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CPS systems are different from computer systems in one important aspect, namely, that 

they must interact with physical systems for which we may not have perfect knowledge.  

An immediate corollary is that there may be failure modes that we cannot anticipate, and 

yet the CPS must be designed to have at least fail-safe properties.  Transportation CPS 

systems are also likely to be distributed systems. Even if individual vehicles are designed 

to operate autonomously, the fact that they must share the same transportation 

infrastructure (highways, sea lanes, air traffic control) means that they are necessarily 

part of a distributed system. CPS systems are also heterogeneous in that they depend on 

the interoperability between legacy hardware/software and new and emerging 

technologies that are more energy-efficiency conscious. This is because of the fact that 

we cannot afford to rebuild the entire infrastructure to accommodate newer technology 

and this will be an ongoing process for the future. The above observations suggest a 

number of open research issues that are by themselves grand challenge problems. 

 

Challenge 1: Failure Semantics 

     Since we cannot anticipate all the failure modes of complex CPS systems, we must 

invent new theories and technologies that can mitigate the cost of system failures. A 

review of the traditional approaches for engineering robust real-time systems may shed 

light on how we may proceed.  The traditional paradigm is to construct a universe of 

failure modes that can encompass all possible failures and to engineer systems that can 

withstand specific types of failure with acceptably high probability. The usual failure 

mode classification consists of the ranking: crash failures, omission failures, timing 

failures and arbitrary (Byzantine) failures.  The higher the rank of the failure mode, the 

harder it is to mask a failure and the more costly is the recovery.  Systems that are 

designed with crash failure semantics are easier to recover from failures, for example, by 

duplicating the hardware/software servers, whereas systems that have arbitrary failure 

semantics are much more difficult to make safe. The key engineering insight is to design 

systems such that their failures fall into one of the more acceptable failure modes and the 

design can be accomplished at acceptable cost. 

     For CPS systems, the traditional failure mode classification is not satisfactory 

inasmuch as the classification was devised with computer (hardware) systems in mind. 

For CPS systems, we need a classification system that is more specific with respect to the 

interaction between the physical components of the system under control and the 

computer and communications components that control them. For example, we might be 

able to take advantage of the fact that mechanical components usually fail on a time scale 

(in seconds) that is large compared with the reaction time of computer systems (much 

less than a second) to define a CPS-specific failure classification that take into account 

the amount of time that is available for taking remedial actions. We may for example add 

a time dimension to the failure mode classification by including explicitly a time-to-

failure parameter. There are also other dimensions that a CPS-specific failure mode 



classification scheme can exploit by focusing on the application domain specifics. For 

example, when a traffic light fails, we do not stop all traffic but instead we put the lights 

in a blinking-red mode.  This signals all the cars entering the intersection to follow a pre-

agreed protocol, namely, the intersection should be regarded as being regulated by all-

way stop signs. The blinking red lights thus impose a specific type of behavior on all 

traffic. This suggests a way to generalize failure mode semantics. We can define failure 

semantics in terms of protocols that the failed system must follow. These protocols can 

be formalized by the plethora of techniques from computer science, hybrid systems and 

other branches of engineering. In other words, we can design failure modes by the 

protocols that a failed system must follow and these protocols can be application specific 

and have a time dimension. By doing so, we can bring to bear the arsenal of techniques in 

computer science and hybrid systems to understand and build robust CPS systems. 

 

Challenge 2: Legacy Hardware and Software 

     Future transportation systems will necessarily operate on top of the existing 

technological infrastructure because the cost of building a new infrastructure from scratch 

is prohibitive and the legal and political implications are even more daunting. An 

immediate corollary of this observation is that we need a path of evolutionary 

improvement from the current to the future systems. For CPS systems, a corresponding 

problem is how to ensure that the gargantuan hardware/software infrastructure that we 

have already deployed to operate the current embedded systems can be evolved to enable 

the computer control systems of the future that must satisfy more demanding functional 

as well as and non-functional constraints. For example, it has been reported that the high 

cost of testing the avionics subsystem of the F-18 aircraft has on occasions forced the 

aircraft’s manufacturer to modify the mechanical structure of the plane in order to avoid 

the high cost of revalidating the operational flight software. With the computerization of 

civilian aircrafts and air traffic control systems, the interoperability problem between the 

existing and new subsystems will get worse. 

