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1. Introduction 

 How to integrate mixed criticality components is a major challenge in CPS transportations. Our inability to 
verify highly complex components is at the heart of this challenge. Unfortunately, in many practical applications, 
we cannot avoid the use of components whose correctness, including safety and liveness, is either impossible or 
impractical to verify.  

  
Example 1: After major surgery, a patient is allowed to operate an infusion pump with potentially lethal pain 

killers (patient controlled analgesia (PCA)). When pain is severe, the patient can push a button to get more pain-
relieving medication, e.g., morphine sulfate. This is an example of a safety critical device operated by an impossi-
ble to verify component, the patient. Nevertheless, the PCA system as a whole needs to be certifiably safe in spite 
of a patient’s unsafe actions.   

 
Example 2: As illustrated in Figure 1, in a flight control 

system, the autopilot is certified to DO 178B Level A, the 
highest safety critical level, while the flight guidance system, 
because its complexity, can only be certified to Level C. Nev-
ertheless, the Level C guidance system issues commands to 
steer the Level A autopilot. This is an example of safely using 
a component whose correctness is impractical to verify under 
current technologies.  Nevertheless, the overall flight control 
has to be certified to Level A.   

 
 The current approach to solve these problems is case by 

case. What is needed is to develop formally verifiable architecture patterns, each of which can solve a family of 
similar problems. We propose a novel paradigm, based on the idea of “using simplicity to control complexity”[1], 
that will allow us to safety use unsafe components.  To illustrate this idea, let us consider the problem of sorting. 
In sorting, the critical property is to sort items correctly. The desirable property is to sort them fast. Suppose that 
we could formally verify a Bubble Sort program but were unable to verify a ComplexFastSort program. Can we 
safely use the unverified ComplexFastSort? Yes, we can. 

 
As illustrated in Figure 2, to guard against all possible faults of 

ComplexFastSort, we put these two programs in two virtual ma-
chines. In addition,  we develop a verified object called “permute” 
that will: (i) allow ComplexFastSort to perform all the list operations 
to rearrange the order of the input item in the input list, but not to 
modify, add or delete any list item; and (ii) check in linear time  that 
the output of ComplexFastSort is indeed sorted. Finally, we set a 
timer based on the promised speed of ComplexFastSort if it is sup-
posed to be faster than the BubbleSort. If ComplexFastSort does 
finish in time and we check that the answer is correct, then the result 
is given as output; if it does not finish in time or does so but with an 
incorrect answer, then BubbleSort sorts the data items.   

 

                                                           
1 This position paper is a abbreviated version of “Design of Complex Cyber Physical Systems with Formalized Architectural 

Patterns” by Lui Sha and Jose Meseguer, to appear in the proceedings of 2008 Interlink Workshop, the European Consor-
tium for Informatics and Mathematics. http://www.ercim.org/content/blogcategory/29/97/  

Figure 2:  Always Correct Sorting System 
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It is important to note that this sorting system is provably correct for all possible new sorting components, in-
cluding the use of a human to do the sorting. Furthermore, there is a lower bound on performance and this lower 
bound can be improved by replacing BubbleSort by a faster and formally verified sorting program. The moral of 
this story is that we can safely exploit the features and performance of complex components even if it may have 
unsafe behaviors, as long as we can guarantee the critical properties by simple software and an appropriate archi-
tecture pattern. In this way we can leverage the power of formal methods to provide high assurance in the system 
development process.  We call this architecture principle “using simplicity to control complexity.”   

 
Checking the correctness of an output before using it, such as in the 

sorting example, belongs to a fault tolerant approach known as recovery 
block [19]. However, in CPS applications, it may not be possible to de-
termine if a command from a complex controller is correct (meeting the 
specifications).  Fortunately, it is safe to execute a control command 
whose correctness cannot be determined, provided that we can deter-
mine the resulting state is still within the stability margin[1]. The sim-
plex architecture allows us to safely exploit complex high performance 
control subsystems that may have residual errors by using a simple high 
assurance subsystem and by monitoring the resulting stability margin if 
a command were executed (Figure 3) [1]. That is, if a command might 
lead to instability, we always reject it; otherwise we give it the benefit of 
doubt.  

 
A noteworthy real world example of “using simplicity to control complexity” in practice is the flight control 

system of Boeing 777 [18]. It uses triple-triple redundancy for hardware reliability. At the software application 
level, it uses two controllers.  The sophisticated control software specifically developed for Boeing 777 is the 
normal controller. The secondary controller is based on the control laws originally developed for Boeing 747.  
The normal controller is much more complex and is able to deliver optimized flight control over a wide range of 
conditions. On the other hand, control laws developed for Boeing 747 have been used for over 25 years. It is a 
mature old technology – simple, reliable and well understood. From our perspective, we will call it a simple com-
ponent, since it has low residual complexity2. To exploit the advantage of advanced control technologies and to 
ensure a very high degree of reliability, Boeing 777 under the normal controller should fly within the stability 
envelope of its secondary controller.  This is a fine example of using simplicity to control complexity. 

 

In summary, complex and unverifiable components, e.g., human operators and highly complex software com-
ponents, are unavoidable. Fortunately, we can ensure critical properties and lower bounds on performance using: 
(1) formally verified complexity control architecture patterns, and (2) formally verified simple components for 
essential services. That is, under a given fault model we need to verify the following properties: 

• Protection: The architecture software and the simple component cannot be corrupted by faults from 
the unverified complex software components. 

• Timeliness: The simple and verified components must be executed within timing constraints. 
• Fault tolerance: in spite of all the faults under the fault model, the simple, verified component will 

function correctly. 
 
Since architecture patterns often need to be adapted for new application requirements, we need to not only ver-

ify a collection of commonly used architecture patterns, but also provide computer aided verification for the adap-
tation of architecture patterns.  Furthermore, since in software practice model-based approaches are the most 
common way of capturing architectural designs and architectural patterns, it is important to provide formal verifi-
cation support for architecture patterns expressed in software modeling languages.   

 
To make all this possible Lui Sha, Jose Meseguer, Marco Caccamo and their students collaborate with Artur 

Boronat at the University of Leicester; Peter Olveczky at the University of Oslo; Steve Miller and Darren Cofer of 
Rockwell Collins; Ben Watson, Jonathan Preston and Russell Kegley of Lockheed Martin; Dr. Julian Goldman of 
Massachusetts General Hospital and MDPnP.org; and Peter Feiler, Jorgen Hansson and Dionisio de Niz of Soft-
ware Engineering Institute on several mutually-reinforcing tasks:  

• Complexity control architectures and design rules for avionics and medical systems. 
• Formalized SAE AADL [3] subset to specify these architectures.  

                                                           
2 Logical complexity of a software system is can be measured by the number of states that we need to check.  A program could have high 

logical complexity initially. However, if it has been formally verified and can be used as is, then its residual logical complexity is zero 

Figure 3:  Simplex architecture 
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• Use of MOMENT2 [6][8] to automatically transform AADL models into algebraic expressions in 
Maude for formal analysis purposes and for further transformation into Real-Time Maude [9] speci-
fications. 

• Formal semantics of AADL in Real-Time Maude, and automatic transformation of AADL models 
into Real-Time Maude specifications based on such semantics, to provide both symbolic simulation 
and formal verification by model checking for AADL models. 

• Embedding the high assurance control subsystem in FPGA by directly generating VDHL code from 
verified AADL specifications. This approach makes the high assurance subsystem immune to OS 
faults.  
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