
108 IEEE COMMUNICATIONS LETTERS, VOL. 6, NO. 3, MARCH 2002

Design of Secure Multicast Key Management
Schemes With Communication Budget Constraint

Mingyan Li, R. Poovendran, Member, IEEE, and C. Berenstein

Abstract—We study the problem of distributing cryptographic
keys to a secure multicast group with a single sender and multiple
receivers. We show that the problem of designing key distribution
model with specific communication overhead can be posed as a
constraint optimization problem. Using the formulation, we show
how to minimize the number of keys to be stored by the group con-
troller. An explicit design algorithm with given key update commu-
nication budget is also presented.

Index Terms—Group communications, key management, multi-
cast, optimization.

I. INTRODUCTION

FOR point-to-multiplepoint group communications, multi-
casting is more efficient than multiple unicasts because it

allows simultaneous delivery of data to multiple users and hence
reduces computational overhead of a sender and network band-
width requirement. However, the mainstream adaption of mul-
ticast communication depends on the ability of the sender in
securing the communication so that only the intended end re-
ceivers have access to data. The standard approach to control
access to multicast communication is to use cryptography with a
common shared session encryption key (SEK, also called traffic
encryption key) which is known only by valid members at any
time instant. Whenever there is a change in group membership,
the SEK has to be updated to protect past, present, and future
communications. When a member is removed from the group,
the current SEK is compromised and cannot be used to encrypt
the future data. To updateonlyvalid members with the new SEK,
there need to be an additional set of keys called key encryp-
tion keys (KEK) to encrypt and distribute the new SEK. Then
the problem of access control to multicast communication re-
duces to the secure distribution of KEK’s to ensure only valid
members have access to cryptographic keys at any given instant.
This is the key management problem. Key storage and key up-
date communication are two important overheads in key man-
agement.

In [1], [2], a tree-based key management scheme is presented,
in which key update communication and user key storage grow
as with the group size . However, the key storage

Manuscript received June 28, 2001. The associate editor coordinating the re-
view of this letter and approving it for publication was Dr. L. Chen. This work
was supported by the National Science Foundation under NSF Faculty Career
Development Award ANI 00-93187.

M. Li and R. Poovendran are with the Department of Electrical Engineering,
University of Washington, Seattle, WA 98195 USA (e-mail: radha@ee.wash-
ington.edu).

C. Berenstein is with the Institute of System Research and Department of
Mathematics, University of Maryland, College Park, MD 20742 USA.

Publisher Item Identifier S 1089-7798(02)02988-5.

requirement of the centralized group controller (GC) grows lin-
early with . A variation of tree-based key management is pro-
posed in [3] to reduce the GC key storage. We adopt the model
in [3] for study. However, the approach we have taken is dif-
ferent as our formulation presents the key distribution design
under communication constraints as an optimization problem.

In this letter, we address the problem of minimizing the GC
key storage while preserving the logarithmic user key storage
and key update communication. We first show that the model
needs to be hybrid and present an analytical formulation. Then
the problem of key storage minimization with given communi-
cation budget can be posed as a constraint optimization problem
with a design parameter as a variable. We convert the constraint
optimization problem to a fixed point equation and show that the
optimal design parameter is the largest root of the fixed point
equation. Based on the optimal solution, an explicit design al-
gorithm is described which allows designers to synthesize the
key management parameters. We also present numerical com-
putation of design examples.

II. K EY MANAGEMENT PROTOCOLS

A. Minimal Key Storage Scheme

One key management scheme is to assign a unique KEK
to member , where is the member index. Every member
stores two keys, its and the SEK. When a member leaves,
the GC has to encrypt the new SEK individually withs of the
remaining members. Hence, key update communica-
tion overhead is . To minimize the GC storage, a pseudo-
random function is used with a random seedas an index to
generate the key as . The GC in this model only
needs to store two keys, the SEK and the seed.

B. Logical Key Hierarchy

Wallner et al. [1] and Wonget al. [2] proposed a scalable
key management scheme by constructing a logical tree of KEKs
for a given group. Fig. 1 illustrates a rooted binary key dis-
tribution tree for a group of eight members. In the tree, each
member is assigned to a unique leaf node, thus fixing the number
of leaves to be the group size. Since the number of leaves
determines the height of a tree, the height of the tree is also
fixed and so is the total number of tree nodes in this model.
Every node of the logical tree is assigned a KEK. The set of
keys assigned to the nodes along the path from a leaf node to
the root are assigned to the member associated with that partic-
ular leaf node. For example, member in Fig. 1 is assigned
KEK’s . The member storage is thus

1089-7798/02$17.00 © 2002 IEEE

LI et al.: DESIGN OF SECURE MULTICAST KEY MANAGEMENT SCHEMES WITH COMMUNICATION BUDGET CONSTRAINT 109

Fig. 1. A binary logical key tree for a group of eight members.

the height of the tree, given as for a tree of given
degree .

Since a member shares the root key and all the interme-
diate KEK’s with other users, all the keys possessed by the
member except the one at the leaf node have to be updated
when the member is deleted. For example, when leaves,

plus the SEK need to be updated. The
number of key update messages [2] is given as .
For this logical key hierarchy, the GC has to storeall the
keys corresponding to the nodes of the entire tree, which is

and scales as . Hence, the key storage
requirement of the GC is a bottleneck in this model.

The minimal storage scheme has constant GC storage but
update communication cost, while the logical key hier-

archy has key update communication but GC
storage requirement. We need to have a hybrid model that can
take advantage of both models.