 

The answer to this question can again be found in a review of the traditional approach. In 

computer science, a time-tested way to deal with system complexity is the concept of 

virtualization of resources. The idea is to design systems in a hierarchical fashion so that 

each layer in the hierarchy delivers the services that are required to implement the service 

at the next layer, and the description of the services provided by a layer is abstracted by a 

virtual machine specification. The virtual machine specification provides the only 

interface to the upper layer; the implementation details of the virtual machine are 

invisible to the upper layer. This technique of resource virtualization is also applicable to 

deal with the issue of legacy hardware/software systems. We can in a sense freeze the 

design of legacy systems by wrapping around it an interface and we make sure to supply 

enough resources to implement the services as specified by the interface. This way, 

legacy systems can be reused as components of a new system as long as the requirements 

specified by the interface virtual machine are satisfied. There are, however, two 

important problems that will require further research to address. Specifically, the 

questions concern the virtualization of real-time services and the I/O services. 

     The virtualization of real-time services presents a uniquely difficult problem for CPS 

systems. In the traditional concept of resource virtualization, only the functional aspects 



of the server machine are of concern. Performance issues, especially the satisfaction of 

real-time requirements are traditionally ignored in virtualization techniques. For CPS 

systems, we cannot ignore performance requirements since their satisfaction is often 

required by safety concerns. For example, the computer system that activates the anti-

lock braking system of a car must be certified to be able to react to a command to deploy 

within a very short time. The virtualization of real-time services is intrinsically difficult 

inasmuch as the interface to the virtual machine does not provide the details about the 

implementation that make it possible to meet the timeliness requirements. This has not 

been a major problem in the past, since real-time embedded systems have been 

traditionally designed to run on dedicated hardware/software platforms. In such an 

environment, the engineer has complete knowledge and control of all the hardware and 

software resources and s/he can schedule the computational resources explicitly by time-

multiplexing and by fixing the allocation of the resources at design time. This is typically 

done in current avionics systems. In the future, however, the situation will change. 

     Unlike current avionics systems, future systems will likely be operating in an open 

system environment where the interface to the external world cannot assume that the 

workload imposed by the environment is fixed, and that the details of the scheduling 

policy of the resource schedulers in subsystems are available. There has been progress in 

extending the resource virtualization concept to cover performance requirements, in 

particular, the concept of real-time virtual servers.  However, the problem is complex and 

we need investment in addressing both the theoretical and engineering problems in this 

area, especially the virtualization of hierarchical and I/O servers. 

 

Challenge 3: Wireless process control 

      CPS systems will likely be distributed systems. It is prudent to assume that wireless 

technology will be a critical component in these systems. While there has been extensive 

academic research in wireless systems, past work has focused on communications but not 

the use of wireless to actuate controller devices. Industry on the other hand has proceeded 

to deploy wireless technology in process control applications without the benefit of the 

same breadth and depth of academic research. We shall mention two examples here of 

problem areas that require critical attention. The first area is the compliance testing of 

wireless protocols for process control. Unlike data communication system where noise 

from the environment is not an important factor, process control applications often run in 

very noisy environments because of the presence of high-current industrial machineries. 

This noisy environment complicates compliance testing, especially when different 

wireless technologies must co-exist. For example, research is needed for co-existence 

performance evaluation in the 2.4GHz ISM Band. Many wireless technologies co-exist in 

the 2.4 GHz ISM radio band such as Wi-Fi, Bluetooth, ZigBee and WirelessHART. The 

development of effective test suites is a challenge. 

     Another area is communications scheduling in process control systems such as 

WirelessHART. Unlike data communications systems, process control applications must 

respect stringent timing constraints. The need to combine table-driven scheduling that is 

traditionally adopted for task scheduling in process control systems (e.g., Fieldbus) and a 

more flexible scheduling regime that is appropriate for wireless transmission scheduling 

poses challenging research problems. 


