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Abstract—With recent advances in smartphones and wearable of 12 bits/sample, more than 2 KB of data is collected
sensors, Body Sensor Networks (BSNs) have been proposed fokyithin 6 seconds. Local storage of this data on the sensor or
use in continuous, remote electrocardiogram (ECG) monitoring. the gateway device is impractical due to storage limitation

In such systems, sampling the ECG at clinically recommended Furth irel t . f this dat fiant
rates (250 Hz) and wireless transmission of the collected data urther, wireless transmission ot this data consumesigign

incurs high energy consumption at the energy-constrained body POWer at the energy-constrained sensor. At the same tiree, th
sensor. The large volume of collected data also makes data storagequality and continuity of the reported ECG signhal must be

at the sensor infeasible. Thus, there is a need for reducing the maintained at the base station to allow effective invesitiga
energy consumption and data size at the sensor, while maintaining and diagnosis by a physician

the ECG quality required for diagnosis. In this paper, we propose . ) L
GeM-REM, a resource-efficient ECG monitoring method for In this paper, we focus on this problem of resource-efficient
BSNs. GeM-REM uses a generative ECG model at the base ECG monitoring for BSNs, and develop GeM-REM: a Genera-
station.and its lightweight version at the sensor. The sensor tive Model-driven Resource-efficient ECG Monitoring medho
Lransgqutsldata ﬁ”'y when the sensed ECG de":‘;"teifm“; modgl- Our key observation is that ECG is a fairly periodic signal,
ased values, thus saving transmission energy. urther, the me . _ i
parameters are continually updated based on the sensed ECG.W'_th a known morphology and well-understood temporal _varl,
The proposed approach enables storage of ECG data in terms ations. A _set of key fe_atures are col_lected from a patlents
of model parameters rather than data samples, which reduces ECG and incorporated into a generative model that is stored
the required storage space. Implementation on a sensor platform on the sensor and the base station. The sensor transmits data
and evaluation using real ECG data from MIT-BIH dataset shows only when the sensed ECG deviates from the assumed model.
transmission energy and data storage reduction ratios of 42.1:1 . . .
and 37.3:1 respectively, which are better than state of the art When no data '? received from the sensor, th.e b.ase station
ECG data compression schemes. uses the generative model to generate a synthetic sigrsallglo
resembling the patient's ECG. This signal can be used as the
patient's ECG for clinical investigations. Through expegents
on real-life ECG data, we show that GeM-REM significantly
|. INTRODUCTION reduces sensor energy consumption, while preserving the

Electrocardiogram (ECG) is a time-varying signal repre@agnosnc quality of the reportgd I,ECG‘. i
We make the following contributions in this paper:

senting the electrical activity of the heart, and is an eiffec
non-invasive diagnostic tool for cardiac monitoring. Rebe « We develop a novel generative model based scheme for
several systems have been developed for continuous, remote ECG monitoring, where the sensor and base station store
ECG monitoring using Body Sensor Networks (BSNs) [1]. acommon ECG model, and the sensor transmits data only
Such systems typically consist of a wireless, battery-atee; when the sensed ECG deviates from this model.
body-worn sensor that collects ECG data and transmits it tos We design a base station module that can learn a model
a gateway device such as a smartphone. The gateway reports based on training data and generate synthetic ECG signals
this data over the internet to a remote base station, which using the trained model. We also develop a lightweight
is typically a hospital server or caregiver's computer. [Buc  sensor module that performs comparison of the sensed
remote monitoring allows collection of data during a peison ECG data to the model.

daily routine and enables early detection of conditiondiaag  « We implement the proposed system on a sensor platform
tachycardia or angina. Further, the availability of contins and show the resultant savings in energy consumption
long-term data can help identify gradual, long-term treimds and data storage memory requirement.

the cardiac health of at risk patients.

