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1.  Introduction

Small  size,  low cost  electronic  circuits  embedded  on  a  massively  large  scale  into  the 
quotidian  world are  likely to  transform the way humans interact  with their  natural  and 
social  environments  [Weiser02].  Such  systems  can  offer  unique  capabilities,  like 
autonomous response to new needs, identification of trends and correlations in data and 
events, reaction to unexpected conditions, and many more. These capabilities are expected 
to  produce  significant  leaps  forward  in  transportation,  infrastructure  management, 
environmental protection, and homeland security, just to name a few areas. The complexity 
of  networked  computer  systems  is  likely  to  grow very  rapidly  due  to  more  and  more 
electronic circuits being networked together each day.

While massively distributed embedded systems have the potential to offer comprehensive 
data acquisition, huge computing power, and precise actuation, it is very hard to efficiently 
harvest  these  capabilities  with  current  theoretical  concepts  and  software  methods. 
Massively  distributed  embedded  systems  are  hard  to  develop  and  maintain,  and  their 
performance does not scale well with the amount of used resources. 

In our opinion, there are three main challenges that need to be tackled in order to develop 
applications based on massively distributed, reconfigurable embedded systems: providing 
(i)  reliable  behavior  in  dynamic  conditions,  (ii)  scalable  management  of heterogeneous, 
inter-component  interactions,  and  (iii)  performance-optimal  co-design  of  hybrid, 
reconfigurable components.
• Reliable behavior in dynamic conditions. Existing decision making methods, including 

control and resource management, are not flexible enough to cope on a large scale with 
changing  requirements,  e.g.,  real-time  constraints  and  energy  budgets.  Centralized 
control is reliable, but does not scale. Local control works well for large systems but 
with the exception of simple situations, its overall behavior is unreliable. 

• Scalable management of heterogeneous, inter-component interactions. Components are 
often  tightly  related  to  each  other  through  signals,  shared  resources,  common 
requirements,  etc.  of  different  nature.  Some  interactions  cannot  be  characterized  a-
priori, or might change at execution time. This invalidates popular divide-and-conquer 
or tree-like hierarchical design as both might involve imprecise pruning of interactions.

• Performance-optimal co-design of hybrid, reconfigurable components. The availability 
of reconfigurable hardware (e.g., reconfigurable mixed analog-digital circuits) enables 
sensing,  actuation,  processing,  and  networking  of  variable  performance.  Current 
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methods  are  arguably  not  sufficiently  well  developed  for  co-designing  the  hybrid 
modules in a system, like the analog and digital circuits in an embedded system. 

In summary, while massively distributed systems are likely to create unique opportunities 
for breakthrough applications, there are currently no systemic theories or scalable methods 
for effectively co-designing systems built out of very large numbers of heterogeneous parts. 
Developing  a  suitable  programming  model  and  the  related  programming  tools  (e.g., 
specification, compiling and optimization, debugging, simulation, and run-time support) is 
one of the important research tasks that ought to be tackled first.

2. What programming model is effective for massively distributed embedded systems?

For complex control systems, the algorithmic processing at the embedded node level (e.g., 
filtering, search, classification, etc.) tends to be the same for all nodes and over time. In 
contrast, goals, performance requirements, safety criteria, etc., depend on the application, 
execution platform,  specific  execution conditions,  and might  also change in time.  Also, 
many programming languages for distributed systems rely on explicit  description of the 
inter-node interactions,  e.g.,  synchronization  and communication.  However,  this  reduces 
scalability  and  reusability  of  the  code  as  it  is  hard  to  capture  all  possible  interactions 
between the components of massively large scale applications. 

The  programming  model  must  enable  performance-efficient  co-design  of  the  hybrid, 
reconfigurable embedded nodes forming the execution network. Typical applications, e.g., 
monitoring and tracking, define for a variety of situations the global tasks and goals that 
must  be achieved by a  massively distributed  system through combined operation  of its 
embedded nodes. As a result, two main design challenges emerge: (i) each sensor node has 
to efficiently sense, process, and network under a wide range of performance requirements 
while (ii) only scarce hardware, bandwidth, and energy resources are available. Present co-
design methods are insufficient for tackling the two challenges.  The methods have only 
limited  capability  for  co-optimizing  the  sensing,  processing,  and  communication 
subsystems of embedded nodes. Also, few methods can exploit the flexibility of networked 
reconfigurable architectures to produce low-cost yet efficient designs for a broad range of 
requirements. 

We  suggest  that  Visual  Programming  (VP)  is  an  intriguing  approach  to  programming 
massively  distributed  embedded  systems  as  it  offers  high  productivity,  scalability,  and 
reuse. VP languages are more intuitive, hence easier to learn and use by persons without 
comprehensive programming background.  The concept of Visual Programming (VP) was 
arguably proposed in the 80s [Johnston04], however, it is only recently that its advantages 
for embedded applications became more apparent. VP languages have been proposed for 
applications like managing smart oilfields, vehicle tracking, contour finding, environmental 
monitoring,  etc.  The  existing  VP constructs  include  successive  filtering  and  functional 
processing of data pools. The data model is based on continuous data streams sampled from 
the environment and groups of nodes defined by their specific interests in space and over 
time, query-based programming, and global behavior. 



Similar to [Newton04, Whitehouse05], we suggest a VP programming notation in which the 
data model is based on data pools and continuous data streams to the modules. However, it 
differs in that it focuses on optimal decision making in massively distributed environment, 
and not on algorithmic descriptions. We think that the notation is orthogonal to the existing 
languages  as it  concentrates  on the interactions  between groups of nodes, or nodes and 
environment,  and  less  on  the  behavior  of  the  individual  nodes.  Also,  to  offer  high 
scalability, the compiler and optimization environment ought to identify the best interaction 
schemes between components, so that the overall goals as well as the goals of the modules 
are  met.  While  describing  algorithms  is  arguably  done  more  efficiently  by  humans, 
identifying the parameters for optimal execution is cumbersome and should be automated. 

The proposed goal-oriented model comprises of separate description modules (DMs) that 
operate to optimize a well-defined set of goals while the overall goals of the application are 
also being optimized. Each module executes a set of parameterized behaviors (algorithms) 
for which the parameters are automatically computed based on the information provided 
through the goal-oriented descriptions. Similar to other specification languages for sensor 
networks, the proposed data model is based on data pools associated to regions and groups. 
Modules  sample  inputs  from and  generate  outputs  to  a  data  pool  for  region.  Regions 
represent continuous collections of tokens, such as a geographical area. Groups are discrete 
collections of tokens. Regions and groups can be associated to a specific physical area of 
the environment, or can be described by their defining properties.

The  goal-oriented  descriptions  are  compiled  off-line  and  uploaded  onto  the  embedded 
nodes. During execution, a scalable execution support (middleware) dynamically optimizes 
the cooperation of embedded modules and networks. The system software also monitors 
events, conditions, data, etc., so that related applications can be automatically correlated or 
uncorrelated to provide accurate and scalable execution. 
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