## Broadcast Enforced Threshold Schemes with Disenrollment

## Mingyan Li Radha Poovendran

**Department of Electrical Engineering** 

University of Washington Email: myli, radha@ee.washington.edu

## Outline

- Threshold schemes with disenrollment
- A scheme: the dealer has no control over disenrollment
- Broadcast enforced threshold scheme with disenrollment
- Observations/Open Problems

## **Threshold Schemes**

- First studied by Shamir and Blakley in 1979
- (t,n) threshold scheme : divides a secret K into n shares so that
  - knowledge of t (threshold) or more shares allows reconstruction of K
  - □ knowledge of t-1 or fewer leaves K undetermined
  - □ called **perfect** if t-1 or fewer shares reveal nothing about K

#### Applications:

- □ Secure distributed storage of a file/key etc.
- Collective control and computation: threshold encryption and signature

### Threshold Scheme – An Example

#### To access a safe

- At least 2 people need to combine their shares to have the key to the safe
- Any 2 out of n authorized people can obtain the key
  (2, n) threshold scheme
- Authorized people: participants/members
- A Trusted Third Party, (here denoted as *dealer*),
  securely distributes initial shares to participants
  updates the secret and the membership in the group via broadcast

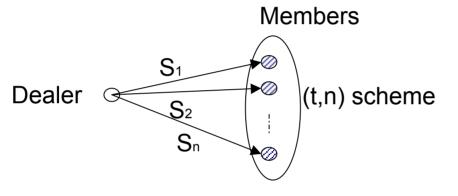
### **Disenrollment in Threshold Scheme**

The dealer may want to delete/remove a member

- Its share is treated as disclosed and assumed to become public knowledge for security reasons
- □ What happens to threshold? It **reduces** from t to t-1
- Can we maintain the threshold t when disenrolling an untrustworthy participant?
  - □ Need to change the shared key/secret
  - □ Update the valid participants with new shares
- Can t be maintained using broadcast channel only from the dealer?
  - Threshold schemes with disenrollment capability (Blakley, Blakley, Chan, Massey, Crypto'92)
  - Threshold schemes with L-fold disenrollment capability

### **Threshold Scheme with Disenrollment**

- A Seminal Model by Blakley et. al.


A (t, n) perfect threshold scheme with L-fold disenrollment capability is a collection of shares  $S_{1:n}$ , shared secrets  $K_{0:L}$ , broadcast messages  $P_{1:L}$  that satisfies:

 $H(K_i | S_{v_1:v_k}, P_{1:i}) = 0 \quad t \le k \le n - i$  $H(K_i | S_{v_1:v_k}, S_{d_1:d_i}, P_{1:i}) = H(K_i) \quad k < t,$ 

where  $S_v$ ,  $S_d$  denote shares of valid and disenrolled participants.

