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1 Introduction

A new field of cyber-physical computing is now emerging, involving communication and processing
of data exchanged between physical devices and systems. In the transportation cyber-physical system
(CPS) domain, there are numerous challenges posed by avionics, automotive and rail applications. For
example, in the rail industry, monitoring and communication services are becoming increasingly im-
portant, to avoid train collisions and to maintain the highest throughput possible. This challenge is
exacerbated by the de-regulation of rail services in many countries, that renders passenger and freight
operations open to competition from private companies. In situations where track lines are shared across
companies, it becomes essential to maintain effective communication between different train operators.
If each company were to operate without cooperation it mightbe difficult to determine congestion or
accident locations, thereby compromising safety and efficiency. Likewise, in the avionics sector, it is
becoming increasingly important in our crowded airspace toensure real-time monitoring and communi-
cation between competing airlines to avoid potentially catastrophic collisions. A similar situation exists
with the automotive industry, in which emerging GPS-based services could be used to relay accident
and congestion information to other vehicles in the vicinity. In all cases, it makes sense to provide an
open standard for deploying communication and monitoring services on behalf of otherwise indepen-
dent transport companies. Moreover, such services need to operate with some degree of predictability
and dependability. Real-time requirements need to be met andthe functional correctness of services
needs to maintained, otherwise adverse consequences may arise. We, therefore, argue for a depend-
able and predictable software architecture, that offers anopen standard for third-party vendors to deploy
application-specific services.

1.1 Example: Automotive Services and Challenges

Before describing our requirements for a new software architecture, let us consider one particular
transport domain in more detail. Here, we focus on the automotive sector and discuss some of the
possible services that may be commonplace in the near future. One such service may provide real-
time weather or traffic updates, software upgrades, or on-demand city guides via Wi-Fi access points,
that enable in-vehicle Internet capabilities. Other vehicles outside the range of a Wi-Fi access point
could form ad-hoc networks with neighboring vehicles that support such cooperation, thereby providing
an indirect route to the Internet. Moreover, we may wish to allow competing automakers to upload
services onto other vehicles that follow a cooperative agreement. Such services may be used for vehicle-
to-vehicle traffic reports, or emergency services. For example, one vehicle (V 1) in the range of city



cameras might process and forward visual information, about an accident that has just occurred, to
any vehicle having registered and been granted service withV 1. The degree to which information is
processed byV 1 before it is sent downstream to other vehicles depends upon the service agreement with
those other vehicles. For example, pre-processed data may be exchanged betweenV 1 and other vehicles
manufactured by the same automaker, while raw data may be sent to vehicles associated with a different
automaker than that ofV 1. In the latter case, processing of the raw data is performed on the destination
vehicle.

In the above service scenario we have atrade-off between communication and computation, with
possible adaptations in the degree of computation performed local to any one vehicle. The actual com-
munication versus computation trade-off depends on factors such as latency requirements placed on the
service itself (e.g., the need for emergency information tobe relayed to police, fire and ambulance ser-
vices as soon as possible), and on the demand for resources (e.g., the availability and amount of CPU
and I/O bandwidth needed by the service request). Other considerations with the deployment of traffic,
accident and emergency services include the need to preventmalicious spread of false information. Bot-
tlenecks may occur if vehicles are re-routed into congestion hot-spots due to false information from a
malicious driver who is trying to find a traffic-free route. Likewise, emergency service vehicles such as
ambulances must avoid being dispatched to incorrect locations while real accidents are left unreported.
Here, then, is the need to isolate untrusted services, to prevent them from negatively impacting the be-
havior of an entire cyber-physical system. Moreover, we mayneed to quarantine certain services until
they are deemed sufficiently trustworthy for more widespread deployment.

As a further example, consider a service provided on behalf of a government agency, such as a de-
partment of motor vehicles (DMV), that requests access to specific vehicle data, including average fuel
usage andCO2 emissions. This information may be used to monitor the energy and environmental im-
pacts of an automaker’s range of vehicles. Care must be taken,however, to avoid releasing sensitive
information about the driver of a given vehicle, or perhaps an individual vehicle identification number,
except in cases where it is considered necessary (e.g., if police wish to identify a stolen vehicle). Once
again, we have a situation that requires a specific level of trust between the service requester (here, the
DMV) and the information provider (here, the vehicle on which the service is deployed). Appropriate
levels of isolation are needed between the service itself and sensitive information that should not be
directly accessible. It is worth noting that even if a service is trusted it may still yield incorrect results
if it is not scheduled predictably. In the above example, we want to make sure that a service to report
fuel efficiency andCO2 levels provides an accurate representation of the vehicle’s true performance. In
this case, sampling and processing sensor data, such as fuelconsumption or exhaust emissions, must be
performed in real-time.

As a final scenario, consider an automotive service that provides information about the expected range
of a vehicle before it needs re-fueling and/or recharging. In the case of emerging electric vehicles, we
may wish to provide services to determine nearby rechargingpoints, suggest routes to such points based
on driving patterns (e.g., average speed, distance traveled, and average energy consumption), and raise
warnings when the nearest recharging location is about to gooutside the vehicle’s expected range. As
with prior examples, services of this kind require accuratereal-time information monitoring. Miscalcu-
lating energy or fuel ranges and distances to nearest stations may lead to vehicles being stranded.

In summary, the above examples argue for an open software architecture, that is customizable with
a diverse range of services. Third party providers of such services need to cooperate, even when there
is the potential for mistrust and malicious behavior. Services may need to be deployed remotely as



well as locally, to satisfy system-wide resource constraints. This raises a number of communication
versus computation trade-offs, and leads to possible adaptations in the placement of services as well
as their degree of isolation. Moreover, the extent to which services are isolated impacts their resource
usage (e.g., CPU and network bandwidth), which in turn affects the end-to-end latency of inter-service
communication. Sensor readings and corresponding actionsneed to be performed according to real-
time constraints, with precise resource accountability. Groups of diverse services deployed on a given
processing platform (e.g., within one vehicle) need to be scheduled according to appropriate deadlines.
Likewise, cooperating services spanning an entire cyber-physical system need to be composable, so that
end-to-end timing requirements can be met.

1.2 Software Architecture Requirements for Next-Generation CPSes

The requirements for a software architecture addressing the above challenges include:
• a standardized operating system platform on which individual vendors can deploy application-

specific services– These services must be isolated in a manner that ensures software integrity and
performance guarantees [4, 1]. Services must be composable, so that relatively basic software
components can be combined to provide richer functionality. Interactions between composable
services must nonetheless adhere to specific resource and performance requirements;

• appropriate levels of service isolation, so that services are only granted the privileges necessary
to accomplish their task– This means that untrusted services, deployed by third-party vendors,
are effectively sandboxed in such a way that their scope of impact on the system is limited [4];

• predictable service execution– In this case, mechanisms and policies are needed to guarantee
real-time execution of services, and to ensure resource andperformance isolation between sepa-
rate services [3]. It follows that proper accountability ofsystem resource usage is essential [5].
Additionally, trade-offs between the degree of isolation of separate services and the costs of inter-
service communication must be considered, so that end-to-end resource requirements are met [2];

• adaptability of system configurations according to changesin the physical characteristics of CPSes
– For example, dynamic changes to vehicles within a geographic region affect resource availabil-
ity within the corresponding CPS. The system must adapt to accommodate these changes. Service
functionality and isolation may need to be altered, and the placement of services within a system
may need to be adapted as necessary.
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