Keywords-body sensor networks; BSN; model-based communi-
cation; ECG monitoring; resource-efficient; generative model

. L The rest of the paper is organized as follows. Section Il
v ,lbxrl;ey cfh;lltenge”m ?3%%3?6(1 EnCGr mon'tﬁr'?ﬂizthiitlirv resents background and related work. Section Il disausse
Foru xe?n Ia awcitoh ecte m );in ers::‘ SC; 258‘ ZZO nd re Ieti e overall architecture and operation of GeM-REM. Sestion
or example, a sampliing rate o and resolutiqy, ang v present the design and implementation of the base
The work of A. Banerjee and S.K.S. Gupta was funded in part agddal ;tatlon _and sensor mOdules respectively. We present aultses
Science Foundation Grant CT-0831544. in Section VI, and Section VIl concludes the paper.



A. Related Work

Several approaches based on data compression using
wavelets, Huffman coding and priority-based encoding have
been proposed in literature to reduce energy consumptidn an
data size in ECG monitoring [1]. A feature extraction-based
] method was proposed in [5]. These schemes, unlike GeM-
! S REM, need to continuously transmit data, thus limiting thei
QRS interval energy savings. In [6], we discuss how these schemes can be
combined with GeM-REM to further improve energy savings.
Recently, a compressive sensing approach has been proposed
[7], which uses the sparsity of the ECG signal in specific
Il. BACKGROUND AND RELATED WORK wavelet transformations to reduce sampling rate. However,
reconstruction of the received signal is complex and stgong

The ECG signal has been extensively studied and used {ipends on error-free transmission of all coefficients.
cardiac diagnosis. As shown in Figure 1, a single beat of

ECG consists of P, Q, R, S and T waves, with a U wave !ll. M ODEL-BASED OPERATION OFGEM-REM

present in some cases. The Q, R and S waves are ofte this section, we describe the overall architecture and
jointly considered as a QRS complex. The shape, amplituggeration of GeM-REM. The assumed BSN system model is
and relative locations of the constituent waves are keyifeat shown in Figure 2a, where the generative ECG model used at
of an ECG, referred to asworphology features. The distance the sensor and the base station is denoted.as
between two consecutive R peaks is called the R-R interval Architecture: As shown in Figure 2b, GeM-REM consists
and its reciprocal gives the instantaneous heart rate. Fhe dR the following two modules:
R interval typically varies over time, and this variation is
described using temporal features such as mean and standar
deviation of heart rate, and spectral features such as Low
Frequency/High Frequency (LF/HF) ratio [2]. In this paper,  gnction, which is used to traiG based on a specific
we refer to these features eder-beat features. patient's ECG. This function derives suitable input pa-
ECG is a low amplitude electrical signal and is often rameter values fog from the given ECG data.
corrupted by noise from various sources such as electricab) Sensor module)(; ;r5): This module is intended for
mains, muscle noise and patient movement. As a result, the ' se in the ECG sensor and uses a lightweight imple-
measured signal must be filtered to extract the underlying  mentation of the modef to generate an expected ECG
ECG. The QRS complex can be extracted using computation-  signal. It also performs a comparison between this signal

ally lightweight algorithms [3], while extracting P and T vés and the sensed ECG, to decide when to transmit data to
requires advanced filtering techniques that are computgtio the base station.

expensive to implement on sensors. Further, several alinic

o . Initialization: Prior to deploying the system for a patient,
conditions can be diagnosed from the QRS complex alone. ph% learning functionality O%WZS gis useg to traing ul?sing

a r(te;ult, l;nsthe culrren;[:v;ersmn ff G.eM-RI.E|I\4, v:/edfog:us onl e patient's ECG data. This training process outputs afset o
glrt]erir? Qmethcc?c:zptr?;'; C;nu;i;;in: 'g:; VTV' vvlg\(/:eus € improve arameter values, which are stored on the base station as wel
9 : as the sensor. These values are intended to be used as inputs

Generative mo_dels:A key aspect of GeM-REM is the to G, for generating synthetic ECG data closely resembling
use of a generative ECG model. Such models can genergle patient's actual ECG

synthetic ECG signals, given a set of input parameters. Ngaqic gneration: During regular operation of the system,

thisdp?per, we use the W‘g?'y gccepted dynamiﬁallgenebrat{}ﬁ% sensor compares the sensed ECG signal to that generated
model ECGSYN, proposed in [2]. In ECGSYN' the Inter-be g, and if these signals match within a pre-defined threshold,
features of ECG (mean and standard deviation of heart r sensor does not report any data to the base sfation

and LF/HF ratio) are modeled using 3 parametérsrean, Conversely, if the sensed data deviates from the model, the

hrstd and Ifhfratio respectively. For the morphology feat”ressensor transmits updates to the base station, as follows:

each wave (P, Q, R, S and T) is represented by 3 parameters: .

