2001 Cenference an Information Sciences and Systems, The Johns Hopkins University, March 21-23, 2001

Optimization of Key Storage for Secure Multicast

Mingyan Li and R. Poovendran
Department of Electrical
Engineering
University of Washington
Seattle, WA 98195, USA

e-mailiradha@ee .washington.edu

Abstract —
distributing cryptographic keys to a secure multicast

This paper addresses the problem of

group with single sender and multiple receivers. The
group is assumed to be dynamic and hence the mem-
bers are allowed to join and leave during the session.
We show that the problem of distributing keys to a
dynamic group can be formulated as a constraint op-
timization problem. From the formulation, we also
show how to minimize the amount of keys to be stored
by the sender.

Keywords: Security, Optimization, Multicast
Communications

I. INTRODUCTION

Recent progress in communications, networking and multime-
diarelated research hasled to new standards and applications.
This convergence of three areas has also created potential for
new applications involving group communications. Many of
these applications have a single sender or service provider who
transmits identical data to multiple end users. For such ap-
plications, use of multicast communication model will reduce
the sender and the network overhead. However, the success of
these commercial models depends on the ability of the sender
in securing the communications so that only the intended re-
ceivers have access to the data. The use of cryptography is
one approach to control access to communications [2].

Since identical data is delivered to all the group members,
the owner of the group or the Group Controller (GC) can min-
imize the computation by using a single cryptographic key and
symmetric key encryption to encrypt and transmit the data
[1]. Every intended receiver is given access to the Session
Encryption Key (SEK). This key is also called Traffic Encryp-
tion Key (TEK). Anyone possessing the SEK used during the
session will have access to the group communications.

The SEK hasto be updated whenever its intended lifetime
expires and also whenever there is a change in group member-
ship. When a new member is added to the group, the SEK
is changed to ensure that a new member does not have access
to the past encrypted data. When a member is deleted, the
SEK is changed to ensure that the deleted member does not
have access to the future data.

The problem of SEK management 1s to ensure that only the
velid members hove access to 1f during the sesston.

Since the SEK isknown to every valid member of the group,
when SEK needs to be updated, there needs to be additional
keys called Key Encrypting Keys (KEKs) to distribute the
new SEK [2, 7, 8]. * Hence, the problem of securely distribut-

1The KEKs are used for encryption and transportation of the
cryptographic keys including the SEK.

C. Berenstein
Institute of System Research
and Department of Mathematics
University of Maryland, College
Park, MD 20742, USA

ing SEK is reduced to the problem of distributing the KEKs
to the members such that only the valid members have access
to the KEKs and the SEK.

Since the KEKs are used to update the SEK, assignment
of KEK to the group members should be (a) scalable in key
update communication and/or key storage requirements of
sender and receivers with respect to group size, (b) resistant
to illegal collaboration (collusion) and (c) able to guarantee
that deletion of one or more members does not compromise
all the keys of valid members.

Wallner et ol [7] and Wong et ol [8] proposed a scalable
solution based on rooted trees that requires every user of a
group of size N to store logN number of keys. Their scheme
also requires O(logN) key update communications when a
member is deleted. However, the GC has to store O(N) num-
ber of keys in their model. Although several variations of the
tree based schemes have been presented in the literature[2, 6],
none of them allow the designerto choose the amount of com-
munications and compute the model parameters. In [2] an
approach to do this was attempted with asymptotic analysis.

In this paper, we present a formulation of the key distri-
bution that considers the tradeoft between the amount of key
update communications and the key storage requirements of
GC. We show that this problem can be posed as a constraint
optimization problem. We then convert this problem to a fixed
point equation and show how to solve for the optimal design
parameters.

The paper is organized as follows: Section IT presents the
basic tree based key distribution schemes[7, 8] and a variation
of this model, which is of interest to us[2]. Section III shows
our formulation of the problem and the derivation of the op-
timal cluster size M, and the required proof of optimality of
the cluster size. Section V presents numerical illustrations.
Contributions of the paper are discussed in Section VL

II. VIRTUAL TREE BASED KEY DISTRIBUTION
ProTOCOLS

The tree based KEK distribution approach [7, 8] builds a
logical tree of a given degree for a given group. The Figure 1
illustrates a rooted binary key distribution tree for a group
with eight members.

The logical tree is constructed such that each group mem-
ber is assigned to a unique leaf node of the tree. Every node
of the logical tree is assigned a KEK. The set of keys assigned
to the nodes along the path from a leaf node to the root are
assigned to the member associated with that particular leaf
node. For example, member My in Figure 1 is assigned key
encrypting keys {K¢, K11, K21, Ks31}. Since the root key
Ko is also shared by all the members, if there is no change
in group membership, Ko can be used to update the SEK for
all the members.

