
Design Methodologies for Synthesis and Execution
of Cyber-Physical Systems

NITRD – Position Paper
Soheil Ghiasi (ghiasi@ucdavis.edu)

Electrical and Computer Engineering, University of California, Davis

Introduction:

Cyber-physical systems (CPS) can both sense and influence spatially and temporally
distributed physical phenomena at a fast pace and hence, are in a unique position to
transform the way we interact, monitor and control the world around us. Physically-
coupled cyber systems can revolutionize existing critical applications and enable
unprecedented ones in various sectors ranging from transportation and defense to health
care and energy efficiency. Example applications include revolutionized holistic traffic
management, integrated fly- or drive-by-wire systems, and integrated command and
control scenarios.

Despite the tremendous societal and economical promise of CPS applications, our
understanding of scientific fundamentals of them is in its infancy. Existing examples of
CPS applications, such as components of the integrated fly- or drive-by-wire systems, are
developed in a largely ad-hoc fashion today. Presently, there exists no formal design
science to systematically guide the process of building high-confidence, safety-critical,
scalable physically-coupled systems.

This has forced practitioners to settle for unproductive and costly development
procedures, which often result in partially-verified (hence, not quite reliable) embedded
systems. Various mission-critical domains, ranging from avionics and transportation to
health care and power distribution networks are disturbingly riddled with failure stories
of very expensive embedded software, which have cost human lives and/or extremely
large sums of money. Safety-critical applications that are developed by such ad-hoc
procedures are empirically and partially verified on a fixed hardware platform. Lack of an
overarching scientific foundation for system modeling, verification and synthesis, 1)
results in many design iterations, unproductive design process and ultimately costly and
poorly-advancing projects, and 2) forces practitioners to be extremely wary of
modifications to software and hardware, including upgrading hardware resources to those
with higher performance! As a result, today’s costly small-scale CPS applications are
neither extensible in functionality nor portable to other platforms with reasonable efforts.

Vision:
The physical world, which is the subject of control in CPS applications, is inherently
distributed, concurrent and evolving non-stop in continuous time. Safety-critical CPS
applications must offer high-confidence concurrent interaction with the physical world
via predictable timely execution and robustness in face of hardware failures and
unforeseen situations.

Our conviction is that delivering high-confidence, predictable timeliness and robustness
characterize the major challenges in way of fundamental understanding of physically-

mailto:ghiasi@ucdavis.edu

coupled cyber systems. We believe that a firm intellectual command of these issues is
required before we can systematically (and hence, productively) engage in development
and deployment of CPS applications in different sectors of the economy, including
Automotive, Aviation and Rail.

Methodology:
The fundamental philosophy of this position statement is to advocate a CPS application
development design flow, which is based on formal model-based specification of
physically-coupled software regardless of the target implementation. In other words, we
believe that behavior and requirements (e.g. timeliness or reliability) of the applications
should be completely separated from any specific implementation.

Such a design flow would call for research into model-driven application specification
and verification to develop models that are expressive-enough for our target applications,
and to ensure that specified applications (assuming a perfectly faithful implementation)
are trust worthy, respectively. Subsequently, research should be carried out to investigate
and develop methods and tools that would automatically and efficiently bridge the
synthesis and compilation gap between formal models (specifications) and tangible
systems (implementations).

We argue that behavior, dependency among application components (tasks), tasks’
required response times and reliability requirements are characteristics of the application
that should be articulated both explicitly and regardless of the target platform. In contrast,
tasks' worst case execution time (WCET) on available resources, failure likelihood of
resources, and inter-processor communication latency are characteristics of particular
resources in the platform.

Our vision is to instruct application developers to specify the application including tasks
high-level behavior, inter-task dependencies, timing and reliability requirements,
independent of any particular implementation. Subsequently, we aim to develop synthesis
and execution methods to automatically generate an implementation that honors all
specified requirements. Our target techniques should allocate hardware resources, and
should explore the implementation design space to ensure that requirements are met, and
a quality implementation according to a reasonable cost function, e.g. dollar cost of
allocated resources, is generated. In addition to improving productivity, separation of
application specification from its implementation facilitates malleability, extensibility
and portability of applications.

In our envisioned application development scheme, developers who specify timing and
reliability requirements of the application, would have the illusion that infinitely fast and
reliable processors are available to execute tasks, and they only need to specify 1) the
exact time at which a synchronization action (e.g. reading from a sensor or writing to an
actuator) has to take place, and 2) the minimum acceptable reliability of application tasks.
Subsequently, the synthesizer and runtime system will be responsible for judiciously
allocating (possibly redundant) resources, replicating tasks, mapping the application tasks
and managing system resources, and coordinating the execution to ensure that
1)scheduling is feasible under realistic processor performance, and 2)the reliability of
implementation (e.g. after task replications) under realistic likelihood of resource failures
meets the reliability requirement set by the developer.

This is similar in spirit to how other resources such as memory are treated in high-level
programming languages: programmers think they have access to an infinitely-large
memory when developing an application; compilers and operating systems have the
responsibility to ensure that application can be implemented under realistic memory size
constraints.

In addition to timing predictability and robustness, CPS applications must guarantee
correctness in face of complexities that arise from interfacing continuality of the physical
world with inherent discreteness of the cyber domain. We believe that certifying
correctness should be carried out on the high-level specifications via formal verification
of model properties such as deadlock-free execution and state reachability analysis. This
is in contrast with the conventional wisdom that aims to verify a specific implementation
to deliver high confidence in the system.

Ideally, the implemented system is going to be composed of heterogeneous resources
with different performance, reliability and cost characteristics. In addition, the
complexity of implemented systems is expected to grow very, which is going to render
formal implementation verification infeasible. Our conviction is that the only viable
solution for developing high-confidence applications is certification of specifications at
high-level, followed by generation of implementations using property-preserving
provably-correct synthesis transformations. This approach eliminates the need to verify
application implementations, a prohibitively difficult challenge, with correct by
construction implementation generation. The proposed decoupling of specifications from
implementations, followed by automated synthesis, is positioned well to embrace correct
by construction synthesis.

Related Ideas:
Several experts have presented work that both relate and inspire this position statement.
Giotto, a project led by Professor Thomas Henzinger of UC-Berkeley and EPFL, was one
of the first to demonstrate benefits of separation of timing specification from the
implementation. Professor Alberto Sangiovanni-Vincentelli of UC-Berkeley is often
thought of as the pioneer in introducing separation of concerns and correct-by-
construction design methodologies albeit in a different discipline, i.e. system-level
electronic design automation.

Bio:
Soheil Ghiasi (ghiasi@ucdavis.edu) received his B.S. from Sharif University of
Technology, in 1998, and his M.S. and Ph.D. in Computer Science from University of
California, Los Angeles in 2002 and 2004, respectively. He received the Harry M.
Showman Prize for excellence in research communication from UCLA College of
Engineering in 2004, and was also nominated for the ACM SIGDA outstanding
dissertation award in the same year. He joined the department of electrical and computer
engineering at the University of California, Davis in 2004, where he is currently an
assistant professor. His research interests include different aspects of embedded system
design and optimization, including architectures, compilation and design automation for
embedded systems.

mailto:ghiasi@ucdavis.edu

