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Abstract—With recent advances in smartphones and wearable
sensors, Body Sensor Networks (BSNs) have been proposed for
use in continuous, remote electrocardiogram (ECG) monitoring.
In such systems, sampling the ECG at clinically recommended
rates (250 Hz) and wireless transmission of the collected data
incurs high energy consumption at the energy-constrained body
sensor. The large volume of collected data also makes data storage
at the sensor infeasible. Thus, there is a need for reducing the
energy consumption and data size at the sensor, while maintaining
the ECG quality required for diagnosis. In this paper, we propose
GeM-REM, a resource-efficient ECG monitoring method for
BSNs. GeM-REM uses a generative ECG model at the base
station and its lightweight version at the sensor. The sensor
transmits data only when the sensed ECG deviates from model-
based values, thus saving transmission energy. Further, the model
parameters are continually updated based on the sensed ECG.
The proposed approach enables storage of ECG data in terms
of model parameters rather than data samples, which reduces
the required storage space. Implementation on a sensor platform
and evaluation using real ECG data from MIT-BIH dataset shows
transmission energy and data storage reduction ratios of 42.1:1
and 37.3:1 respectively, which are better than state of the art
ECG data compression schemes.

Keywords-body sensor networks; BSN; model-based communi-
cation; ECG monitoring; resource-efficient; generative model

I. I NTRODUCTION

Electrocardiogram (ECG) is a time-varying signal repre-
senting the electrical activity of the heart, and is an effective,
non-invasive diagnostic tool for cardiac monitoring. Recently,
several systems have been developed for continuous, remote
ECG monitoring using Body Sensor Networks (BSNs) [1].
Such systems typically consist of a wireless, battery-operated,
body-worn sensor that collects ECG data and transmits it to
a gateway device such as a smartphone. The gateway reports
this data over the internet to a remote base station, which
is typically a hospital server or caregiver’s computer. Such
remote monitoring allows collection of data during a person’s
daily routine and enables early detection of conditions such as
tachycardia or angina. Further, the availability of continuous
long-term data can help identify gradual, long-term trendsin
the cardiac health of at risk patients.

A key challenge in BSN-based ECG monitoring is the large
volume of data collected by the sensor in a short time interval.
For example, with a sampling rate of 250 Hz and resolution
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of 12 bits/sample, more than 2 KB of data is collected
within 6 seconds. Local storage of this data on the sensor or
the gateway device is impractical due to storage limitations.
Further, wireless transmission of this data consumes significant
power at the energy-constrained sensor. At the same time, the
quality and continuity of the reported ECG signal must be
maintained at the base station to allow effective investigation
and diagnosis by a physician.

In this paper, we focus on this problem of resource-efficient
ECG monitoring for BSNs, and develop GeM-REM: a Genera-
tive Model-driven Resource-efficient ECG Monitoring method.
Our key observation is that ECG is a fairly periodic signal,
with a known morphology and well-understood temporal vari-
ations. A set of key features are collected from a patient’s
ECG and incorporated into a generative model that is stored
on the sensor and the base station. The sensor transmits data
only when the sensed ECG deviates from the assumed model.
When no data is received from the sensor, the base station
uses the generative model to generate a synthetic signal closely
resembling the patient’s ECG. This signal can be used as the
patient’s ECG for clinical investigations. Through experiments
on real-life ECG data, we show that GeM-REM significantly
reduces sensor energy consumption, while preserving the
diagnostic quality of the reported ECG.

We make the following contributions in this paper:

• We develop a novel generative model based scheme for
ECG monitoring, where the sensor and base station store
a common ECG model, and the sensor transmits data only
when the sensed ECG deviates from this model.

• We design a base station module that can learn a model
based on training data and generate synthetic ECG signals
using the trained model. We also develop a lightweight
sensor module that performs comparison of the sensed
ECG data to the model.

• We implement the proposed system on a sensor platform
and show the resultant savings in energy consumption
and data storage memory requirement.