K12 == NodeKeys

K K7 Kgg ~ Leaf Keys

Mg <— Members

Figure 1: The Logical or Virtual Key Tree of [7, 8].

The tree based structure also induces a natural hierarchical
grouping among the members. By assigning the members to
appropriate nodes, the group controller can form desired hier-
archical clusters of members and selectively update, if needed,
the keys of the group. For example, in Figure 1, members
Ms, Mg, M7, and Mz exclusively share the key Ky 5. The GC
can use the key K1 o to selectively communicate with mem-
bers Ms, Mg, M-, and Mz. Such clustering of the members
on the tree may be decided by the GC based on application
specific needs. In order to be able to selectively disseminate
information to a subset of group members, the GC has to en-
sure that the common key assigned to a subset is not assigned
to any member not belonging to that subset.

Using the notation {m}x to denote the encryption of mes-
sage m with key K, and the notation

A—B:{mlx

to denote the secure exchange of message m from 4 to B, GC
can selectively send a message m to members Ms, --- Mz by
the following transmission:
GC — Ms, Ms, M7, M3 : {m};{l_2

If, however the key Ky 5 isinvalidated for any reason, GC
needs to update the key K1 2 before being able to use a com-
mon key for members Ms, Mg, M7, and Ms. It can do so by
first generating a new version of Ky o, denoted 1%-1_2, and then
performing two encryptions, one with K2 3 and the other with
IA{Q_‘}. The following two messages are needed to update key
K 5 to the relevant members of the group.
GC — Ms, M : {K12}x, .,
GC — M’F, Ms : {}-{;1__2};{2__1

A Member Deletron on Trees

Since the session key and the root key encrypting key Ko
are common to all the membersin the group, they have to be
invalidated each time a member is deleted. Apart from these
two keys, all the intermediate key encrypting keys assigned to
the deleted memberneed to be invalidated. In the event there
is bulk member deletion, the GC has to (a) identify &!! the
invalid keys, (b) find the minimal number of valid keys that
need to be used to encrypt and transmit the updated keys,
and (c) update the valid members with the new keys.

The general principle behind the member deletion is
discussed below using member My as example. Mem-
ber My in Figure 1 is indexed by the set of four keys
{Ko,K11,K21,K31}. Deleting member My leads to inval-
idating these four keys and the session key, generating new
keys, and updating these keys of the appropriate valid mem-
bers who shared the invalidated keys with member My. When
M; is deleted, the following updates are necessary: (a) all

member need new root key Ko and new session key SK,
(b) members Mz — My need to update {K11}, (c) members
Ms — Ma need to update {K2 2}, and (d) member M, needs
to update {K21}.

Hence, the user storage as well as the update communica-
tions scale as O(logN) for the tree based schemes in [7, 8].
The group controller has to store alf the keys corresponding
to the nodes of the entire tree. It can be shown that for any
rooted tree, the storage requirement of the group controller is
O(N)?. Hence, the key storage requirements of the GC is a
bottleneck in this model. For many applications with limited
storage, it is desirable to reduce the group controller storage
requirements as well. We now present a variation of the tree
based model presented in[2] and show how to use that model
to reduce key storage requirement of GC.

B Model for Minimazing the Key Storage of the Group Con-

troller

In the tree scheme discussed earlier, every leaf node is as-
signed a unique member. Hence, the number of leaves in the
tree is V. Once this parameter is fixed, the depth of the tree
and hence the total number of nodes in the tree are fixed.
Since every node of the tree is assigned a KEK, the number
of keys are fixed. If there is a mechanism to group members
and assigning multiple members to a leaf, then by controlling
the number of members assigned to a leaf node, we can vary
the total number of nodes in the tree.

Let @ bethe degree of the tree. If the group is divided into
clusters of size M with every cluster assigned to a unique leaf
node, then we will have f%—| number of clusters, then we need
to build a tree of depth log, [%1 The Figure 2 illustrates this
for a binary tree with cluster size M.

Root key
]

MM ,M ;M MM ¢
R

Cluster Size M=3

Mg, MMy, <— Members

Group SizeN
Figure 2: Logical Key Tree with Clusters

In order to do this, the following questions need to be ad-
dressed:

e How to manage the keys within each of the clusters?

e How to find the optimal cluster size so that the update
communications will be within a factor of the original
tree scheme in [7]7

C Managing Heys within a Cluster

Within each cluster with M members, all the members are
assigned a cluster KEK, which is also called common cluster
key. The common cluster key is used to update SEK within a
cluster with a single encryption and decryption. Every mem-
ber of the cluster is also assigned a unique key K, which is

al—1

——— and

2Exact value of the storage for an a — ary tree is
scales as N.

shared only with the GC. The GC uses a random seced r as
an index for pseudorandom function [2] /. to generate the key
K, for member v as K, = f.(u). Hence, for each cluster,
only the seed and the cluster KEK need to be stored. When
a member leaves a cluster, a new cluster KEK is generated
and encrypted with the individual KEKs.
is deleted within the cluster, the group controller has to per
form (M — 1) individual encryptions within the cluster alone
to update the common cluster key.

