
Multi-Semantic, Decision Networks for Massively Distributed Reconfigurable
Systems: Goal-Oriented Programming Models and Dynamic Optimization

Alex Doboli
Department of Electrical and Computer Engineering

State University of New York at Stony Brook
Stony Brook, NY 11794-2350

Email: adoboli@ece.sunsysb.edu, Phone: 631-632-1611

1. Introduction

Small size, low cost electronic circuits embedded on a massively large scale into the
quotidian world are likely to transform the way humans interact with their natural and
social environments [Weiser02]. Such systems can offer unique capabilities, like
autonomous response to new needs, identification of trends and correlations in data and
events, reaction to unexpected conditions, and many more. These capabilities are expected
to produce significant leaps forward in transportation, infrastructure management,
environmental protection, and homeland security, just to name a few areas. The complexity
of networked computer systems is likely to grow very rapidly due to more and more
electronic circuits being networked together each day.

While massively distributed embedded systems have the potential to offer comprehensive
data acquisition, huge computing power, and precise actuation, it is very hard to efficiently
harvest these capabilities with current theoretical concepts and software methods.
Massively distributed embedded systems are hard to develop and maintain, and their
performance does not scale well with the amount of used resources.

In our opinion, there are three main challenges that need to be tackled in order to develop
applications based on massively distributed, reconfigurable embedded systems: providing
(i) reliable behavior in dynamic conditions, (ii) scalable management of heterogeneous,
inter-component interactions, and (iii) performance-optimal co-design of hybrid,
reconfigurable components.
• Reliable behavior in dynamic conditions. Existing decision making methods, including

control and resource management, are not flexible enough to cope on a large scale with
changing requirements, e.g., real-time constraints and energy budgets. Centralized
control is reliable, but does not scale. Local control works well for large systems but
with the exception of simple situations, its overall behavior is unreliable.

• Scalable management of heterogeneous, inter-component interactions. Components are
often tightly related to each other through signals, shared resources, common
requirements, etc. of different nature. Some interactions cannot be characterized a-
priori, or might change at execution time. This invalidates popular divide-and-conquer
or tree-like hierarchical design as both might involve imprecise pruning of interactions.

• Performance-optimal co-design of hybrid, reconfigurable components. The availability
of reconfigurable hardware (e.g., reconfigurable mixed analog-digital circuits) enables
sensing, actuation, processing, and networking of variable performance. Current

mailto:adoboli@ece.sunsysb.edu

methods are arguably not sufficiently well developed for co-designing the hybrid
modules in a system, like the analog and digital circuits in an embedded system.

In summary, while massively distributed systems are likely to create unique opportunities
for breakthrough applications, there are currently no systemic theories or scalable methods
for effectively co-designing systems built out of very large numbers of heterogeneous parts.
Developing a suitable programming model and the related programming tools (e.g.,
specification, compiling and optimization, debugging, simulation, and run-time support) is
one of the important research tasks that ought to be tackled first.

2. What programming model is effective for massively distributed embedded systems?

For complex control systems, the algorithmic processing at the embedded node level (e.g.,
filtering, search, classification, etc.) tends to be the same for all nodes and over time. In
contrast, goals, performance requirements, safety criteria, etc., depend on the application,
execution platform, specific execution conditions, and might also change in time. Also,
many programming languages for distributed systems rely on explicit description of the
inter-node interactions, e.g., synchronization and communication. However, this reduces
scalability and reusability of the code as it is hard to capture all possible interactions
between the components of massively large scale applications.

The programming model must enable performance-efficient co-design of the hybrid,
reconfigurable embedded nodes forming the execution network. Typical applications, e.g.,
monitoring and tracking, define for a variety of situations the global tasks and goals that
must be achieved by a massively distributed system through combined operation of its
embedded nodes. As a result, two main design challenges emerge: (i) each sensor node has
to efficiently sense, process, and network under a wide range of performance requirements
while (ii) only scarce hardware, bandwidth, and energy resources are available. Present co-
design methods are insufficient for tackling the two challenges. The methods have only
limited capability for co-optimizing the sensing, processing, and communication
subsystems of embedded nodes. Also, few methods can exploit the flexibility of networked
reconfigurable architectures to produce low-cost yet efficient designs for a broad range of
requirements.