The rest of the paper is organized as follows. Section II
presents background and related work. Section III discusses
the overall architecture and operation of GeM-REM. Sections
IV and V present the design and implementation of the base
station and sensor modules respectively. We present our results
in Section VI, and Section VII concludes the paper.



Fig. 1. Morphology features of an ECG beat. A beat is comprisedof P, Q,
R, S and T waves, with a U wave present in some cases.

II. BACKGROUND AND RELATED WORK

The ECG signal has been extensively studied and used for
cardiac diagnosis. As shown in Figure 1, a single beat of
ECG consists of P, Q, R, S and T waves, with a U wave
present in some cases. The Q, R and S waves are often
jointly considered as a QRS complex. The shape, amplitude
and relative locations of the constituent waves are key features
of an ECG, referred to asmorphology features. The distance
between two consecutive R peaks is called the R-R interval,
and its reciprocal gives the instantaneous heart rate. The R-
R interval typically varies over time, and this variation is
described using temporal features such as mean and standard
deviation of heart rate, and spectral features such as Low
Frequency/High Frequency (LF/HF) ratio [2]. In this paper,
we refer to these features asinter-beat features.

ECG is a low amplitude electrical signal and is often
corrupted by noise from various sources such as electrical
mains, muscle noise and patient movement. As a result, the
measured signal must be filtered to extract the underlying
ECG. The QRS complex can be extracted using computation-
ally lightweight algorithms [3], while extracting P and T waves
requires advanced filtering techniques that are computationally
expensive to implement on sensors. Further, several clinical
conditions can be diagnosed from the QRS complex alone. As
a result, in the current version of GeM-REM, we focus only
on the QRS complex. Future extensions will include improved
filtering methods that can extract P and T waves.

Generative models: A key aspect of GeM-REM is the
use of a generative ECG model. Such models can generate
synthetic ECG signals, given a set of input parameters. In
this paper, we use the widely accepted dynamical generative
model ECGSYN, proposed in [2]. In ECGSYN, the inter-beat
features of ECG (mean and standard deviation of heart rate
and LF/HF ratio) are modeled using 3 parameters:hrmean,
hrstd and lfhfratio respectively. For the morphology features,
each wave (P, Q, R, S and T) is represented by 3 parameters:
(a, b, θ), which determine its height, width and distance
to R peak, respectively1. The authors of ECGSYN provide
a MATLAB implementation [4] to generate synthetic ECG,
given a set of input parameters. To avoid duplication, we use
this implementation in GeM-REM.

1Note that the height of a wave is not exactly equal to the valueof a.
Similarly, the width of the wave is not directly equal to valueof b.

A. Related Work

Several approaches based on data compression using
wavelets, Huffman coding and priority-based encoding have
been proposed in literature to reduce energy consumption and
data size in ECG monitoring [1]. A feature extraction-based
method was proposed in [5]. These schemes, unlike GeM-
REM, need to continuously transmit data, thus limiting their
energy savings. In [6], we discuss how these schemes can be
combined with GeM-REM to further improve energy savings.
Recently, a compressive sensing approach has been proposed
[7], which uses the sparsity of the ECG signal in specific
wavelet transformations to reduce sampling rate. However,
reconstruction of the received signal is complex and strongly
depends on error-free transmission of all coefficients.

III. M ODEL-BASED OPERATION OFGEM-REM

In this section, we describe the overall architecture and
operation of GeM-REM. The assumed BSN system model is
shown in Figure 2a, where the generative ECG model used at
the sensor and the base station is denoted asG.

Architecture: As shown in Figure 2b, GeM-REM consists
of the following two modules:

1) Base station module (MBS): This module usesG to
generate synthetic ECG data given a set of input param-
eter values. Additionally, it includes a model learning
function, which is used to trainG based on a specific
patient’s ECG. This function derives suitable input pa-
rameter values forG from the given ECG data.

2) Sensor module (MLITE): This module is intended for
use in the ECG sensor and uses a lightweight imple-
mentation of the modelG to generate an expected ECG
signal. It also performs a comparison between this signal
and the sensed ECG, to decide when to transmit data to
the base station.