(a, b, 6), which determine its height, width and distance * Feature updates: Representative features are calculated

to, R,per;lk, respectively The authors (,)f ECGSYN provide fr_om_ Fhe sensed ECG data, and when these values_ change

a MATLAB implementation [4] to generate synthetic ECG significantly, the sensor updates the corresponding pa-
' rameters of the modeJ in M ;rg. Further, the sensor

given a set of input parameters. To avoid duplication, we use .
this implementation in GeM-REM. reports these values to the base station. Such reports,

R «— R-Rinterval ——|R

P-R
interval

S-T

Fig. 1. Morphology features of an ECG beat. A beat is comprisfeld, Q,
R, S and T waves, with a U wave present in some cases.

Base station moduleMpgs): This module useg; to
generate synthetic ECG data given a set of input param-
eter values. Additionally, it includes a model learning

2To differentiate between absence of data reports and semsoetwork
INote that the height of a wave is not exactly equal to the valia. failure, we use a periodic sensor heartbeat scheme, whesettsor period-
Similarly, the width of the wave is not directly equal to valaib. ically sends ‘HELLO’ messages to the base station.



(a) System Architecture (b) Data Reporting Scheme
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Fig. 2. System architecture and data reporting scheme of BEM- The computationally intensive model learning componsritmplemented ilV/ g,
while My ;g only has lightweight components. The modkin My ;1 is a simpler version of the one i/ g g, and can only generate individual beats.

called feature updates, are used by the base station t&e note that the approach outlined in this section does not
update the model id/gg. This approach is suitable fordepend on specific characteristics of the generative mgdel
features that can be calculated on the computationallgnad can be applied to any given ECG data model. In this paper,

limited sensor. we use the ECGSYN [2] model as an example.
o Raw signal updates: For some other model parameters,
the corresponding ECG features are hard to compute on IV. BASE STATION MODULE Mg

the sensor. In such cases, when the sensed ECG deviatgf this section, we describe the design and implementation
from the model, the sensor sends raw sensed data to gighe base station module/ zs. The ECGSYN model is used
base station, which is called a raw signal update. Basgg an examp|e of the generati\/e modetor ECG.
on received data, the base station derives new parameterhe two main functions of thé/zs module are learning
values forG using its model learning functionality. Thesethe input parameter values fgrfrom given training data and
values are then communicated to the sensor, to update faerating a synthetic ECG when no data is received from the
model in My rE. sensor. For the synthetic signal to closely match the actual
These updates allow the parameter values of the mogéensed ECG, we need to derive suitable input parameters for
G in Mg and in M ;75 to be continually updated as thethe generative mode}. This functionality is provided by the
patient's ECG varies over time. At the base station, when rawodel learning function of\/p5, which uses real ECG data
data is received from the sensor, it is directly recordechas tas input and calculates suitable input parameter values for
patient's ECG. For remaining time intervals, the corresfio  the specific model used a8. As discussed in Section I,
parameter values of are used to generate a synthetic ECthie ECGSYN model used in this paper uses two groups of
signal. This signal is then temporally aligned with the rawiputs: inter-beat parameters and morphology paramefaes.

