
An Information Theoretic Analysis of
Rooted-Tree Based Secure Multicast Key

Distribution Schemes

R. Poovendran? J. S. Baras ??

Dept. of Electrical Engineering & Institute for Systems Research
University of Maryland, College Park, MD 20742, USA

Abstract. Several variations of rooted tree based solutions have been
recently proposed for member revocation in multicast communications [18,
19, 20, 21]. In this paper, we show that by assigning probabilities for
member revocations, the optimality, correctness, and the system require-
ments of some of these schemes [18, 19, 20, 21] can be systematically
studied using information theoretic concepts. Specifically, we show that
the optimal average number of keys per member in a rooted tree is re-
lated to the entropy of the member revocation event. Using our deriva-
tions we show that (a) the key assignments in [18, 21, 20, 19] correspond
to the maximum entropy solution, (b) and direct application of source
coding will lead to member collusion (we present recently proposed so-
lutions [21, 20] as examples of this) and a general criteria that admits
member collusion. We also show the relationship between entropy of
member revocation event and key length.

1 Introduction

Recent research in multicast communication has created the possibility of several
new business applications with potential need for secrecy and integrity of the
communication ([18]-[26]). Potential commercial applications are stock quotes,
special sporting events, Internet news and multimedia related applications such
as conferences, etc. Due to the distributed nature and the involvement of more
than two parties in these applications, there are some unique security related
issues that are relevant only to secure multicast communications. Issues that
pose significant challenges are: (a) preserving the integrity and secrecy of the
communication, (b) dealing with the dynamic nature of the group membership,
(c) being able to secure the intermediate nodes such as the routers, (d) graceful
failure of administrative nodes, and (e) member addition/deletion.

In secure multicast communication, all the members share a common Session
Encrypting Key (SK). Members of the group should also have Key Encrypting
Key(s) (KEK) that can be used to update the SK in the event of membership

? Email: radha@isr.umd.edu, http://www.ece.umd.edu/˜radha
?? Email: baras@isr.umd.edu, http://www.ece.umd.edu/˜baras

change due to any of the following reasons (a) a new member admission, (b) ex-
piration of the SK, (c) member compromise, (d) voluntary leave, and (e) member
revocation. When the membership increases, the SK may be changed to protect
the back traffic and in all other cases, the SK is changed in an effort to protect fu-
ture traffic. Developing efficient key update schemes while attempting to prevent
member collusion and allowing the group center to perform member revocation
has been the focus of several recent efforts [13, 23, 27, 28, 18, 19, 11, 21, 20]. We
review two extremes of the non-tree based methods below and then focus on the
rooted tree based scheme in the rest of the paper. A list of relevant papers are
given in the reference section. The group size is denoted by N throughout this
paper.

1.1 Non-Tree Based Key Distribution Approaches

The secure group communication requires KEKs to securely distribute the up-
dated SK. If every member has an individual public key, for a group consisting
N members, the SK update will involve O(N) encryption by the GC. The linear
increase of the required number of encryptions in group size is not suitable for
very large scale applications common in Internet, due to the amount of compu-
tational burden on the GC.

A simple way to reduce the number of encryption by the GC at the time of
SK update is to provide a common KEK to all the members of the group as
suggested in [23]. If the SK is to be updated due to its lifetime expiration the
GC can perform a single encryption and update all the group members. If the
SK is to be updated due to a new member admission, before admitting the new
member, the GC may choose a new SK and the future KEK, encrypt both using
the current KEK and update all the members. The newly admitted member
is given the new SK and the KEK separately. However, this approach fails to
support the secure communication if a single member is to be deleted/revoked.
Since the whole group, including the deleted/revoked member share a single
KEK, a revoked member will have access to all future key updates. Hence, this
approach doesn’t provide an efficient recovery mechanism for the valid members
in the presence of single member failure.

In [13, 18], an approach that partition the set of keys assigned to a member
into two groups was proposed. One of these sets is called the complement set and
contains keys that are not distributed to a particular member. If each member
has a unique complementary set, this set can be used for key updates in the
event the corresponding member is revoked. The GC associates a KEK and a
member in a one-to-one manner. If there are N members in the group, there will
be N KEKs each representing a single member. The GC then distributes these
N KEKs such that a member is given all the KEKs except the one associated
with him/her. Hence, the complementary set contains a single KEK for each
member. If the GC wants to delete/revoke a member, it needs to broadcast
only the member index to the rest of the group. Since all members except the
revoked one has the associated KEK of the revoked member, they can use that
KEK for the future SK updates. This approach requires only one encryption at

the GC and allows the GC to update the SK under single member compromise.
In fact this approach seem to allow even multiple member deletion/revocation.
However, considering the complementary sets of any two members reveals that
all the KEKs of the group are covered by the KEKs held by any two members.
Hence, any two deleted/revoked members can collaborate and have access to all
future conversations. Thus, under user collusion, this key scheme does not scale
beyond two members. Thus the scheme doesn’t have perfect forward secrecy
under collusion of revoked members. This approach requires KEK storage that
scales as O(N).

Above mentioned schemes are two extremes of KEK distribution. Depending
on the degree of user collusion, a large variety of key management schemes with
different number of KEKs per member can be generated.