# Interpretations of Disenrollment Model by Blakley *et. al.*

#### On initialization: secure channel



At stage i : broadcast

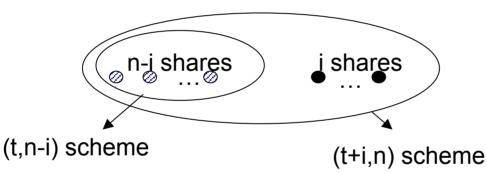
Pi

Dealer

i disenrolled members

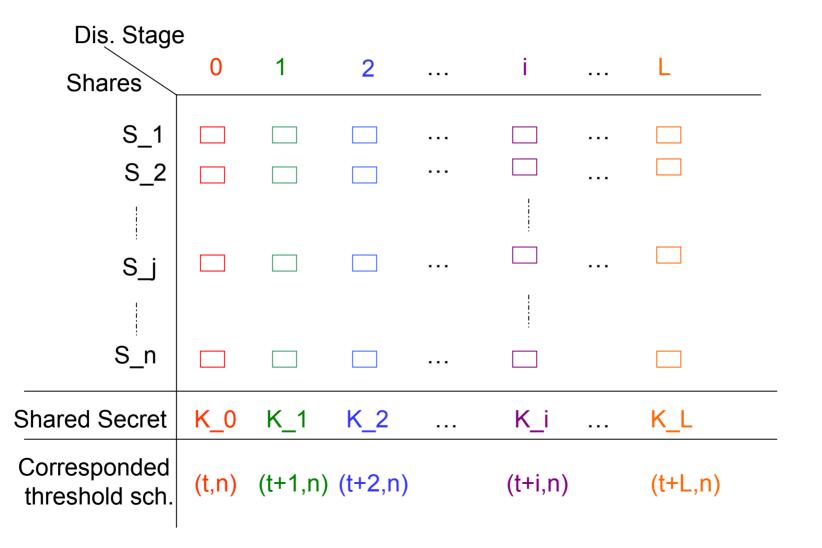
(t,n-i) scheme

Dealer

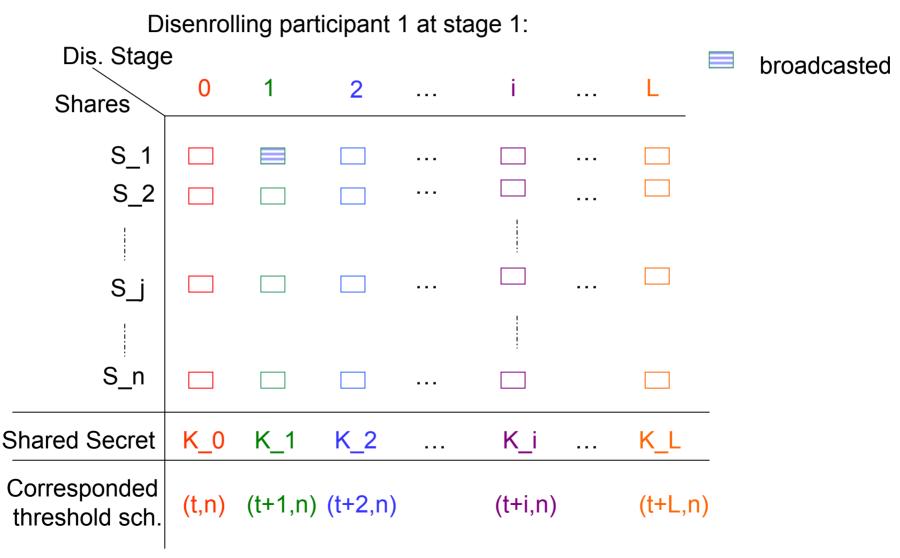

 $\bigcirc$ 

 $\oslash$ 

- Valid members
- Disenrolled members
- → Secure channel
- Broadcast channel
- S<sub>j</sub> Shares
- Pi Broadcast messages


## A Construction Maintaining t-Threshold under Disenrollment

A (t, n-i) threshold scheme can be constructed from a (t+i, n) threshold scheme by publishing i shares




We are interested in the case where the dealer has full control over disenrollment – has the capability to disenroll any participant at any time and prevents the disenrolled participant from getting current and future secrets.

### A Scheme Satisfying Original Model but Renders Dealer Lack of Control Over Disenrollment



### A Scheme Satisfying Original Model but Renders Dealer Lack of Control Over Disenrollment



# What Is Missing in the Original Definition?

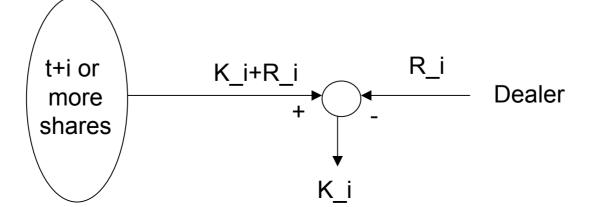
- In the scheme presented: a coalition of t+i participants at stage 0 can obtain future shared secrets K<sub>1</sub> up to K<sub>i</sub> in advance
- The dealer cannot disenroll any of t+i colluders of its choice.
- To prevent any set of colluders from obtaining future secrets so to allow the dealer to have the control over disenrollment, the model should ensure that the broadcast P<sub>i</sub> is needed in the reconstruction of K<sub>i</sub>

## **Enforcing the Broadcast Constraint**

• We add the constraint:

 $I(K_i; S_{1:n}, P_{1:i-1}) = 0$ 

➔without P<sub>i</sub>, K<sub>i</sub> cannot be reconstructed even given all shares and all previous broadcast


- Schemes satisfying the constraint are called broadcast enforced threshold scheme with disenrollment
- No colluders can obtain the shared secret K<sub>i</sub> in advance without having P<sub>i</sub>

## A Broadcast Enforced Threshold Scheme with Disenrollment

#### Consider

□ Share  $S_j = \{S_j^{(0)}, ..., S_j^{(i)}, ..., S_j^{(L)}\},\$ where  $S_j^{(i)}$  is a share of a (t+i, n) threshold scheme sharing K<sub>i</sub>+R<sub>i</sub>, with R<sub>i</sub> being a random seed. □ Broadcast  $P_i = \{R_i, S_{d_1}^{(i)}, ..., S_{d_i}^{(i)}\}.$ 

It prevents any set of colluders from obtaining
 K<sub>i</sub> before stage i.



#### Is Broadcast Enforcement Sufficient for Dealer to Have Control Over Disenrollment?

- A collusion of t+i can recover K<sub>1</sub>+R<sub>1</sub>,...,K<sub>i</sub>+R<sub>i</sub> and obtain K<sub>i</sub> once the dealer broadcasts
  - The dealer can't disenroll any of the t+i colluders at its choice
- Not all the broadcast enforcement schemes ensure the dealer of control over disenrollment.

## A Scheme with Dealer's Control – Attributed to Brickell-Stinson

- Share given to j:  $S_j = \{S_j^{(0)}, R_j^{(1)}, ..., R_j^{(L)}\}$ , where  $R_j^{(i)}$  denotes encryption/decryption key for participant j at stage i.
- Broacast  $P_i = \{S_{v_1}^{(i)} + R_{v_1}^{(i)}, S_{v_2}^{(i)} + R_{v_2}^{(i)}, ..., S_{v_{n-i}}^{(i)} + R_{v_{n-i}}^{(i)}\}$ ,  $S_v$  being the share of a valid participant
- If the dealer knows who are colluders, it can disenroll them by not updating them with new shares disenrolling more than one member at a time.

# Lower bound on the entropy of broadcast

#### Conjecture in the original paper H(P<sub>i</sub>), iH(K<sub>i</sub>) = im

Barwick et. al. proved in ACISP'02 the bound for original model:

$$\sum_{l=1}^{i} H(P_l) \geq \sum_{l=1}^{i} \min(l, n-l-t+1)H(K)$$

In the broadcast enforcement model, we prove H(P<sub>i</sub>), min(i+1, n-t-i+1) m

## **Conclusions and Problems**

- Demonstrated that there are schemes that satisfy original mathematical definitions but do not allow the dealer to disenroll a member of choice
- The enforcement that requires the broadcast from the dealer is needed in the reconstruction of current shared secret is not enough to give dealer the control over the disenrollment
- We find the lack of control of the dealer in presence of collusion is partially due to the dealer's ability to disenroll only one participant at a time
- How to characterize the model in which the dealer has full control over disenrollment remains an open problem