
 1

Integrate Mixed-Criticality Components
 with Formalized Architectural Patterns1

Lui Sha

University of Illinois at Urbana-Champaign
lrs@cs.uiuc.edu

1. Introduction

 How to integrate mixed criticality components is a major challenge in CPS transportations. Our inability to
verify highly complex components is at the heart of this challenge. Unfortunately, in many practical applications,
we cannot avoid the use of components whose correctness, including safety and liveness, is either impossible or
impractical to verify.

Example 1: After major surgery, a patient is allowed to operate an infusion pump with potentially lethal pain

killers (patient controlled analgesia (PCA)). When pain is severe, the patient can push a button to get more pain-
relieving medication, e.g., morphine sulfate. This is an example of a safety critical device operated by an impossi-
ble to verify component, the patient. Nevertheless, the PCA system as a whole needs to be certifiably safe in spite
of a patient’s unsafe actions.

Example 2: As illustrated in Figure 1, in a flight control

system, the autopilot is certified to DO 178B Level A, the
highest safety critical level, while the flight guidance system,
because its complexity, can only be certified to Level C. Nev-
ertheless, the Level C guidance system issues commands to
steer the Level A autopilot. This is an example of safely using
a component whose correctness is impractical to verify under
current technologies. Nevertheless, the overall flight control
has to be certified to Level A.

 The current approach to solve these problems is case by

case. What is needed is to develop formally verifiable architecture patterns, each of which can solve a family of
similar problems. We propose a novel paradigm, based on the idea of “using simplicity to control complexity”[1],
that will allow us to safety use unsafe components. To illustrate this idea, let us consider the problem of sorting.
In sorting, the critical property is to sort items correctly. The desirable property is to sort them fast. Suppose that
we could formally verify a Bubble Sort program but were unable to verify a ComplexFastSort program. Can we
safely use the unverified ComplexFastSort? Yes, we can.

As illustrated in Figure 2, to guard against all possible faults of

ComplexFastSort, we put these two programs in two virtual ma-
chines. In addition, we develop a verified object called “permute”
that will: (i) allow ComplexFastSort to perform all the list operations
to rearrange the order of the input item in the input list, but not to
modify, add or delete any list item; and (ii) check in linear time that
the output of ComplexFastSort is indeed sorted. Finally, we set a
timer based on the promised speed of ComplexFastSort if it is sup-
posed to be faster than the BubbleSort. If ComplexFastSort does
finish in time and we check that the answer is correct, then the result
is given as output; if it does not finish in time or does so but with an
incorrect answer, then BubbleSort sorts the data items.

1 This position paper is a abbreviated version of “Design of Complex Cyber Physical Systems with Formalized Architectural

Patterns” by Lui Sha and Jose Meseguer, to appear in the proceedings of 2008 Interlink Workshop, the European Consor-
tium for Informatics and Mathematics. http://www.ercim.org/content/blogcategory/29/97/

Figure 2: Always Correct Sorting System

 2

It is important to note that this sorting system is provably correct for all possible new sorting components, in-
cluding the use of a human to do the sorting. Furthermore, there is a lower bound on performance and this lower
bound can be improved by replacing BubbleSort by a faster and formally verified sorting program. The moral of
this story is that we can safely exploit the features and performance of complex components even if it may have
unsafe behaviors, as long as we can guarantee the critical properties by simple software and an appropriate archi-
tecture pattern. In this way we can leverage the power of formal methods to provide high assurance in the system
development process. We call this architecture principle “using simplicity to control complexity.”

Checking the correctness of an output before using it, such as in the

sorting example, belongs to a fault tolerant approach known as recovery
block [19]. However, in CPS applications, it may not be possible to de-
termine if a command from a complex controller is correct (meeting the
specifications). Fortunately, it is safe to execute a control command
whose correctness cannot be determined, provided that we can deter-
mine the resulting state is still within the stability margin[1]. The sim-
plex architecture allows us to safely exploit complex high performance
control subsystems that may have residual errors by using a simple high
assurance subsystem and by monitoring the resulting stability margin if
a command were executed (Figure 3) [1]. That is, if a command might
lead to instability, we always reject it; otherwise we give it the benefit of
doubt.

A noteworthy real world example of “using simplicity to control complexity” in practice is the flight control

system of Boeing 777 [18]. It uses triple-triple redundancy for hardware reliability. At the software application
level, it uses two controllers. The sophisticated control software specifically developed for Boeing 777 is the
normal controller. The secondary controller is based on the control laws originally developed for Boeing 747.
The normal controller is much more complex and is able to deliver optimized flight control over a wide range of
conditions. On the other hand, control laws developed for Boeing 747 have been used for over 25 years. It is a
mature old technology – simple, reliable and well understood. From our perspective, we will call it a simple com-
ponent, since it has low residual complexity2. To exploit the advantage of advanced control technologies and to
ensure a very high degree of reliability, Boeing 777 under the normal controller should fly within the stability
envelope of its secondary controller. This is a fine example of using simplicity to control complexity.