Recently a series of papers utilizing rooted-trees for key distribution have
been proposed to minimize the storage at the group controller and the members
while providing a reduction in the amount of encryptions required to update the
session key [11, 12, 18, 19, 20, 21, 28]. Some efficient schemes based on oneway
functions also have been used on the trees for member revocation. Many of
these tree based schemes seem to present different solutions to the problem with
different values for the required keys to be stored at the GC and the user node.
Aim of this paper to unify these results and analyze them.

1.2 Organization of the Paper

In section 2, we review the seminal work on currently known rooted tree based
revocation schemes [18, 19]. We show that the approach in [18, 19, 20, 21] is
related to well-known prefix coding in the rooted trees. In section 3, we define an
appropriate notion of member revocation event and the associated probabilities.
Using this probabilistic modeling, we show that the optimal average number of
keys per member (and hence the average number of keys to be updated at the
time of a member revocation) is equal to the entropy of the member revocation
event. We further show that the optimal strategy is to assign a member with
higher revocation probability less number of keys. Section 4 shows that although
the basic idea of information theory can be used to find the optimal number
of keys to be given to a member, trying to directly use optimal coding scheme,
namely the Huffman coding, for key allocation will lead to member collusion.
In order to justify our claims, we use the results in [20, 21] to show that the
approaches in these two schemes can be interpreted as the Huffman coding and
then show that both the schemes can be broken if two appropriate members
collude or are compromised, regardless of the group size N . Using the source
coding part of the information theoretic approach in analyzing the key allocations
in [20, 21] allows us to characterize the collusion problem with these approaches
for any N and D. In section 5 we show how to use the entropy of member
revocation event to average hardware requirements of the key generating system
and bound the length of the key that can be generated.

2 Review of the Logical Key Tree

Given a set group of N members and a number base D, logDN D-ary digits
are sufficient to uniquely index each of the N members in base D. This D-
ary representation can also be viewed as a rooted tree representation with each
member being the leaf of a D-ary tree of depth logDN . (For illustrations, we
use D = 2 in the figures, leading to binary trees).

2.1 Distribution of Keys on the Tree

As a concrete illustration, figure 1 presents a KEK distribution based on a binary
rooted tree for 8 members. In this approach, each leaf of the tree represents a
unique member of the group; i.e. the leafs are in one-to-one correspondence
with members. Each node of the tree represents a key. The set of keys along
the path from the root to a particular leaf node are assigned to the member
represented by that leaf node. For example, member M1 in figure 1 is assigned
KEKs {KO,K2.1,K1.1,K0.1}.

K O

K

K K

KKK

K 0.1 K K K K K K K

2.1 2.2

1.1 1.2 1.3 1.4

0.2 0.3 0.4 0.5 0.6 0.7 0.8

 M 1 M M M M M M M 2 3 4 5 6 7 8

Leaf Keys

Node Keys

Members

Root key

Fig. 1. The Logical Key Tree of [11, 18, 19, 20, 21]

If there is no member deletion/revocation or compromise, the common KEK
denoted byKO can be used to update the SK for all the members. The tree based
structure also induces a natural hierarchical grouping among the members. By
logically placing the members appropriately, the GC can choose the appropriate
keys and hence selectively update, if need be, the keys of the group. For example,
in figure 1, members M5,M6,M7, and M8 exclusively share the key K2.2. The
GC can use the key K2.2 to selectively communicate with members M5,M6,M7,
and M8. Hence, the local grouping of the members and the keys shared on the
tree may be decided by the GC based on application specific needs. In order to

be able to selectively disseminate information to a subset of group members, the
GC has to ensure that the common key assigned to a subset is not assigned to
any member not belonging to that subset. Using the notation {m}K to denote
the encryption of m with key K, and the notation A −→ B : {m}K to denote
the secure exchange of message m from A to B, the GC can selectively send a
message m to members five through eight by the following transmission:
GC −→M5,M6,M7,M8 : {m}K2.4

If the key K2.2 is invalidated due any reason, the GC needs to update the key
K2.2 before being able to use a common key for members M5,M6,M7, and M8.
It can do so by first generating a new version of K2.2, and then performing two
encryptions, one with K1.3 and the other with K1.4. The following two messages
are needed to update key K2.2 to the relevant members of the group.
GC −→M5,M6 : {K2.2}K1.3

GC −→M7,M8 : {K2.2}K1.4

2.2 Member Revocation in Rooted Trees

From now on, we will use the term keys to denote SK or KEKs unless there
is a need for clarification. Since the SK and the root KEK are common to all
the members in the multicast group, they have to be invalidated at each time
a member is revoked. Apart from these two keys, all the intermediate KEKs of
the revoked member need to be invalidated. In the event there is bulk member
revocation, the GC has to

– Identify all the invalid keys,
– Find the minimal number of valid keys that need to be used to transmit the

updated keys.

For an arbitrary tree that may not hold members in all the leafs these two
problems need to be solved by exhaustive search. The principle behind the mem-
ber revocation is discussed below by an example.

