC,
Canada, Sept. 2–4, 1998.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