Initialization: Prior to deploying the system for a patient,
the learning functionality ofMBS is used to trainG using
the patient’s ECG data. This training process outputs a set of
parameter values, which are stored on the base station as well
as the sensor. These values are intended to be used as inputs
to G, for generating synthetic ECG data closely resembling
the patient’s actual ECG.

Basic operation: During regular operation of the system,
the sensor compares the sensed ECG signal to that generated
by G, and if these signals match within a pre-defined threshold,
the sensor does not report any data to the base station.2

Conversely, if the sensed data deviates from the model, the
sensor transmits updates to the base station, as follows:

• Feature updates: Representative features are calculated
from the sensed ECG data, and when these values change
significantly, the sensor updates the corresponding pa-
rameters of the modelG in MLITE . Further, the sensor
reports these values to the base station. Such reports,

2To differentiate between absence of data reports and sensoror network
failure, we use a periodic sensor heartbeat scheme, where thesensor period-
ically sends ‘HELLO’ messages to the base station.
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Fig. 2. System architecture and data reporting scheme of GeM-REM. The computationally intensive model learning component is implemented inMBS ,
while MLITE only has lightweight components. The modelG in MLITE is a simpler version of the one inMBS , and can only generate individual beats.

called feature updates, are used by the base station to
update the model inMBS . This approach is suitable for
features that can be calculated on the computationally-
limited sensor.

• Raw signal updates: For some other model parameters,
the corresponding ECG features are hard to compute on
the sensor. In such cases, when the sensed ECG deviates
from the model, the sensor sends raw sensed data to the
base station, which is called a raw signal update. Based
on received data, the base station derives new parameter
values forG using its model learning functionality. These
values are then communicated to the sensor, to update the
model inMLITE .

These updates allow the parameter values of the model
G in MBS and in MLITE to be continually updated as the
patient’s ECG varies over time. At the base station, when raw
data is received from the sensor, it is directly recorded as the
patient’s ECG. For remaining time intervals, the corresponding
parameter values ofG are used to generate a synthetic ECG
signal. This signal is then temporally aligned with the raw
ECG snippets to form the final, reported ECG signal.

A. Advantages of Proposed Model-Based Architecture

The model-based architecture of GeM-REM provides two
main advantages: flexible energy consumption-data accuracy
tradeoff, and reduced data size for ECG storage.

By defining suitable thresholds for the comparison between
the sensed and model-generated ECG, a large fraction of data
transmission at the sensor can be suppressed, thus significantly
reducing sensor energy consumption. These threshold values
can be specified by the physician and adjusted over time based
on the data accuracy requirements of the application.

The proposed approach also provides data storage savings
by representing ECG using model parameters instead of data
samples. For example, during a time interval denoted [tA, tB ],
if the model parameter values are [p1,p2, · · · pN ], the data can
be stored as: “[tA, tB ] : [p1, p2, · · · pN ]”. These values can
later be used as inputs toG to regenerate the corresponding
ECG data. This representation significantly reduces data size,
and can enable local storage of ECG data on the patient’s
smartphone, which is not feasible with direct ECG storage.

We note that the approach outlined in this section does not
depend on specific characteristics of the generative modelG,
and can be applied to any given ECG data model. In this paper,
we use the ECGSYN [2] model as an example.

IV. BASE STATION MODULE MBS

In this section, we describe the design and implementation
of the base station moduleMBS . The ECGSYN model is used
as an example of the generative modelG for ECG.