MemberM1 in figure 1 is indexed by the set of four keys {KO,K2.1,K1.1,K0.1}.
Revoking M1 is equivalent to invalidating these four keys, generating four new
keys, and updating these keys of the appropriate valid members. When M1 is
revoked, the following key updates need to be performed: (a) all member need
new KO, (b) members M2 −M4 need to update {K2.1}, (c) members M3 −M4

need to update {K1.2}, and (d) member M2 needs to update {K1.1}.
Following observations can be made towards the rooted tree based key dis-

tributions.

– Since each member is assigned (2 + logdN) = logdNd
2 keys, deletion of a

single member requires (2 + logdN) keys to be invalidated.
– Since there are (1 + logdN) nodes between the root and a leaf and logdN

nodes are shared with other members, and for each common node one en-
cryption is required, the GC needs to perform a total of logdN encryptions.

– For a d−ary tree with depth h = logdN , the GC has to store 1+1+d+d2 +

· · ·+ dh = d(N+1)−2
(d−1) number of keys. Setting d = 2 leads to the binary tree

for which the required amount of storage works out to be 2(N+1)−2
2−1 = 2N .

This result can be independently checked by noting that a binary tree with
N leafs has 2N − 1 nodes. Hence the GC has to store the SK and (2N − 1)
KEKs, leading to 2N keys that need to be stored.

In [20, 21], binary rooted tree based key distributions which require the GC
to store a total of 2 log2N distinct keys were proposed. The generalized version
of this result requires d logdN keys to be stored at the GC. Each member needs
to store only (2 + logdN) keys in this scheme. However, the number of keys to
be updated remain at logdN as in [18, 19]. Hence, at first glance, the results
in [21] seem to reduce the storage requirements at the GC by

d(N + 1)− 2

d− 1
− d logdN =

d(N + 1− (d− 1) logdN)− 2

(d− 1)
(1)

number of keys without increasing the key storage requirements at the end user
node.

In the next section we present our analytical formulation to study these
models in a systematic manner.

2.3 Preliminary Observations: Properties of keys on Rooted Trees

We use the approach that uses Kraft inequality in this section since we intend to
derive the optimal number of keys for individual members as well. We note that
the approach based on [4] can be used if we are interested in average performance
analysis for a given rooted tree based scheme.

Relationship between Prefix Coding and Member Revocation Unless
the set of keys held by each member differ by at least one key, the group center
will not be able to successfully update the keys of the group after revoking a
member. More importantly, the keys held by any member should not form a
subset of the keys held by another member in rooted-tree. This is equivalent to
the condition that no internal node should index a member and no two members
should be indexed by the same leaf. If we view the concatenation of keys given to
a member as a Key Index (KID), then each of the member should have a distinct
KID. In our definition, we consider any permutation of the KID elements as
identical to the original KID. Hence there are L! equivalent KIDs for a member
with L KEKs. This distinction is important in dealing with the user collusion.
(The KID for member 1 in figure 1 is represented by K2.1K1.1K0.1.)

To illustrate the collusion problem by an example, let members i, j, and k
have sets of keys denoted by Si, Sj and Sk respectively, where, Si = {K0,K1,K2},
Sj = {K0,K1,K2,K3,K4,K5}, and Sk = {K3,K4,K5}, respectively. Clearly,
Si ⊂ Sj , and Sk ⊂ Sj . In the event member j is compromised, all the keys of
members i, and k are to be treated compromised. If the group center tries to use
any one of the keys in the set Si or Sk to encrypt the new set of keys for member
i, and k, revoked member j can decrypt and access all the communication since

it has all the keys of i and k. In such cases, removal of one or more members, who
have all the keys of one or more valid members, will compromise the integrity of
the key updates and the privacy of the entire future communication.

Choosing unique KIDs on the rooted-trees is equivalent to the requirement
that is equivalent to the statement in source coding that no codeword should
be a prefix to another codeword. This condition can be restated as the KID
corresponding (or a set of keys assigned) to a member should not be a prefix to
the KIDs corresponding (or a set of keys assigned) to any other member. If not,
mapping between the set of keys and the members will not be unique. Assigning
a unique prefix code to each member on the tree leads to the following (more or
less) well known important theorem that will be used later in this paper.

Theorem 1. Kraft Inequality for KIDs
For a D-ary Logical key tree with N members and a codeword generated by
the concatenation of a set of keys such that no two members have the same
codewords (set of keys) and the codeword of anyone member is not a prefix of
the codeword of any other member, if we denote the codeword length (number
of keys held by that member) for member i by li, the sequence {l1, l2, · · · lN}
satisfies the Kraft inequality given by

i=N∑

i=1

D−li ≤ 1. (2)

Conversely, given a set of numbers {l1, l2, · · · lN} satisfying this inequality,
there is a rooted tree that can be constructed such that each member has a
unique set of concatenated keys with no-prefixing.

Proof: Standard and can be found in [2, 3].

Relationship Between Member Collusion and Codewords In a group of
more than two members, member collusion needs to be prevented to preserve
integrity of the group communication. We illustrate collusion using the same
set of members above. If the group center needs to revoke members i and k,
and update the keys for member j, revoked members i and k can collude and

construct the set Sj since Sj = Si ∪ Sk . Hence, any rooted-tree structure should

not permit a member to have a set of keys is a subset of the keys of other
members or can be obtained as a concatenation of keys of other members. In
this example, we could concatenate the key sets of members i and k to get the
key set of member j. We note that a variation of rooted-tree presented in [20, 21]
does suffer from member collusion. In a later section we will prove this claim
and characterize the type of collusion of rooted trees [20, 21] using information
theory. We note however that the codeword representation of the keys is not
enough to characterize all types of collusions. We will discuss this point in the
section 4.