We suggest that Visual Programming (VP) is an intriguing approach to programming
massively distributed embedded systems as it offers high productivity, scalability, and
reuse. VP languages are more intuitive, hence easier to learn and use by persons without
comprehensive programming background. The concept of Visual Programming (VP) was
arguably proposed in the 80s [Johnston04], however, it is only recently that its advantages
for embedded applications became more apparent. VP languages have been proposed for
applications like managing smart oilfields, vehicle tracking, contour finding, environmental
monitoring, etc. The existing VP constructs include successive filtering and functional
processing of data pools. The data model is based on continuous data streams sampled from
the environment and groups of nodes defined by their specific interests in space and over
time, query-based programming, and global behavior.

Similar to [Newton04, Whitehouse05], we suggest a VP programming notation in which the
data model is based on data pools and continuous data streams to the modules. However, it
differs in that it focuses on optimal decision making in massively distributed environment,
and not on algorithmic descriptions. We think that the notation is orthogonal to the existing
languages as it concentrates on the interactions between groups of nodes, or nodes and
environment, and less on the behavior of the individual nodes. Also, to offer high
scalability, the compiler and optimization environment ought to identify the best interaction
schemes between components, so that the overall goals as well as the goals of the modules
are met. While describing algorithms is arguably done more efficiently by humans,
identifying the parameters for optimal execution is cumbersome and should be automated.

The proposed goal-oriented model comprises of separate description modules (DMs) that
operate to optimize a well-defined set of goals while the overall goals of the application are
also being optimized. Each module executes a set of parameterized behaviors (algorithms)
for which the parameters are automatically computed based on the information provided
through the goal-oriented descriptions. Similar to other specification languages for sensor
networks, the proposed data model is based on data pools associated to regions and groups.
Modules sample inputs from and generate outputs to a data pool for region. Regions
represent continuous collections of tokens, such as a geographical area. Groups are discrete
collections of tokens. Regions and groups can be associated to a specific physical area of
the environment, or can be described by their defining properties.

The goal-oriented descriptions are compiled off-line and uploaded onto the embedded
nodes. During execution, a scalable execution support (middleware) dynamically optimizes
the cooperation of embedded modules and networks. The system software also monitors
events, conditions, data, etc., so that related applications can be automatically correlated or
uncorrelated to provide accurate and scalable execution.

References
[Weiser02] Weiser, M., The Computer for the 21st Century, IEEE Pervasive Computing, 1(1), pp. 15-25,
2002.

[Johnston 04] Johnston W. et al. Advances in Dataflow Programming Languages, ACM Computing
Surveys, Vol. 36, No. 1, (March 2004), 1-34.

[Newton04] Newton, R., Welsh, M. Region Streams: Functional Macroprogramming for Sensor Networks, Proc.
Workshop on Data Management for Sensor Networks (2004).

[Whitehouse,05] Whitehouse, K., Zhao, F., Liu, J. Semantic Streams: a Framework for Declarative Queries and
Automatic Data Interpretation, Technical Report, Microsoft Research, MSR-TR-2005-45 (2005).

Alex Doboli is an Associate Professor with the Department of Electrical and Computer
Engineering, State University of New York at Stony Brook. Dr. Doboli's research is in
Computer-Aided Design of mixed-domain embedded systems and networks of systems. He
has published over 100 papers in peer-reviewed journals and conference proceedings. He is
an Associate Editor for Integration, the VLSI Journal (Elsevier). He is a Senior IEEE
Member, and a Member of SigmaXi and Tau Beta Pi.