ECG snippets to form the final, reported ECG signal. learning method for each of these groups is as follows:
Inter-beat parameters: This group includes the parameters
A. Advantages of Proposed Model-Based Architecture hrmean, hrstd and Ifhfratio, corresponding to the mean heart

rate, standard deviation of heart rate and LF/HF ratio featu
The model-based architecture of GeM-REM provides twef ECG respectively. To calculate the LF/HF ratio, a set of
main advantages: flexible energy consumption-data acgur@se R-R interval values is obtained from the given ECG
tradeoff, and reduced data size for ECG storage. data and the Power Spectral Density (PSD) of this set is
By defining suitable thresholds for the comparison betweeomputed. The Low Frequency (LF) and High Frequency (HF)
the sensed and model-generated ECG, a large fraction of dasenponents are then obtained by integrating the PSD over the
transmission at the sensor can be suppressed, thus sigtifficaranges (0.04Hz - 0.15Hz) and (0.15Hz - 0.4Hz) respectively.
reducing sensor energy consumption. These thresholdsvalti@ée ratio between these components gives the value of the
can be specified by the physician and adjusted over time basigftatio parameter. Thérmean andhrstd values are obtained
on the data accuracy requirements of the application. by performing averaging and standard deviation calcutatio
The proposed approach also provides data storage saviogsa set of 60 R-R interval values.
by representing ECG using model parameters instead of datdorphology parameters: This group includes the nine
samples. For example, during a time interval denotgd{z], parametersdy, ar, as, bg, br, bs, 8¢, Or, 0s) that represent
if the model parameter values agg Jpo, - - - pn], the data can the morphology of the QRS complex. Out of the8g, and
be stored as: U, tg] : [p1, p2, --- pn]’. These values can s are calculated using the distance of the R peak from the
later be used as inputs ® to regenerate the corresponding and S peaks respectively whitg; is zero, by definition.
ECG data. This representation significantly reduces datg siFor learning the remaining parametets,( ar, as, bg, br,
and can enable local storage of ECG data on the patierity we use a curve fitting approach. A set of initial values
smartphone, which is not feasible with direct ECG storage for these parameters is obtained by solving a system oftlinea



TABLE |
QRS DETECTION ALGORITHM USED IN THE SENSOR MODULE

For each incoming data sample x[i] /-0 x[i] < 1.2
if (X[i] > MAX) then Set MAX = x[i] //Initially, MAX = -100
if (x[i] < MIN) then Set MIN = x[i] //Initially, MIN = 100

if (Looking for upward peakjhen
if (X[[] < MAX) then Mark x[i-1] as PossiblePeak
if (X[i] < (MAX - thresholdUp))then
Mark latest PossiblePeak as RealPeak
if (magnitude(RealPeak} thresholdR)then
Mark peak as R peak
Start Looking for downward peak
else /I looking for downward peak

if (x[i] > MIN) then Mark x[i-1] as PossiblePeak
if (X[i] > (MIN + thresholdDown))then
Mark latest PossiblePeak as RealPeak
if ((magnitude(RealPeak} thresholdQ)
AND (PreviousPeak is S¥hen
Mark peak as Q peak
if ((magnitude(RealPeak} thresholdS)
AND (PreviousPeak is R)then
Mark peak as S peak
Start Looking for upward peak

sensed data and the model data, they must both be converted
to a common, device-independent scale. This is achieved by
linearly scaling each signal to a maximum of 1.2 mV and
minimum of -0.4 mV.

2) Filtering: As discussed in Section I, the sensed ECG is
typically noisy, and must be filtered to extract the undedyi
signal. Extracting the QRS complex requires a passband of 5-
12 Hz, which is achieved by cascading lowpass and highpass
filters with cutoff frequencies 5 Hz and 12 Hz respectively.
For low computational overhead, we use a Finite Impulse
Response (FIR) filter of 6 taps and order 32. A similar filter
design used in [3] was shown to achieve good performance.
3) Peak detection: Measuring ECG features such as R-
R intervals or QRS complex width requires detecting Q, R
and S peaks. In order to perform this peak detection at low
computational overhead, we developed a lightweight QRS
peak detection algorithm shown in Table I. This algorithm
detects all the positive and negative peaks in a signal, fzemd t