3 Probabilistic Modeling

Since the key updates are performed in response to revocation of members,
statistics of member revocation events, are very appropriate for system design
and performance characterization. We denote pi as the probability of revocation

of member i with
∑i=N
i=1 pi = 1 . If the revocation were to have zero probabilities,

then there is no issue of revocation of keys in the first place at all3. Hence, this
assignment of probabilities is consistent with the motivation of key revocation.

3.1 Optimizing the Rooted Tree Structure: Optimal Codeword
Length Selection

Optimization of average number of keys per members with the length of the
KIDs satisfying Kraft inequality is identical to the optimal codeword length se-
lection in the prefix coding in the context of information theory. This problem is
well studied and the optimal strategy is known to yield the Shannon entropy as
the average codeword length [2]. Interpreted in the context of KID assignment,
average number of keys per member is equal to the entropy of the member re-
vocation event. Theorem below summarizes the main results without the proof.
Proof is standard in information theory and can be found in chapter 5 of [2].

Theorem 2. For a key assignment satisfying Kraft inequality, optimal av-
erage number of keys, excluding the root key and the SK, held by a member is
given by the d− ary entropy Hd = −∑i=N

i=1 pi logD pi of the member revocation
event. For a member i with probability of revocation pi, satisfying the optimiza-
tion criteria, the optimal number of keys li, excluding the root key and the SK,
is given by

li = − logD pi. (3)

The following properties which are important for member revocation and
grouping of valid members to find minimal number of keys for transmission are
summarized in the form of the lemma below. These are also part of standard
information theory results, and are valid for the “codewords” formed by the
concatenation of the keys as well:

Lemma 2.

1. Given two members of the group, the member with higher probability of
revocation should be assigned larger number of keys. If pi > pj , then li(=
− logD pi) > lj(= − logD pj).

2. There must be at least two members with the largest number of keys.
3. The largest number of keys held differ only by one key and these two sets

correspond to the members with the least probabilities of revocation.
4. The average number of keys held by a member is never less than the entropy
HD of the member revocation event. It is equal to the entropy of the member
revocation event iff pi = D−i. i.e. the probabilities are D-adic.

3 Member addition may change some keys but does not necessarily force the change
of old keys other than the traffic encrypting key.

Sketch of the Proofs:

1. If pi > pj , log being a monotone function, logd pi > logD pj . Hence− logD pi <
− logD pj , leading to li(= − logD pi) < lj(= − logD pj).

2. If there are no two members with the largest codeword, then we can reduce
the largest codeword by at least one more bit and still ensure that all mem-
bers have unique codeword assigned. This will violate the proof of optimality
of the individual codeword lengths.

3. Results follow from the fact that the optimal value of the average number
of keys held by a member is a minima with the value equal to the entropy
of the member revocation event.

From these statements, we note that a member with higher probability of
being revoked should be given fewer number of keys. Since the number of nodes
along the path connecting the leaf and the root of the logical tree represents
the number of keys held by the member, the member with higher probability is
closer to the root of the logical tree. The following observation summarizes the
nature of the rooted key key distribution architectures in [18, 19, 21, 20].

Among all the efficient rooted tree based key revocation strategies that satisfy
Kraft inequality, results in [18, 19, 21, 20] have the maximum entropy, and hence
corresponds to the maximum average number of keys held by a member for a given
tree size.

Upper Bounds on the Integer Values of keys Since the optimal number
of keys held by a member i with probability of revocation pi which is given by

li = − logD pi needs to be an integer, we need to compute the exact bounds on

the total number of keys (including the root key and the traffic key), assuming
that the probability of member revocations can be ordered in an ascending order
at the time of key assignment. This value is given by the following theorem.

Theorem 3. The optimal average number of keys held by a member satisfies

HD + 2 ≤ l̂ + 2 ≤ HD + 3 .

Proof: Result showing HD ≤ l̂ < HD+1 is standard [2] and is not repeated
here. Adding 2 to makeup for the total number of keys HD+2) yields the desired

result HD + 2 ≤ l̂ + 2 < HD + 3 .

Since the average number of keys per member is (l̂ + 2), we note that the
optimal number of average keys per member is at most 3 D-ary digits more than,
and is at least 2 D-ary digits more than the entropy of the member revocation
event.

4 Characterization of Collusion in Schemes [20, 21] Using
Optimal Source Coding

Noting that we used member revocation probabilities and derived the optimal
rooted-tree based key revocation schemes that eliminate redundancies in [18,

19, 21, 20], one may be tempted to conclude it may be appropriate to use the
deterministic optimal coding techniques like the Huffman coding to develop a
one-to-one map between the members and the keys assigned to them. Since
the optimal number of keys led to rooted trees often called the Huffman trees,
choosing the codes based on Huffman coding appears attractive from the point
of using minimal number of individual keys to construct codewords.