The two main functions of theMBS module are learning
the input parameter values forG from given training data and
generating a synthetic ECG when no data is received from the
sensor. For the synthetic signal to closely match the actual,
sensed ECG, we need to derive suitable input parameters for
the generative modelG. This functionality is provided by the
model learning function ofMBS , which uses real ECG data
as input and calculates suitable input parameter values for
the specific model used asG. As discussed in Section II,
the ECGSYN model used in this paper uses two groups of
inputs: inter-beat parameters and morphology parameters.The
learning method for each of these groups is as follows:

Inter-beat parameters: This group includes the parameters
hrmean, hrstd and lfhfratio, corresponding to the mean heart
rate, standard deviation of heart rate and LF/HF ratio features
of ECG respectively. To calculate the LF/HF ratio, a set of
256 R-R interval values is obtained from the given ECG
data and the Power Spectral Density (PSD) of this set is
computed. The Low Frequency (LF) and High Frequency (HF)
components are then obtained by integrating the PSD over the
ranges (0.04Hz - 0.15Hz) and (0.15Hz - 0.4Hz) respectively.
The ratio between these components gives the value of the
lfhfratio parameter. Thehrmean andhrstd values are obtained
by performing averaging and standard deviation calculations
on a set of 60 R-R interval values.

Morphology parameters: This group includes the nine
parameters (aQ, aR, aS , bQ, bR, bS , θQ, θR, θS) that represent
the morphology of the QRS complex. Out of these,θQ and
θS are calculated using the distance of the R peak from the
Q and S peaks respectively whileθR is zero, by definition.
For learning the remaining parameters (aQ, aR, aS , bQ, bR,
bS) we use a curve fitting approach. A set of initial values
for these parameters is obtained by solving a system of linear



TABLE I
QRS DETECTION ALGORITHM USED IN THE SENSOR MODULE

For each incoming data sample x[i] //-0.4≤ x[i] ≤ 1.2
if (x[i] > MAX) then Set MAX = x[i] //Initially, MAX = -100
if (x[i] < MIN) then Set MIN = x[i] //Initially, MIN = 100

if (Looking for upward peak)then
if (x[i] < MAX) then Mark x[i-1] as PossiblePeak
if (x[i] < (MAX - thresholdUp))then

Mark latest PossiblePeak as RealPeak
if (magnitude(RealPeak)> thresholdR)then

Mark peak as R peak
Start Looking for downward peak

else // looking for downward peak

if (x[i] > MIN) then Mark x[i-1] as PossiblePeak
if (x[i] > (MIN + thresholdDown))then

Mark latest PossiblePeak as RealPeak
if ((magnitude(RealPeak)> thresholdQ)

AND (PreviousPeak is S))then
Mark peak as Q peak

if ((magnitude(RealPeak)> thresholdS)
AND (PreviousPeak is R))then

Mark peak as S peak
Start Looking for upward peak

equations using six points on the ECG signal. Starting with
these initial values, we use a least square error curve fitting
function to adjust the values till noise floor is reached. Due
to space limitations, the detailed initial value equationsand
optimization method are presented in [6].

Thus, a total of 12 input parameters (hrstd, hrmean, lfh-
fratio, aQ, aR, aS , bQ, bR, bS , θQ, θR, θS) are learned from the
patient’s true ECG and used to generate a matching synthetic
ECG. We note that the morphology of ECG depends on the
lead configuration and may vary across patients. Hence, the
data used for learning the model should be obtained from
the intended user of the system, and using the same lead
configuration as the final system.

V. SENSORMODULE MLITE

MLITE is intended for use in ECG sensors and contains
the modelG along with functions to compare the sensed
ECG signal toG. From our experience with BSNBench [8],
we conclude that the full version ofG may not be feasible
for implementation in sensors due to resource limitations.
As a result, we developed a suitable, lightweight TinyOS
implementation of ECGSYN for use in GeM-REM.

