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Introduction:  

Cyber-physical systems (CPS) can both sense and influence spatially and temporally 
distributed physical phenomena at a fast pace and hence, are in a unique position to 
transform the way we interact, monitor and control the world around us. Physically-
coupled cyber systems can revolutionize existing critical applications and enable 
unprecedented ones in various sectors ranging from transportation and defense to health 
care and energy efficiency. Example applications include revolutionized holistic traffic 
management, integrated fly- or drive-by-wire systems, and integrated command and 
control scenarios.  

Despite the tremendous societal and economical promise of CPS applications, our 
understanding of scientific fundamentals of them is in its infancy. Existing examples of 
CPS applications, such as components of the integrated fly- or drive-by-wire systems, are 
developed in a largely ad-hoc fashion today. Presently, there exists no formal design 
science to systematically guide the process of building high-confidence, safety-critical, 
scalable physically-coupled systems.  

This has forced practitioners to settle for unproductive and costly development 
procedures, which often result in partially-verified (hence, not quite reliable) embedded 
systems. Various mission-critical domains, ranging from avionics and transportation to 
health care and power distribution networks are disturbingly riddled with failure stories 
of very expensive embedded software, which have cost human lives and/or extremely 
large sums of money. Safety-critical applications that are developed by such ad-hoc 
procedures are empirically and partially verified on a fixed hardware platform. Lack of an 
overarching scientific foundation for system modeling, verification and synthesis, 1) 
results in many design iterations, unproductive design process and ultimately costly and 
poorly-advancing projects, and 2) forces practitioners to be extremely wary of 
modifications to software and hardware, including upgrading hardware resources to those 
with higher performance! As a result, today’s costly small-scale CPS applications are 
neither extensible in functionality nor portable to other platforms with reasonable efforts.  

Vision:  
The physical world, which is the subject of control in CPS applications, is inherently 
distributed, concurrent and evolving non-stop in continuous time. Safety-critical CPS 
applications must offer high-confidence concurrent interaction with the physical world 
via predictable timely execution and robustness in face of hardware failures and 
unforeseen situations.  

Our conviction is that delivering high-confidence, predictable timeliness and robustness 
characterize the major challenges in way of fundamental understanding of physically-
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coupled cyber systems. We believe that a firm intellectual command of these issues is 
required before we can systematically (and hence, productively) engage in development 
and deployment of CPS applications in different sectors of the economy, including 
Automotive, Aviation and Rail. 

Methodology:  
The fundamental philosophy of this position statement is to advocate a CPS application 
development design flow, which is based on formal model-based specification of 
physically-coupled software regardless of the target implementation. In other words, we 
believe that behavior and requirements (e.g. timeliness or reliability) of the applications 
should be completely separated from any specific implementation. 

Such a design flow would call for research into model-driven application specification 
and verification to develop models that are expressive-enough for our target applications, 
and to ensure that specified applications (assuming a perfectly faithful implementation) 
are trust worthy, respectively. Subsequently, research should be carried out to investigate 
and develop methods and tools that would automatically and efficiently bridge the 
synthesis and compilation gap between formal models (specifications) and tangible 
systems (implementations).  

We argue that behavior, dependency among application components (tasks), tasks’ 
required response times and reliability requirements are characteristics of the application 
that should be articulated both explicitly and regardless of the target platform. In contrast, 
tasks' worst case execution time (WCET) on available resources, failure likelihood of 
resources, and inter-processor communication latency are characteristics of particular 
resources in the platform.  

Our vision is to instruct application developers to specify the application including tasks 
high-level behavior, inter-task dependencies, timing and reliability requirements, 
independent of any particular implementation. Subsequently, we aim to develop synthesis 
and execution methods to automatically generate an implementation that honors all 
specified requirements. Our target techniques should allocate hardware resources, and 
should explore the implementation design space to ensure that requirements are met, and 
a quality implementation according to a reasonable cost function, e.g. dollar cost of 
allocated resources, is generated. In addition to improving productivity, separation of 
application specification from its implementation facilitates malleability, extensibility 
and portability of applications.  

In our envisioned application development scheme, developers who specify timing and 
reliability requirements of the application, would have the illusion that infinitely fast and 
reliable processors are available to execute tasks, and they only need to specify 1) the 
exact time at which a synchronization action (e.g. reading from a sensor or writing to an 
actuator) has to take place, and 2) the minimum acceptable reliability of application tasks. 
Subsequently, the synthesizer and runtime system will be responsible for judiciously 
allocating (possibly redundant) resources, replicating tasks, mapping the application tasks 
and managing system resources, and coordinating the execution to ensure that 
1)scheduling is feasible under realistic processor performance, and 2)the reliability of 
implementation (e.g. after task replications) under realistic likelihood of resource failures 
meets the reliability requirement set by the developer. 



This is similar in spirit to how other resources such as memory are treated in high-level 
programming languages: programmers think they have access to an infinitely-large 
memory when developing an application; compilers and operating systems have the 
responsibility to ensure that application can be implemented under realistic memory size 
constraints.  

In addition to timing predictability and robustness, CPS applications must guarantee 
correctness in face of complexities that arise from interfacing continuality of the physical 
world with inherent discreteness of the cyber domain. We believe that certifying 
correctness should be carried out on the high-level specifications via formal verification 
of model properties such as deadlock-free execution and state reachability analysis. This 
is in contrast with the conventional wisdom that aims to verify a specific implementation 
to deliver high confidence in the system.  

Ideally, the implemented system is going to be composed of heterogeneous resources 
with different performance, reliability and cost characteristics. In addition, the 
complexity of implemented systems is expected to grow very, which is going to render 
formal implementation verification infeasible. Our conviction is that the only viable 
solution for developing high-confidence applications is certification of specifications at 
high-level, followed by generation of implementations using property-preserving 
provably-correct synthesis transformations. This approach eliminates the need to verify 
application implementations, a prohibitively difficult challenge, with correct by 
construction implementation generation. The proposed decoupling of specifications from 
implementations, followed by automated synthesis, is positioned well to embrace correct 
by construction synthesis. 

Related Ideas:  
Several experts have presented work that both relate and inspire this position statement. 
Giotto, a project led by Professor Thomas Henzinger of UC-Berkeley and EPFL, was one 
of the first to demonstrate benefits of separation of timing specification from the 
implementation. Professor Alberto Sangiovanni-Vincentelli of UC-Berkeley is often 
thought of as the pioneer in introducing separation of concerns and correct-by-
construction design methodologies albeit in a different discipline, i.e. system-level 
electronic design automation.  
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