We assert claim that using the Huffman coding is not the right approach
when collusion needs to be avoided. To justify/make our point, we will first
review the key assignment methods discussed in [20, 21] and then show that
the results presented in [20, 21] for binary trees (a) fall under the category of
the optimal Huffman coding and (b) provide one of the lowest possible integrity
levels for member collusion.

The authors in [20] noted that given the binary index of a member, each
bit in the index takes two values, namely 0 or 1. To follow the example given
in [20], when N = 8, log2 8 = 3 bits are needed to uniquely index all 8 members.
The authors then proceeded to claim that since each bit takes two values, it can
be symbolically mapped to a distinct pairs of keys. The table below reproduces
the mapping between the ID bit # and the key mapping for the case in [20] for
N = 8:

ID Bit #0 K00 K01

ID Bit #1 K10 K11

ID Bit #2 K20 K21

where, the key pair (Ki0,Ki1) symbolically represents the two possible values
of the ith bit of the member index. Although this table does provides a one-to-
one mapping between the set of keys and the member index using only eight
keys, the problem with this approach becomes clear if we map the table to the
rooted tree structure. Figure 2 shows the mapping of the keys on the tree. (For
the sake of clarity, not all the keys corresponding to the leafs are shown in figure
2). Adjacent leafs have K30,K31 as the keys and this pair is repeated across the
level. In fact, at any depth only two specific keys have been used and duplicated
across the depth. If members corresponding to leafs 1, and 8 are compromised
or to collude, entire set of eight keys will be exposed by these two members, i.e.,
this system will be completely broken independent of the size N of the group.
Hence, this scheme is ranked very low in providing guarantees of privacy or
integrity against collusion.

There are three different ways to interpret the collusion problems with ap-
proaches in [20, 21] based on rooted trees. We present them in the order of
generality:

4.1 Interpretation based on Minimal number of Key Requirements

A simple way to interpret the shortcomings of results in [20, 21] is to note that

2 log2N < N, ∀N > 4 . In order to prevent member collusion from being able to

break the rest of the system, there must be at least N keys so that each member

K10

K 00 K 00 K 00 K 00K 01 K 01 K 01 K 01

�����
�����
�����
�����

�����
�����
�����
�����

Represents the valid keys

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

	�	�	
	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

�
�

�����
�����
�����
�����

�����
�����
�����
�����

��
��
��
��

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

 � �
 � �
 � �
 � �

!�!�!
!�!�!
!�!�!
!�!�!

"�"�"
"�"�"
"�"�"
"�"�"

#�#�#�#�#
#�#�#�#�#
#�#�#�#�#
#�#�#�#�#
#�#�#�#�#
#�#�#�#�#
#�#�#�#�#
#�#�#�#�#
#�#�#�#�#
#�#�#�#�#
#�#�#�#�#

$�$�$�$�$
$�$�$�$�$
$�$�$�$�$
$�$�$�$�$
$�$�$�$�$
$�$�$�$�$
$�$�$�$�$
$�$�$�$�$
$�$�$�$�$
$�$�$�$�$
$�$�$�$�$ %�%�%�%�%�%�%�%�%�%

%�%�%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%�%�%
%�%�%�%�%�%�%�%�%�%

&�&�&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&�&�&
&�&�&�&�&�&�&�&�&�&

'�'�'�'�'�'�'�'�'�'�'
'�'�'�'�'�'�'�'�'�'�'
'�'�'�'�'�'�'�'�'�'�'
'�'�'�'�'�'�'�'�'�'�'
'�'�'�'�'�'�'�'�'�'�'
'�'�'�'�'�'�'�'�'�'�'
'�'�'�'�'�'�'�'�'�'�'
'�'�'�'�'�'�'�'�'�'�'
'�'�'�'�'�'�'�'�'�'�'
'�'�'�'�'�'�'�'�'�'�'
'�'�'�'�'�'�'�'�'�'�'
'�'�'�'�'�'�'�'�'�'�'

(�(�(�(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(�(�(�(
(�(�(�(�(�(�(�(�(�(�(

)�)�)�)�)�)
)�)�)�)�)�)
)�)�)�)�)�)
)�)�)�)�)�)
)�)�)�)�)�)
)�)�)�)�)�)
)�)�)�)�)�)
)�)�)�)�)�)
)�)�)�)�)�)
)�)�)�)�)�)

��*�*�*�*
��*�*�*�*
��*�*�*�*
��*�*�*�*
��*�*�*�*
��*�*�*�*
��*�*�*�*
��*�*�*�*
��*�*�*�*
��*�*�*�*

+�+�+
+�+�+
+�+�+
+�+�+
+�+�+
+�+�+
+�+�+
+�+�+
+�+�+
+�+�+
+�+�+
+�+�+
+�+�+

,�,�,
,�,�,
,�,�,
,�,�,
,�,�,
,�,�,
,�,�,
,�,�,
,�,�,
,�,�,
,�,�,
,�,�,
,�,�,-�-�-�-�-�-

-�-�-�-�-�-
-�-�-�-�-�-
-�-�-�-�-�-
-�-�-�-�-�-
-�-�-�-�-�-
-�-�-�-�-�-
-�-�-�-�-�-
-�-�-�-�-�-
-�-�-�-�-�-

.�.�.�.�.�.
.�.�.�.�.�.
.�.�.�.�.�.
.�.�.�.�.�.
.�.�.�.�.�.
.�.�.�.�.�.
.�.�.�.�.�.
.�.�.�.�.�.
.�.�.�.�.�.
.�.�.�.�.�.