In summary, complex and unverifiable components, e.g., human operators and highly complex software com-
ponents, are unavoidable. Fortunately, we can ensure critical properties and lower bounds on performance using:
(1) formally verified complexity control architecture patterns, and (2) formally verified simple components for
essential services. That is, under a given fault model we need to verify the following properties:

• Protection: The architecture software and the simple component cannot be corrupted by faults from
the unverified complex software components.

• Timeliness: The simple and verified components must be executed within timing constraints.
• Fault tolerance: in spite of all the faults under the fault model, the simple, verified component will

function correctly.

Since architecture patterns often need to be adapted for new application requirements, we need to not only ver-

ify a collection of commonly used architecture patterns, but also provide computer aided verification for the adap-
tation of architecture patterns. Furthermore, since in software practice model-based approaches are the most
common way of capturing architectural designs and architectural patterns, it is important to provide formal verifi-
cation support for architecture patterns expressed in software modeling languages.

To make all this possible Lui Sha, Jose Meseguer, Marco Caccamo and their students collaborate with Artur

Boronat at the University of Leicester; Peter Olveczky at the University of Oslo; Steve Miller and Darren Cofer of
Rockwell Collins; Ben Watson, Jonathan Preston and Russell Kegley of Lockheed Martin; Dr. Julian Goldman of
Massachusetts General Hospital and MDPnP.org; and Peter Feiler, Jorgen Hansson and Dionisio de Niz of Soft-
ware Engineering Institute on several mutually-reinforcing tasks:

• Complexity control architectures and design rules for avionics and medical systems.
• Formalized SAE AADL [3] subset to specify these architectures.

2 Logical complexity of a software system is can be measured by the number of states that we need to check. A program could have high

logical complexity initially. However, if it has been formally verified and can be used as is, then its residual logical complexity is zero

Figure 3: Simplex architecture

 3

• Use of MOMENT2 [6][8] to automatically transform AADL models into algebraic expressions in
Maude for formal analysis purposes and for further transformation into Real-Time Maude [9] speci-
fications.

• Formal semantics of AADL in Real-Time Maude, and automatic transformation of AADL models
into Real-Time Maude specifications based on such semantics, to provide both symbolic simulation
and formal verification by model checking for AADL models.

• Embedding the high assurance control subsystem in FPGA by directly generating VDHL code from
verified AADL specifications. This approach makes the high assurance subsystem immune to OS
faults.

Acknowledgement: Works described here are supported in part by NSF, ONR, Rockwell Collins, Lockheed

Martins, and Software Engineering Institute.

References

[1] L. Sha, Using Simplicity to Control Complexity, IEEE Software, July/August, 2001.
https://agora.cs.uiuc.edu/download/attachments/10581/IEEESoftware.pdf?version=1

[2] Fault Tolerance, John Wiley & Sons, 1995. Editor Lyu, M. R.
[3] AADL: http://www.sei.cmu.edu/products/courses/p52.html
[4] M. Clavel, F. Duran, S.Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and C. Talcott,
[5] All About Maude – A High-Performance Logical Framework, Springer LNCS 4350, 2007.
[6] MOMENT2 : http://www.cs.le.ac.uk/people/aboronat/tools/moment2-gt/
[7] G. Rosu and K. Havelund, Rewriting-Based Techniqes for Runtime Verification, Automated Software

Engineering, 12, 151-197, 2005.
[8] Boronat and J. Meseguer: An Algebraic Semantics for MOF. In Proc. FASE 2008, 377-391, Springer

LNCS 4961, 2008.
[9] P. C. Ölveczky and J. Meseguer: Semantics and pragmatics of Real-Time Maude. Higher-Order and

Symbolic Computation 20(1-2): 161-196 (2007).
[10] G. Behrmann, A. David, and K.G. Larsen, A Tutorial on UPPAAL, in Proc. SFM-RT 2004, 200-236,

Springer LNCS 3185, 2004.
[11] T. A. Henzinger, P.-H. Ho, H. Wong-Toi: HYTECH: A Model Checker for Hybrid Systems, Softw.

Tools Technol. Trans., 1, 110-122, 1997.
[12] S. Yovine, Kronos, A Verification Tool for Real-Time Systems, Softw. Tools Technol. Trans., 1, 123-

133, 1997.
[13] J. Misra, A Discipline of Multiprogramming, Springer, 2001.
[14] M. Viswanathan and R. Viswanathan: Foundations for Circular Compositional Reasoning, in Proc.

ICALP 2001, 835-847, Springer LNCS 2076, 2001.
[15] I. Poernomo, The meta-object facility typed. In Proc. SAC, 1845–1849, ACM, 2006.
[16] J. R. Romero, J.E. Rivera, F. Duran, A. Vallecillo, Formal and Tool Support for Model Driven Engineer-

ing with Maude. Journal of Object Technology 6(9), 2007.
[17] M. Lyu, Software Fault Tolerance, http://www.cse.cuhk.edu.hk/~lyu/book/sft/index.html
[18] Y.C. Yeh, “Dependability of the 777 Primary Flight Control System,” Proc. Dependable Computing for

Critical Applications, IEEE CS Press, Los Alamitos, Calif., 1995
[19] A.M. Tyrrell, A. M. Tyrrell Recovery Blocks and Algorithm-Based Fault Tolerance, Proceedings of the

22nd EUROMICRO Conference