imposes relative thresholdshfesholdQ, thresholdR, thresh-
oldS) on the amplitude to qualify peaks as Q, R and S
equations using six points on the ECG signal. Starting witlespectively. The derivation of threshold values is préesg&m
these initial values, we use a least square error curvedfittif6]. Further, false positives are reduced by imposing cior
function to adjust the values till noise floor is reached. Dugased on the previous peak. For example, for a negative peak
to space limitations, the detailed initial value equati@msl to be declared as ‘S’, the previous peak must be an R peak.
optimization method are presented in [6]. Once preprocessing is complete, the sensed ECG is com-
Thus, a total of 12 input parametersrgtd, hrmean, Ith- pared to the signal generated by the model. Such a comparison
fratio, ag, ar, as, bg, bgr, bs, 0g, Or, Os) are learned from the is performed in two ways:
patient’s true ECG and used to generate a matching syntheti¢-eature-based comparison:In this approach, a set of
ECG. We note that the morphology of ECG depends on tlfeatures are extracted from both signals and their values ar
lead configuration and may vary across patients. Hence, twmmpared. We use this method for inter-beat features (mean
data used for learning the model should be obtained froamd standard deviation of heart rate, and the LF/HF ratieesi
the intended user of the system, and using the same ld¢hedy can be calculated from the sensed ECG at low computa-
configuration as the final system. tional cost. The mean and standard deviation of the heat rat
are obtained by calculating the mean and standard deviation
of a set of 30 consecutive R-R intervals. The LF/HF ratio is
My g is intended for use in ECG sensors and contairglculated as in Section IV fol/gs. However, to optimize
the modelG along with functions to compare the sensedomputation speed and power consumption, we developed an
ECG signal tog. From our experience with BSNBench [8].efficient TinyOS implementation for Fast Fourier Transform
we conclude that the full version @ may not be feasible (FFT). Once these calculations are complete, the featlueva
for implementation in sensors due to resource limitationare compared to model parameter valhesean, hrstd and
As a result, we developed a suitable, lightweight TinyOBhfratio respectively.
implementation of ECGSYN for use in GeM-REM. Direct signal comparison: Calculating the morphology
The energy savings provided by GeM-REM can be mafeatures involves complex curve fitting and is not feasible
imized through efficient implementation of the set of comfor computationally-limited sensors. As a result, we use th
ponents inMy g shown in Figure 2. In this paper, as airect signal comparison approach for the ECG morphology.
proof of concept, we implement these components in software sample, representative beat, referred toMeanBeat, is
on the commercially available TelosB platform. In future@btained by averaging 10 consecutive beats of the sensed
versions, some of these components will be converted BECG. On the other hand, we use our lightweight ECGSYN
hardware implementations, which are expected to lower thmaplementation to generate a sample ECG beat, referred to
energy consumption. The first task performed by ;g is asModelBeat. The ModelBeat and MeanBeat are aligned by
preprocessing the sensed ECG to convert it into a formaiperimposing the respective R peaks, and the fit is compared
suitable for comparison with the stored model. This invelvausing the mean square error metric. The mean square metric
the following operations: is chosen since it captures shape as well as amplitude of the
1) Scaling: The amplitude of the sensed ECG signal i®, R and S waves. Since generating khedelBeat was found
highly dependent on the sensor hardware and the ECG léadbe computationally expensive, it is performed only when
configuration. To ensure an accurate comparison between mhephology parameter values are updated. The generated

V. SENSORMODULE My, TE



TABLE I

ModelBeat is then .StO.rEd in memory for future use. ENERGY CONSUMPTION ONTELOSB MOTES FOR DIFFERENT
The sensor periodically computes the mean squared error COMPUTATIONAL TASKS IN My 11p
between thevieanBeat with the ModelBeat and transmits raw  Task Occurrence  Energy  Energy/Beat
sensed ECG samples to the base station if this error exceeds (mJ) (mJ/beat)
a specified threshold. For inter-beat features, if the difiee  Scaling, Filtering and  Every beat 0.63 0.62
in the sensed signal features and model parameters excedgfgk detection
. . enerate ModelBeat - 22.176
a pre-defined threshold, the model iy, ;75 is updated and using ECGSYN *
the new parameter values are transmitted to the base statiomean squared error 10 beats 1.008 0.1
between MeanBeat
VI. EXPERIMENTAL RESULTS and ModelBeat
. . ) Calculate heart rate 60 beats 3.434 0.056
In this section, we evaluate the following aspects of GeM-mean, std. deviation
REM: (i) Accuracy of model learning functionality af/zg,  Calculate LF/HF ratio 256 beats ~ 3.072 0.012
(iiy Energy consumption of\/; ;1 g, (iii) Reduction in energy Total Computational energy/beat 0.79

consumption and data storage, and (iv) Accuracy of GeM+ geing a one-time task, it is not considered in per beat energy.