C. Hybrid Tree Key Distribution

Since the number of leaves determines the total number of
nodes in a tree of given degree, if we can set the number of
leaves as a variable, then we can control the total number of
keys. One approach [3] is to cluster the members and assign
multiple members to a leaf, then by controlling the number of
members assigned to a leaf node, we can vary the total number
of nodes in the tree and thus the number of keys stored in the
GC. We use the hybrid tree model in [3] to develop the design
algorithm for a given amount of update communication.

The main idea of the hybrid tree is to divide the group into
clusters of size with every cluster assigned to a unique leaf
node. Then there are clusters (also leaves), and we need
to build a tree of depth . Fig. 2 illustrates this for a
binary tree with cluster size and a group of 24 members.

We notice that the structure in Fig. 2 consists of two parts,
the logical tree, and the clusters. The logical key tree is used as
inter-cluster key management scheme to limit key update com-
munication, and the minimal storage used as the intra-cluster
scheme to reduce GC storage requirement.

In the hybrid tree presented in Fig. 2, a user needs to store
KEK’s required by the logical key tree scheme

plus one KEK required by the minimal storage scheme within
the cluster. When a member is deleted, the total number of key
update messages, denoted by, is within
the tree plus within the cluster, leading to:

(1)

Fig. 2. A binary hybrid tree with cluster sizeM = 3 and group sizeN = 24.

The number of keys stored by the GC is computed as the keys
on the tree plus seeds for clusters, which is

(2)
The last term is at most 1 since .

Since the logical key tree schemes have logarithmic update
communication [1], [2], in the hybrid tree model, we want to
keep the update communication as except some scale
factor . This can be expressed as:

(3)

where the communication scale factorindicates how much
communication can be alloted for key updates. The choice of
parameter should satisfy the inequality given later in (6).

III. M INIMIZATION OF KEY STORAGE WITH

COMMUNICATION CONSTRAINT

In the hybrid tree scheme, the storage and the update commu-
nication are functions of the cluster size. The selection of
should be such that the update communication scales at least of
the order of while the key storage of the GC is better
than . Hence the optimization problem is posed as

(4)

subject to the communication constraint given in (3). Note the
storage in (4) is obtained from (2) by ignoring the last term,
without affecting the solution of .

The following theorem presents the solution to the constraint
optimization problem.

Theorem 1: Optimal cluster size that minimizes
the storage function
while satisfying the update communication budget

is ob-
tained by the largest root of the equation ,
where and .

Proof: Since the storage is a monotonically decreasing
function of , the largest value of satisfying the update com-
munication constraint will be the solution of this constraint op-

110 IEEE COMMUNICATIONS LETTERS, VOL. 6, NO. 3, MARCH 2002

timization. Hence, the optimal value of the cluster size is com-
puted by the equation:

(5)

The update communication, given in (1) and in the left-hand side
of (5), is a convex function of and attains its minimum value

at . Hence the factor should
satisfy the following inequality in order to solve equation (5),

(6)

With some algebra, it can be shown that for large values of,
the asymptotic lower bound of approaches .

Equation (5) can be rewritten as

(7)

where .

A. Computing Cluster Size M

The fixed point equation (7) is a contraction mapping with
the largest root as the fixed point solution, if we start the itera-
tion with an initial value . We derive the solution using
Newton’s method [4]. By setting , the first-order ap-
proximation is . Letting yields

(8)

For large values of , the largest root of the equation (5) con-
verges to and grows as .

B. Computing Minimal Storage

We showed that the asymptotic solution to the optimization
problem (4) is given in (8) for . The corresponding
value of the GC storage denoted by is

(9)

Hence, the constraint optimization leads to the optimal growth
of the GC storage as which is far better than

growth, when the update communication is constrained
to grow as .

IV. A D ESIGN EXAMPLE

For simulation, we set which leads to
and . As a

TABLE I
COMPARISON OFGC STORAGE OFLOGICAL KEY HIERARCHY AND

HYBRID TREE SCHEMES

specific design example, we are given the group size
and the degree of the tree . The communication budget
factor is set to be 3. The cluster size is computed as 8
by (8). A 3-ary tree with cluster size 8 requires 313 keys to be
stored in the GC, while the update communication is less than

.
Table I presents a numerical comparison between the logical

key hierarchy and the hybrid tree scheme in terms of key storage
for several pairs of (degree, group size). From the column
4 of the table, we note that the optimal cluster size can lead
to significant improvements in GC storage over values obtained
in [1], [2] for a given communication budget.

V. ALGORITHM SUMMARY

An explicit design procedure is given as follows.

1) Initial design data: group size, tree degree, and com-
munication scale factor

2) Check the condition given in (6). If satisfied, go to step
3). Otherwise the design is not feasible.

3) Compute the optimal cluster size using (8)
4) Construct a hybrid tree of degreeand cluster size

ACKNOWLEDGMENT

The authors thank P. Dinsmore, R. Sampigethaya, A. Perrig,
and E. Harder for their useful comments.

REFERENCES

[1] D. M. Wallner, E. J. Harder, and R. C. Agee, “Key management for
multicast: Issues and architectures,”, RFC 2627, June 1999.

[2] C. K. Wong, M. Gouda, and S. S. Lam, “Secure group communications
using key graphs,”IEEE/ACM Trans. Networking, vol. 8, pp. 16–31,
Feb. 2000.

[3] R. Canetti, T. Malkin, and K. Nissim, “Efficient communication-storage
tradeoffs for multicast encryption,” inEurocrypt’99, pp. 456–470.

[4] M. Y. Li, R. Poovendran, and C. Berenstein, “Optimization of key
storage for secure multicast,” presented at the Conf. on Information
Science and Systems, Baltimore, MD, Mar. 2001.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