When a member

D Update Commaunicaiton of the Group

Since each clusteris assigned a unique leatnode, the set of
keys assigned to a clusteris the set of keys along the path from
the root to the leaf node. Since there are log, |—%—| number of
nodes along the path from the root to a leaf node and each
node is assigned a KEK, there are log, f%—| KEKs that are
assigned to a cluster. When a member is deleted, the total
number of key update messages is M — 1 within the cluster
plus (a — 1) log, % within the group, leadingto M — 1+ (a —
1) log, % update messages. That is, for an @ — ary tree-based
key distribution, when a single member is deleted, the total
number of update communications € is given as:

C=M-1+(a—1)log 70 (1)

III. MINIMIZATION OF KEY STORAGE WITH
COMMUNICATION CONSTRAINT

The number of keys to be stored by the GC is computed
as the keys on the tree plus seeds for % clusters, leading to

loga s

;N a N 1
5= Z dryg=(ti)wm e ©
Since the last term ﬁ is at most 1, it can be ignored with
estimate error of & within 1 key.

The storage and the update communications are functions
of the cluster size M which needs to be optimized. Since
the tree based schemes in [6, 7, 8] have logarithmic update
communications, in the cluster based model, we would like to
keep the update communications as logarithmic of the group
size as well. Hence the optimization problem is posed as

w.or.t. M (3)

in(14255) 31
min z—1 M

subject to

M—l-l—(a—l)logaggﬁlogn}v, (4)

where g > 1.

The storage can be noted as a monotonically decreasing
tunction of the cluster size M. The following theorem sum-
marizes the result.

Theorem 1: Optimal cluster size M that minimizes the
storage function § = ((2" 11)31,1 while satistying € = M — 1 +
(a — 1)log, % < PlogN is obtained by the largest root of
the equation M — X log, M = pu, where & = 5"5 12 and p >
A1 —log, X).

Proof: Since the storage decreases monotonically with re-
spect to the cluster size M, it issufficient to find the values of
M that satisfies the update communication constraint. More-
over, since the storage is a monotonically decreasing function,

the largest value of M satistying the update communication
constraint will be the solution of this constraint optimization.
Hence, the optimal value of the cluster size is computed by
the equation:

M —Jlog, M+ dlog, N —1=pglog N (5)
This can be rewritten as

M- Jlog M = 14(f—2Xlog N (6)
=2 M-Jllog M = u

where u= 14 (f — X)log, N.

A Computing Cluster Size M

Since the function M—X log, M+ X loge N—1 1s convex with

A(1+log, A) 1
’ lfﬁ = log. N

then the equation (5) has two solutions. Since M —)\loch
has the minimum at M = X and X > 0, the roots of the
equation M — dlog M = u lie below and above M = J.

the minimum value (1 + loge) -

Moreover, if M > A the gradient of M —Jlog, M is 1—% = 0.
Hence the fixed point equation
M—Jlog M=u (7)

is a contraction mapping with the largest root as the fixed
point solution if we start the iteration with an initial value
Mo > X Since X, up> 0, M = (u+ dog M) > u, if we set
the initial value of M to be My = p, after some algebra, a
series approximation to M is given by

M=o+ (%) log 1), (3)

Since X > 0 is fixed, and log, u < u as u — oo, it we denote
the asymptotic value of M by M., the limiting value is given
by

M, = 1 (1 1 9
;@n[l +()O&M) (9)
= p+Ailog u
R (10)

But My = p = (f — A)1log. N. Hence, the asymptotic value
of the largest root of the equation M — A log M = uis M,
(f—2)log, N.

‘We now show that the same results can be derived usingthe
first order Taylor series approximation with Newton’s method.
Setting the first approximate solution to the equation M —
Mlog, M = ptfor M > X as My = p, the first approximation is
M; = u+ dlog, u. Thisisindeed the asymptotic solution we
obtained using the fixed point iterations earlier. Letting N —
oo leads to Moo — p+log, px p. It can be shown that even if
the series is computed for higher order terms, for large values
of N, the largest root M of the equation M — dlog M = u
converges to Mo, = p+ dlog, p and grows as O(log V).

B Computing Minimal Storage

We showed that the asymptotic value of the largest root
of the equation M — Alog M = (f — X log N is M = =

(8 — X)log, N by two different approaches. The correspond-
ing value of the storage denoted S, is

. (2a — 1)N

1 5 =

Nereo (a — 1)M.,
s, — 2a—1 N (11)

a—1(f—2X)log N

Hence, the constraint optimization leads to optimal growth of
storage as O(%) when the update communication is con-
strained to grow as O(logN).