The energy savings provided by GeM-REM can be max-
imized through efficient implementation of the set of com-
ponents inMLITE shown in Figure 2. In this paper, as a
proof of concept, we implement these components in software,
on the commercially available TelosB platform. In future
versions, some of these components will be converted to
hardware implementations, which are expected to lower the
energy consumption. The first task performed byMLITE is
preprocessing the sensed ECG to convert it into a format
suitable for comparison with the stored model. This involves
the following operations:
1) Scaling: The amplitude of the sensed ECG signal is
highly dependent on the sensor hardware and the ECG lead
configuration. To ensure an accurate comparison between the

sensed data and the model data, they must both be converted
to a common, device-independent scale. This is achieved by
linearly scaling each signal to a maximum of 1.2 mV and
minimum of -0.4 mV.
2) Filtering: As discussed in Section II, the sensed ECG is
typically noisy, and must be filtered to extract the underlying
signal. Extracting the QRS complex requires a passband of 5-
12 Hz, which is achieved by cascading lowpass and highpass
filters with cutoff frequencies 5 Hz and 12 Hz respectively.
For low computational overhead, we use a Finite Impulse
Response (FIR) filter of 6 taps and order 32. A similar filter
design used in [3] was shown to achieve good performance.
3) Peak detection: Measuring ECG features such as R-
R intervals or QRS complex width requires detecting Q, R
and S peaks. In order to perform this peak detection at low
computational overhead, we developed a lightweight QRS
peak detection algorithm shown in Table I. This algorithm
detects all the positive and negative peaks in a signal, and then
imposes relative thresholds (thresholdQ, thresholdR, thresh-
oldS) on the amplitude to qualify peaks as Q, R and S
respectively. The derivation of threshold values is presented in
[6]. Further, false positives are reduced by imposing conditions
based on the previous peak. For example, for a negative peak
to be declared as ‘S’, the previous peak must be an R peak.

Once preprocessing is complete, the sensed ECG is com-
pared to the signal generated by the model. Such a comparison
is performed in two ways:

Feature-based comparison: In this approach, a set of
features are extracted from both signals and their values are
compared. We use this method for inter-beat features (mean
and standard deviation of heart rate, and the LF/HF ratio) since
they can be calculated from the sensed ECG at low computa-
tional cost. The mean and standard deviation of the heart rate
are obtained by calculating the mean and standard deviation
of a set of 30 consecutive R-R intervals. The LF/HF ratio is
calculated as in Section IV forMBS . However, to optimize
computation speed and power consumption, we developed an
efficient TinyOS implementation for Fast Fourier Transform
(FFT). Once these calculations are complete, the feature values
are compared to model parameter valueshrmean, hrstd and
lfhfratio respectively.

Direct signal comparison: Calculating the morphology
features involves complex curve fitting and is not feasible
for computationally-limited sensors. As a result, we use the
direct signal comparison approach for the ECG morphology.
A sample, representative beat, referred to asMeanBeat, is
obtained by averaging 10 consecutive beats of the sensed
ECG. On the other hand, we use our lightweight ECGSYN
implementation to generate a sample ECG beat, referred to
as ModelBeat. The ModelBeat and MeanBeat are aligned by
superimposing the respective R peaks, and the fit is compared
using the mean square error metric. The mean square metric
is chosen since it captures shape as well as amplitude of the
Q, R and S waves. Since generating theModelBeat was found
to be computationally expensive, it is performed only when
morphology parameter values are updated. The generated



ModelBeat is then stored in memory for future use.
The sensor periodically computes the mean squared error

between theMeanBeat with the ModelBeat and transmits raw
sensed ECG samples to the base station if this error exceeds
a specified threshold. For inter-beat features, if the difference
in the sensed signal features and model parameters exceeds
a pre-defined threshold, the model inMLITE is updated and
the new parameter values are transmitted to the base station.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the following aspects of GeM-
REM: (i) Accuracy of model learning functionality ofMBS ,
(ii) Energy consumption ofMLITE , (iii) Reduction in energy
consumption and data storage, and (iv) Accuracy of GeM-
REM. The data used for evaluation is a set of real life 3-
lead ECG traces sampled at 250 Hz, obtained from the MIT-
BIH database [4]. This ECG is further scaled and filtered, as
described in Section V. This filtered version of ECG is referred
to as ECGraw for the remainder of this section. Similarly, the
ECG reported by GeM-REM at the base station is referred to
as ECGGR. TheMBS module is implemented in MATLAB,
while theMLITE module is implemented in TinyOS 2.x, and
run on the TelosB platform.