/�/�/�/
/�/�/�/
/�/�/�/
/�/�/�/
/�/�/�/
/�/�/�/
/�/�/�/
/�/�/�/
/�/�/�/
/�/�/�/
/�/�/�/
/�/�/�/
/�/�/�/

0�0�0�0
0�0�0�0
0�0�0�0
0�0�0�0
0�0�0�0
0�0�0�0
0�0�0�0
0�0�0�0
0�0�0�0
0�0�0�0
0�0�0�0
0�0�0�0
0�0�0�0

1�1�1�1
1�1�1�1
1�1�1�1
1�1�1�1
1�1�1�1
1�1�1�1
1�1�1�1
1�1�1�1
1�1�1�1
1�1�1�1
1�1�1�1
1�1�1�1
1�1�1�1
1�1�1�1

2�2�2�2
2�2�2�2
2�2�2�2
2�2�2�2
2�2�2�2
2�2�2�2
2�2�2�2
2�2�2�2
2�2�2�2
2�2�2�2
2�2�2�2
2�2�2�2
2�2�2�2
2�2�2�2

3�3�3
3�3�3
3�3�3
3�3�3
3�3�3
3�3�3
3�3�3
3�3�3
3�3�3
3�3�3
3�3�3
3�3�3
3�3�3

4�4�4
4�4�4
4�4�4
4�4�4
4�4�4
4�4�4
4�4�4
4�4�4
4�4�4
4�4�4
4�4�4
4�4�4
4�4�4

5�5�5
5�5�5
5�5�5
5�5�5
5�5�5
5�5�5
5�5�5
5�5�5
5�5�5
5�5�5
5�5�5
5�5�5
5�5�5

6�6�6
6�6�6
6�6�6
6�6�6
6�6�6
6�6�6
6�6�6
6�6�6
6�6�6
6�6�6
6�6�6
6�6�6
6�6�67�7�7�7�7

7�7�7�7�7
7�7�7�7�7
7�7�7�7�7
7�7�7�7�7
7�7�7�7�7
7�7�7�7�7
7�7�7�7�7
7�7�7�7�7
7�7�7�7�7
7�7�7�7�7

8�8�8�8�8
8�8�8�8�8
8�8�8�8�8
8�8�8�8�8
8�8�8�8�8
8�8�8�8�8
8�8�8�8�8
8�8�8�8�8
8�8�8�8�8
8�8�8�8�8
8�8�8�8�8

9�9�9
9�9�9
9�9�9
9�9�9
9�9�9
9�9�9
9�9�9
9�9�9
9�9�9
9�9�9
9�9�9
9�9�9
9�9�9

:�:�:
:�:�:
:�:�:
:�:�:
:�:�:
:�:�:
:�:�:
:�:�:
:�:�:
:�:�:
:�:�:
:�:�:
:�:�:

;�;�;
;�;�;
;�;�;
;�;�;
;�;�;
;�;�;
;�;�;
;�;�;
;�;�;
;�;�;
;�;�;
;�;�;
;�;�;

<�<�<
<�<�<
<�<�<
<�<�<
<�<�<
<�<�<
<�<�<
<�<�<
<�<�<
<�<�<
<�<�<
<�<�<
<�<�<

=�=�=
=�=�=
=�=�=
=�=�=
=�=�=
=�=�=
=�=�=
=�=�=
=�=�=
=�=�=
=�=�=
=�=�=

>�>�>
>�>�>
>�>�>
>�>�>
>�>�>
>�>�>
>�>�>
>�>�>
>�>�>
>�>�>
>�>�>
>�>�>

K

K

K

SK

M M M M M M MM0 1 2 3 4 5 6 7

10K K11 11

 20 21

Fig. 2. The Logical Key Tree of [21, 20]

has a unique key and can be contacted at the time of member revocation. since
2 log2N < N (N > 4) is the number of distinct keys used by the variation of
rooted tree presented in [20, 21], and can be completely or partially compromised
depending on the colluding members.

4.2 Interpretation based on Source Coding

For simplicity, we assume that the group size N is a dyadic number. Since
we showed that the traditional binary rooted tree based rooted-tree [18, 19,
21, 20] leads to the maximum entropy of the member revocation event, the
number of keys per member, log2N , is same as the average number of keys per
member. Also, the member indices each need log2N bits. The scheme in [20, 21]
used a unique pair of keys to symbolically map each of bit positions of the the
member index. Hence, a total of 2 log2 N keys are used to uniquely represent
each member index. This selection of keys can create a set of N unique indices
and the codewords generated by concatenating log2N keys satisfy the Kraft
inequality. Hence, this mapping of a unique pair of keys to each bit location
corresponds to performing a Huffman coding with 2H2(U) distinct keys, where

H2(U) = log2N . If we use the notation (kj , k̂j) to denote the unique key pair
representing the two possible binary values taken by the jth bit, we note that
the collusion or compromise of two members holding keys kj and k̂j respectively

will compromise the integrity of the key pair (kj , k̂j). The following lemmas
summarize our observations:

Lemma 3. If the binary rooted key tree uses the optimal Huffman Coding
for assigning members a set of keys based on 2 log2N (N > 4) (here N is dyadic)
distinct keys as in [20, 21], the whole system can be broken if any two members
whose “codewords” or KIDs (NOT UIDs as in many other recent papers) are
one’s complement of each other collude or are compromised. Hence, the integrity
systems in [20, 21] do not scale beyond 4 members in the presence of colluding
members.