We now formally state it as the proof of Theorem 1.

Proof of Theorem 1: The storage § = % is a mono-
tonically decreasing function of M. We showed that the min-
imal storage is obtained by the largest cluster size M that
satisfies the constraint

M—l-i—(a—l)logﬂ%:ﬂlogﬂNforﬁzl

can be converted to the form M — Alog, M = u. The asymp-
totic value of the largest root of this equation is shown as

M., = (f— X)log, N. Hence the asymptotic optimal storage
(2a—1)N
: @D log. N
We note that the optimal cluster size M, and hence the
optimal storage are functions of the parameter g. From (11),
it is seen that # can be used as a design parameter to control

the key storage at the GC.

under communication constraint is § =

IV. RELATED WORK

Many schemes have been proposed for key mangement
problems. One early work along this line can be found in
[3]. In [4], each member share a KEK with GC, and there
is a group KEK shared by all group members. Under mem-
ber deletion, GC has to individually contact every member to
update the SEK and the group KEK. Therefore, the commu-
nicationsis linear in goup size. Virtual tree based distribution
scheme is independenly proposed by Wallner e &/ in [7] and
Wong et al in [8]. A rooted binary tree was used in [7] and
key grphs were used in [8]. The storage of GC is O(N) for
virtual key tree. In [2], a hybrid tree scheme is proposed.
Group members are divided into clusters, by combining vir-
tual tree and clusters, the storage of GC is reduced to sub-
linear in group size. The tree schemes are analyzed by using
entropy in[6], and thus prove minimum communication for a
tree based schemeis O(logN). A review of current research in
secure multicast is presented in[1]. A protocol called ELK for
key distribution is proposed in [5]. ELK provides reliability
of key update messages without relying on reliable multicast
protocols.

V. NUMERICAL COMPARISONS

In this section, we present numerical illustration to show
that the optimal cluster size M., can lead to significant im-
provements in storage over values in [7]. For simplicity, we set
K—3 = 1whichleadsto M., = log, N and §,, = -1
Table 1 presents the comparison in storage and communica-
tion for several pairs of (degree a, group size N). Compared
to the increase in update communications, the reduction in

storage of GC is much more significant.

VI. CONCLUSIONS

Update

(Degree a, | 7t of keys | #f of keys Storage | Comm.?

Group in GC by in GC reduction | increase
size N) | virtual tree | as Eq (11) in % in %
(2,21") 2047 444 78.3 31.4
(2,2%") 2097151 226920 89.2 45.4
(3,219) 1535 370 75.9 19.0
(3,2%%) 6.44 x 10° | 4.84 x 108 92.5 38.5
(4,2") 1365 345 74.7 11.6
(4,2%%) 1398101 176490 87.4 23.9

Table 1: Comparison of Storage and Key Update Com-
munication.

In this paper, we showed that the key storage requirement
in[7] can be reduced from O(N) to O(%) by formulating it
as a constraint optimization problem. We also gave a proof of
optimality. Our approach can be viewed as an explicit design
methodology.

ACKNOWLEDGMENTS

REFERENCES

[1] R. Canetti, and B. Pinkas, "A Taxonomy of Multicast Security
Issues”, Internet draft, April, 1999.

[2] R. Canetti, T. Malkin, and X. Nissim, “Efficient
Communication-Storage Tradeoffs for Multicast Encryption®,
Eurocrypt’99, pp. 456 - 470,

[3] A. Fiat and M. Naor, "Broadcast Encryption”, Advances i
Cryptology-CRYPTG'92, vol. 773, pp.481-491, 1993,

[4] H. Harney, C. Muckenhirn, "Group Key Management Protocol
Architecture”, RFC 2094, July 1997

[5] A. Perrig, D. Song, and J.D. Tygar, "ELK, a New Protocol for
Efhcient Large-Group Key Distribution”, IEEE Proceedings of
Security and Privacy, May 2001, Oakland, California

[6] R. Poovendran, J. S. Baras, "An Information Theoretic Ap-
proach for Design and Analysis of Rooted Tree-Based Mul-
ticast Key Management Schemes”, Advances i Cryptology-
CRYPTG99, pp.624-638, 1999.

[7] D. M. Wallner, E. C. Harder, and R. C. Agee, "Key Manage-
ment for Multicast: Issues and Architectures”, Internet Draft,
September 1998.

[8] C.K. Wong, M. Gouda, §. 5. Lam, "Secure Group Communica-
tions Using Key Graphs”, IEEE/ACM Trans. on Networking,
Val.8, Nao.1, pp.16-31, Feb. 2000.