A. Learning Function in MBS

The model learning function ofMBS was tested over 20
ECG traces of two different types: (i) 10 Normal ECG, (ii) 10
Congestive Heart Failure (CHF) ECG. For each ECGraw, a
sample beat was obtained by averaging 10 consecutive beats.
An ECGSYN model was trained on this beat, and then used to
generate a synthetic ECG, which was compared to ECGraw.
As shown in Figure 3, the trained model achieves very good
fit for different morphologies of ECGraw. An average mean
square error of 2.13% was observed over 20 ECG traces.

B. Energy Consumption of MLITE

We evaluate the energy consumption ofMLITE since it
can be an important factor in the battery life of the ECG
sensor. Some tasks inMLITE , such as filtering, are executed
continuously, while others, such ashrmean calculation, occur
once for a set of several beats. To jointly consider these tasks,
a per beat energy consumption is calculated for each task,
and their sum is considered as the total energy consumption
per beat. Table II shows that the highest contribution is from
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Fig. 3. Comparison of model generated ECG and filtered originalECG for
different ECG morphologies. The model achieves> 97% fit.

TABLE II
ENERGY CONSUMPTION ONTELOSB MOTES FOR DIFFERENT

COMPUTATIONAL TASKS IN MLITE

Task Occurrence Energy Energy/Beat
(mJ) (mJ/beat)

Scaling, Filtering and Every beat 0.63 0.62
Peak detection
Generate ModelBeat - 22.176 -
using ECGSYN *

Mean squared error 10 beats 1.008 0.1
between MeanBeat
and ModelBeat
Calculate heart rate 60 beats 3.434 0.056
mean, std. deviation
Calculate LF/HF ratio 256 beats 3.072 0.012

Total Computational energy/beat 0.79
* Being a one-time task, it is not considered in per beat energy.

simple tasks such as scaling and filtering, since they are
executed continuously. Using hardware implementations of
these tasks in future versions is expected to drive down the
energy consumption ofMLITE .

C. Energy and Memory Savings of GeM-REM

We now discuss the reduction in transmission energy
consumption and data storage provided by GeM-REM, and
compare our results to state of the art compression schemes
proposed for ECG monitoring.

Transmission energy reduction:Transmission energy is an
important performance metric for ECG monitoring schemes,
since data transmission is the main factor in energy con-
sumption on ECG sensors [5]. Since transmission energy
consumption is directly proportional to the size of data being
transmitted, compression-based methods use the compression
ratio (CR) as an indication of transmission energy reduction
[9]. To enable comparison of GeM-REM to state of the art
compression schemes, we define a similar ratio for GeM-REM:

CRGR =
Total ECG data

Data transmitted by GeM-REM

To calculateCRGR, we ran GeM-REM for a set of ECGraw
signals from five different subjects. Each ECG signal is5.4×
106 samples long (approx. 6 hours). Using 16 bits/sample, the
total data is 10.8 MB. The thresholds forhrmean, hrstd and
lfhfratio parameter comparison were 3 beats per min (bpm),
2 bpm and 4, respectively. For morphology comparison, the

TABLE III
COMPRESSIONRATIO OF GEM-REM COMPARED TO EXISTING

COMPRESSION SCHEMES

Scheme/Algorithm Compression Ratio

AZTEC [1] 10 : 1
CORTES [1] 4.3 : 1

Wavelet and Huffman [1] 9.4 : 1
DCT & arithmetic [1] 14.73 : 1

DCT & LZW [1] 9 : 1
SPITH [9] 21.4 : 1

DWLT & MSVQ [9] 29.3 : 1
GeM-REM 42.09 : 1



TABLE IV
PERFORMANCE OFGEM-REM FOR DIFFERENT THRESHOLD VALUES

Threshold Values CRGR Feature Error (%)
(hrmean, hrstd, Morphology Max Mean

lfhfratio) MSE
(3,2,4) 0.07 42.08:1 6.92 4.03
(2,1,3) 0.07 40.19:1 6.32 3.24
(10,5,6) 0.2 7892:1* 14.3 8.64
(10,5,6) 0.01 1.16:1† 0.5 0.1

* This case does not send any raw signal updates
† This case transmits almost entire ECGraw

threshold for mean squared error betweenModelBeat and
MeanBeat was set as 0.07. As shown later, these values
preserve the diagnostic content of ECG.