REM. The data used for evaluation is a set of real life 3-

lead ECG traces sampled at 250 Hz, obtained from the MIT-

BIH database [4]. This ECG is further scaled and filtered, agmple tasks such as scaling and filtering, since they are
described in Section V. This filtered version of ECG is reddrr executed continuously. Using hardware implementations of
to as ECG,,, for the remainder of this section. Similarly, thethese tasks in future versions is expected to drive down the
ECG reported by GeM-REM at the base station is referred émergy consumption o/ ;7.

as ECG;z. The Mpg module is implemented in MATLAB, )
while the My, ;7 module is implemented in TinyOS 2.x, andC' Energy and Memory Savings of GeM-REM

run on the TelosB platform. We now discuss the reduction in transmission energy
_ o consumption and data storage provided by GeM-REM, and
A. Learning Function in Mpg compare our results to state of the art compression schemes

The model learning function oM s was tested over 20 proposed for ECG monitoring.

ECG traces of two different types: (i) 10 Normal ECG, (ii) 10 Transmission energy reduction:Transmission energy is an
Congestive Heart Failure (CHF) ECG. For each EGG a important performance metric for ECG monitoring schemes,
sample beat was obtained by averaging 10 consecutive besiftgce data transmission is the main factor in energy con-
An ECGSYN model was trained on this beat, and then used¥dmption on ECG sensors [5]. Since transmission energy
generate a synthetic ECG, which was compared to EGG consumption is directly proportional to the size of datangei
As shown in Figure 3, the trained model achieves very god@nsmitted, compression-based methods use the congoressi
fit for different morphologies of ECG,,. An average mean ratio (CR) as an indication of transmission energy reductio

square error of 2.1% was observed over 20 ECG traces. [9]. To enable comparison of GeM-REM to state of the art
compression schemes, we define a similar ratio for GeM-REM:

_ _ _ o B Total ECG data
We evaluate the energy consumption &fy ;g since it Rar = Data transmitted by GeM-REM

can be an important factor in the battery life of the ECG cul ¢ ¢
sensor. Some tasks iy, such as filtering, are executed!© calculateC Rer, we ran GeM-REM for a set of ECG,

continuously, while others, such &smean calculation, occur Signals from five different subjects. Each ECG signdl.isx
once for a set of several beats. To jointly consider thedestas!0” SamPples long (approx. 6 hours). Using 16 bits/sample, the
a per beat energy consumption is calculated for each talffel data is 10.8 MB. The thresholds fbrmean, hrstd and

and their sum is considered as the total energy consumptlgﬁraﬂo parameter cor_np?rison were f]’ lI:)eats per min (pr])'
per beat. Table Il shows that the highest contribution isnfro2 OPmM and 4, respectively. For morphology comparison, the

B. Energy Consumption of My rg

TABLE Il
1. —— L o COMPRESSIONRATIO OF GEM-REM COMPARED TO EXISTING
1 ~ Traned wode A COMPRESSION SCHEMES
%\ 0.8 g
Z; 04 % N Scheme/Algorithm Compression Ratio
5" ~% ~ AZTEC [1] 10:1
o -0 CORTES [1] 43:1
o, . Wavelet and Huffman [1] 94:1
° 0 samplNumber 0 0 ample Number 0 DCT & arithmetic [1] 14.73:1
: DCT & LZW [1] 9:1
a) Normal ECG b) ECG showing CHF
@ (®) 9 SPITH [9] 2141
. ’ ) ! DWLT & MSVQ [9] 29.3:1
Fig. 3. Comparison of model generated ECG and filtered origi@6 for GeM-REM 42091

different ECG morphologies. The model achieve®7% fit.