In a D − ary tree, each digit takes D values and the sum of these values is

given by D(D−1)
2 . Hence, if a set of k (k ≥ D) members whose ith bit values

when summed lead to D(D−1)
2 collude, they will be able to fully compromise the

ith bit location. This result is summarized by:

Lemma 4. For a D − ary tree with N members, the key corresponding to
bit location b will be compromised by a subset of k (k ≥ D) members whose
symbolic value of the bit location b denoted by the set {b1, b2, · · · , bk} satisfy

b1 + b2 · · · bk ≡ 0 mod D(D−1)
2 .

4.3 Interpretation Based on Complementary variables

The third interpretation is based on the notion of sets and includes a larger
definition of collusion discussed under the category of complementary variables
in [18]. The approach in [20, 21] is a special case of the complementary variable
approach. If the secure group membership is a set such that every member is
denoted by a unique key and that key is given to all other members but the
member itself, at the time the member is to be revoked, all other members can
use the key denoting the revoked member as the new key. For a set ofN members,
all the members will have (N−1) keys that corresponding to other members and
no member will have the key denoting itself. Clearly, if two members collude,
between them they will have all the future keys of the group. Hence, this kind
of key assignment does not scale beyond 2 members.

4.4 Appropriate mapping of the keys to the members

The main problem with the approach presented in [20, 21] is that the direct
mapping of the values taken by each bit in the “codeword” to a unique pair
of keys. As mentioned earlier, given a bit location h from the root of the tree,

2h−12h−1 = 22h−2 possible combinations of members can collude to compro-
mise the keys corresponding to that bit. In order to avoid such repeated assign-
ment of keys, only one internal node or bit location at a given depth should be
assigned a particular key. This will guarantee that only the descendant leafs of
that node will have access to the specific key assigned to that node. Hence, when
a member is revoked, specific key will not be part of any “unrevoked” path.

5 Entropy Based Bounds on Average Key Generation
Requirements and Conditions for Clustering

We showed that on average, at the time of member revocation (2 + HD) keys
need to be updated. If each key is L bits long, then the average number of bits
that need to be generated by the hardware after key revocation is L(2 + HD)
bits. Since HD ≤ logDN with equality attained iff all the members have equal
revocation probabilities, the hardware need to be able to generate a worst case
average of L(2 + logDN) bits within the next unit of time of update to let the
session continue.

Theorem 4. For a binary rooted tree based rooted-tree family of sys-
tems with keys of length L bits, the average number of bits B that need to
be generated by the hardware at the time of member revocation, should satisfy

B ≥ L(logDN + 2) , with the average lower bound being attained iff all the

members have equal probability of being revoked.
Proof: As shown earlier, average number of keys to be generated in the

event of member revocation is given by (2 +HD) = 2 +
∑i=N
i=1 pili . Hence, the

hardware should be able to generate a total of L(HD+1) bits of suitable quality4

in unit of time to let the session continue without delays in the average sense.
Desired lower bound follows from the observation that HD ≤ HD(U) = logDN ,
with equality iff all the members have the same revocation probabilities.

From the above given theorem, if membership is too large for a single hard-

ware to support the key generation, there need to be at least dL(HD+2)
B e units of

hardware with capability of generating B bits in a unit of time. This result can
also be interpreted from the point of view of splitting a group into clusters. If a
group center can update only B (L < B < L(2 +HD)) bits in a unit of time, it
may be appropriate to split the group center into a panel consisting of at least

dL(HD+2)
B e centers each of which can update B (L < B < L(2 +HD)) bits in a

unit of time.

6 Conclusions and Future Work

This paper showed that several properties of the recently proposed [18, 19, 20, 21]
rooted tree based secure multicast key management schemes can be systemati-
cally studied using information theoretic concepts. By using the member revo-
cation event as the basis of our formulation, we showed that the optimal number
of average keys per member is related to the entropy of the member revocation
event. We then proved that the currently available known rooted tree based
strategies [18, 19, 20, 21] yield the maximum entropy among all the rooted tree
based strategies and hence opt for the maximal average number of keys per mem-
ber regardless of the values of the revocation probabilities. Using the optimal
source coding strategy, we identified the collusion problem in [20, 21] resulting

4 Based on the application specific use of the key.

from performing the Huffman coding with D logDN symbols. We also showed
which subset of members need to collude or be compromised to break schemes
such as the ones in [20, 21], regardless of the size of N . We showed that for a
group with uniform revocation probabilities and using a binary tree, it is enough
for two members with complementary keys to collude to break the scheme. We
then showed that using the entropy of the member revocation event, we can set
a bound for the minimal average case hardware key generation requirements. We
also provided a simple rule for deciding group size based on hardware availability
(or the number of hardwares required to support a size N, on average).