With these threshold values, the average data transmission
per ECGraw was found to be 4420 bytes in feature updates
(2210 updates) and 252.2 KB in raw signal updates (65
updates). Thus, total data transmitted is 256.62 KB, giving:
CRGR = 10.8 MB/256.62 KB = 42.086 : 1. Table III
shows the comparison between GeM-REM and state of the
art compression schemes [1], [9]. The variation inCRGR

based on the chosen threshold values is shown in Table IV. We
observe that a larger threshold for morphology mean square
error (MSE) gives very high gain inCRGR since it almost
eliminates data-intensive raw signal updates.

Storage space reduction:To measure the effectiveness of
the data representation described in Section III-A, we usedit
to store ECGGR in memory. For each feature value update, a
new time interval is started, and the set of model parameters
is appended to the file. The data samples received through
raw signal updates are stored directly. On an average, for
an ECGraw file size of 32.9 MB, we obtained a size of
903 KB for ECGGR (Compression Ratio of 37.3), which is
significantly higher than existing compression schemes. We
note that this ratio relates to the storage requirements andis
different fromCRGR which is related to data transmission.

D. Accuracy of GeM-REM

We consider the following two aspects of accuracy: diagnos-
tic quality of the ECGGR signal and the ability of GeM-REM
to detect occurrence of unexpected events in the sensed ECG.

Signal quality: The Percent Root-mean-square Distortion
(PRD) metric typically used by compression schemes to
measure distortion is not applicable to GeM-REM since the
output signalECGGR is not intended to match the input
ECGraw sample-to-sample. Instead, the goal is to preserve
the diagnostic information. As a result, we measure signal
quality by evaluating a set of 6 diagnostically relevant features
related to the QRS complex and R-R intervals for ECGraw

and the corresponding ECGGR signal [10]. A percent error
is then obtained for each feature. As shown in Table V, the
average error over 5 different ECG traces is below 7% for
the same set of threshold values used for calculatingCRGR.
This indicates that the diagnostic quality of ECG is retained
by GeM-REM. Like CRGR, the signal quality also varies
with chosen threshold values, as shown in Table IV. It was

TABLE V
PERCENT ERROR BETWEENECGraw AND ECGGR FOR 6

DIAGNOSTICALLY RELEVANT FEATURES

Feature Error(%)

R-R interval 6.47
QRS complex width 6.92

Polarity of QRS 0.6
Number of peaks in QRS 1.1

QRS: Max amplitude 4.8
QRS: Min amplitude 4.13

observed that lower threshold values for inter-beat features
improve accuracy, with minimal effect onCRGR.

Detection of unexpected events:To evaluate the response
of GeM-REM to occurrence of unexpected events such as
acute cardiac failure, we appended a trace of a CHF ECG to a
normal ECG waveform. This was used as ECGraw, to simulate
occurrence of a heart failure. As expected, the change in ECG
was detected in the morphology comparison, and was reported
to the base station within 5 beats (approximately 5 s).

VII. C ONCLUSION AND FUTURE WORK

In this paper, we proposed GeM-REM, a generative model-
based method for ECG monitoring using BSNs. Based on
validation with real ECG data, GeM-REM is observed to
significantly reduce energy consumption and data storage,
while maintaining the diagnostic quality of the reported ECG.
Future versions of GeM-REM will include modeling of P,T
waves and hardware implementation of some parts ofMLITE .
Due to space limitations, we discuss these in [6], along with
other possible extensions to GeM-REM.
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