TABLE IV TABLE V

PERFORMANCE OFGEM-REM FOR DIFFERENT THRESHOLD VALUES PERCENT ERROR BETWEENECG; 4.y AND ECGgr FOR6
Threshold Values CRgRr | Feature Error (%) DIAGNOSTICALLY RELEVANT FEATURES
(hrmean, hrstd, | Morphology Max Mean
Ifhfratio) MSE Feature Error( %)
(3.2,4) 0.07 42.08:1 | 6.92 4.03 -
2.1.,3) 0.07 40.19'1 | 6.32 3.24 R-Rinterval 6.47
T QRS complex width 6.92
(10,5,6) 0.2 7892:1" | 14.3 8.64 Polarity of QRS 0.6
(10,5,6) 0.01 1.16:17 0.5 0.1 Number of peaks in QRS 1.1
* This case does not send any raw signal updates QRS: Max amplitude 4.8
T This case transmits almost entire ECG,-q., QRS: Min amplitude 4.13

threshold for mean squared error betweldodelBeat and gpserved that lower threshold values for inter-beat festur
MeanBeat was set as 0.07. As shown later, these valugsprove accuracy, with minimal effect o R .

preserve the diagnostic content of ECG. Detection of unexpected eventsTo evaluate the response
With these threshold values, the average data transmissiinGeM-REM to occurrence of unexpected events such as

per ECG.q., was found to be 4420 bytes in feature updategute cardiac failure, we appended a trace of a CHF ECG to a

(2210 updates) and 252.2 KB in raw signal updates (§rmal ECG waveform. This was used as EC to simulate

updates). Thus, total data transmitted is 256.62 KB, givingccurrence of a heart failure. As expected, the change in ECG

CRgr = 10.8 MB/256.62 KB = 42.086 : 1. Table lll was detected in the morphology comparison, and was reported

shows the comparison between GeM-REM and state of tiethe base station within 5 beats (approximately 5 s).

art compression schemes [1], [9]. The variation iR R

based on the chosen threshold values is shown in Table IV. We VII. CONCLUSION AND FUTURE WORK

observe that a larger threshold for morphology mean squardn this paper, we proposed GeM-REM, a generative model-

error (MSE) gives very high gain i€’ Rsr since it almost based method for ECG monitoring using BSNs. Based on

eliminates data-intensive raw signal updates. validation with real ECG data, GeM-REM is observed to
Storage space reductioniTo measure the effectiveness osignificantly reduce energy consumption and data storage,

the data representation described in Section IlI-A, we usedwhile maintaining the diagnostic quality of the reported®&C

to store ECG r in memory. For each feature value update, Buture versions of GeM-REM will include modeling of P, T

new time interval is started, and the set of model parametavaves and hardware implementation of some part®/@f 5.

is appended to the file. The data samples received throughe to space limitations, we discuss these in [6], along with

raw signal updates are stored directly. On an average, fither possible extensions to GeM-REM.

an ECG,, file size of 32.9 MB, we obtained a size of

903 KB for ECGgr (Compression Ratio of 37.3), which is

significantly higher than existing compression schemes. W@l B. Yu, L. Yang, and C.-C. Chong, "ECG Monitoring over Btoeth:

note that this ratio relates to the storage requirementsisand Bgﬁofﬁ%pgosnsfggnigwgﬁé?'Sféoé‘éfﬂggl?;:;_ml”_“ér_"cat'ons and

different from C' Rgr which is related to data transmission. [2] P. McSharry, G. Clifford, L. Tarassenko, and L. Smith, “Ardmical
model for generating synthetic electrocardiogram sigha@smedical

_ Engineering, |EEE Transactions on, vol. 50, no. 3, pp. 289-294, 2003.
D. Accuracy of GeM-REM [3] L. Ren-Guey, I. Chou, L. Chien-Chih, L. Ming-Hsiu, and \@hiu, “A
We consider the following two aspects of accuracy: diagnos- Novel QRS Detection algorithm applied to the analysis ofrheate

. . . . variability of patients with sleep apneaBiomedical Eng. Application,
tic quality of the ECG; r signal and the ability of GeM-REM Basis & zomn%mcaﬁon, vol. 17’pn0;.351 2005, g 7P
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