Acknowledgments

We would like to thank professors Anthony Ephremides and Jim Massey for early
references on the rooted-tree algorithms by Massey. Relating key length to the
entropy was due to observation by A. Ephremides that the keys are not shown to
be related to classical information theory. We would like to thank Benny Pinkas
for providing reference [1].

References

1. R. Canetti, T. Malkin, and K. Nissim, “Efficient Communication-Storage Tradeoffs
for Multicast Encryption”, In Eurocrypt 99, pp. 456 - 470.

2. T. Cover, J. Thomas, Elements of Information Theory, John Wiley & Sons, Inc,
NY, 1991.

3. R. Gallager, Information theory and reliable communication, Wiley, NY, 1968.

4. J. L. Massey, “An Information-Theoretic Approach to Algorithms”, Impact of Pro-
cessing Techniques in Communications, In NATO Advanced Study Institutes Series
E91, pp. 3-20, 1985.

5. J. L. Massey, “Some Applications of Source Coding to Cryptography”, In Euro-
pean Trans. on Telecom., Vol. 5, pp. 421-429, July-August 1994.

6. H. N. Jendal, Y. J. B. Khun, and J. L. Massey, “An Information-Theoretic Ap-
proach to Homomorphic Substitution”, In Advances in Cryptology-Eurocrypt’89,
LNCS-434, pp. 382-394, 1990.

7. U. M. Maurer, “Secret Key Agreement by Public Discussion from Common Infor-
mation”, In IEEE Trans. IT, Vol 39, No. 3, 1993, pp 733- 742.

8. R. Canetti, and B. Pinkas, “A taxonomy of multicast security issues”, Internet
draft, April 1999.

9. Y. Desmedt, Y. Frankel, and M. Yung, “ Multi-receiver/Multi-sender network se-
curity: efficient authenticated multicast feedback”, IEEE Infocom’92, pp. 2045-
2054.

10. M. steiner, G. Tsudik, and M. Waidner, “ Diffie-Hellman key distribution extended
to group communication”, 3rd ACM Conf. on Computer and Communications
Security”, 1996.

11. R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, B. Pinkas, “Multicast Se-
curity: A Taxonomy and Efficient Reconstructions”, Proceedings of IEEE Info-
com’99.

12. D. A. McGrew and A. Sherman, “ Key Establishment in Large Dynamic Groups
Using One-Way Function Trees”, Manuscript, 1998.

13. A. Fiat and M. Naor, “Broadcast Encryption”, Advances in Cryptology- Crypto’92,
Lecture Notes in Computer Science. vol. 773, pp. 481-491, Springer-Verlag, Berlin
Germany, 1993.

14. A. Menezes, P. van Oorschot, and A. Vanstone, “Handbook of Applied Cryptog-
raphy”, CRC Press, Boca Raton, 1997.

15. M. Naor and O. Reingold, “From Unpredictability to Indistinguishability: A Simple
Construction of Pseudo-Random Functions from MACs”, Advances in Cryptology-
Crypto’98, Lecture Notes in Computer Science. vol. 1462, pp. 267-282, Springer-
Verlag, Berlin Germany, 1998.

16. M. Luby, Pseudo-Random Functions and Applications, Princeton University Press,
1996.

17. M. Brumester and Y. Desmedt, “A Secure and Efficient Conference Key Distribu-
tion System”, Advances in Cryptology- Eurocrypt’94, Lecture Notes in Computer
Science. vol. 950, pp. 275-286, Springer-Verlag, Berlin Germany, 1994.

18. D. M. Wallner, E. C. Harder, and R. C. Agee, “Key Management for Multicast:
Issues and Architectures”, Internet Draft, September 1998.

19. C. K. Wong, M. Gouda, S. S. Lam,“Secure Group Communications Using Key
Graphs”, In Proceedings of ACM SIGCOMM’98, September 2-4, Vancouver,
Canada.

20. G. Caronni, M. Waldvogel, D. Sun, and B. Plattner, “Efficient Security for Large
and Dynamic Groups”, In Proc. of the Seventh Workshop on Enabling Technologies,
IEEE Computer Society Press, 1998.

21. I. Chang, R. Engel, D. Kandlur, D. Pendarakis, D. Saha, “Key Management for
Secure Internet Multicast Using Boolean Function Minimization Techniques”, To
apper in Proceedings of IEEE Infocom’99.

22. S. Mittra, “Iolus: A framework for Scalable Secure Multicasting”, In Proceedings
of ACM SIGGCOM’97, pages 277–288, September 1997.

23. H. Harney and C. Muckenhirn, “GKMP Architecture”, Request for Com-
ments(RFC) 2093, July 1997.

24. R. Canetti, P-C. Cheng, D. Pendarakis, J. R. Rao, P. Rohatgi, D. Saha, “An Ar-
chitecture for Secure Internet Multicast”, Internet Draft, Novenber 1998.

25. T. Hardjono, B. Cain, and N. Doraswamy, “A Framework for Group Key Manage-
ment for Multicast Security”, Internet draft, July 1998.

26. B. Quinn, “IP Multicast Applications: Challenges and Solutions”, Internet draft,
November 1998.

27. H. Harney and C. Muckenhirn. “GKMP Specification”. Internet RFC 2094, July
1997.

28. A. Ballardie. “Scalable Multicast Key Distribution”. Internet RFC 1949, May
1996.

