
Chapter 12

MODELING AND CONTROLLING PARALLEL
TASKS IN DROPLET-BASED MICROFLUIDIC
SYSTEMS

Karl F. Böhringer
University of Washington

Abstract: Abstract—This paper presents general, hardware-independent models and
algorithms to automate the operation of droplet-based microfluidic systems. In
these systems, discrete liquid volumes of typically less than 1µl are transported
across a planar array by dielectrophoretic or electrowetting effects for
biochemical analysis. Unlike in systems based on continuous flow through
channels, valves, and pumps, the droplet paths can be reconfigured on demand
and even in real time. We develop algorithms that generate efficient sequences
of control signals for moving one or many droplets from start to goal positions,
subject to constraints such as specific features and obstacles on the array
surface or limitations in the control circuitry. In addition, an approach towards
automatic mapping of a biochemical analysis task onto a droplet-based
microfluidic system is investigated. Achieving optimality in these algorithms
can be prohibitive for large-scale configurations because of the high
asymptotic complexity of coordinating multiple moving droplets. Instead, our
algorithms achieve a compromise between high run-time efficiency and a
more limited, non-global optimality in the generated control sequences.

Key words: Droplet-based microfluidic system, digital microfluidic system, parallel
manipulation, lab on a chip (LOC)

1. INTRODUCTION

Advances in microfabrication and microelectromechanical systems
(MEMS) over the past decades have lead to a rapidly expanding collection
of techniques to build systems for the handling and analyzing of very small
quantities of liquids (see, e.g., [1, 2]). These microfluidic systems typically

2 Chapter 12

consist of sub-millimeter scale components such as channels, valves, pumps,
and reservoirs, as well as application-specific sensors and actuators.
Microfluidic devices hold great promise, for example for novel fast, low-
cost, portable, and disposable diagnostic tools. Applications include the
massively parallel testing of new drugs, the on-site, real-time detection of
toxins and pathogens, and PCR (polymerase chain reaction) for DNA
sequence analysis. They usually operate with continuous flows of liquids, in
analogy to traditional macro-scale laboratory set-ups, and can integrate all
functionality into a complete lab-on-a-chip (LOC) or bio-system-on-a-chip
(bioSOC).

More recently, an alternative LOC approach has gained momentum using
individual droplets, with volumes usually in the sub-microliter range. In
these droplet-based microfluidic systems, droplets are generated, transported,
merged, analyzed, and disposed on planar arrays of addressable cells;
therefore they are also sometimes called discrete or digital microfluidic
systems, and conveniently abbreviated DMFS. This architecture for
microfluidic systems is attractive because of (a) greater flexibility – analyte
handling may be reconfigured simply by re-programming rather than by
changing the physical layout of the microfluidic components; (b) high
droplet speeds – reportedly up to 25cm/s [3, 4]; (c) no dilution and cross-
contamination due to diffusion and shear-flow; and (d) the possibility for
massively parallel operation.

start 1
start 2

goal 1
goal 2

shared
path cells

Figure 12-1. Two droplets moving in parallel on a DMFS consisting of a 20×20 array with
obstacle cells (marked black). The droplets start from cells (1,1) and (20,1) and move to cells

(20,20) and (1,20), respectively. Change in droplet color indicates the elapsed time. The
droplets share cells (5,13) and (5,14) on their path but their coordinated schedule prevents any

conflicts.

12. Modeling and Controlling Parallel Tasks in Droplet-based
Microfluidic Systems

3

The DMFS approach assumes that it is advantageous to shift complexity

from microfluidic hardware to control software. Therefore, for a DMFS to
live up to its promise, it must be accompanied by a complementary set of
software tools such that its usage can be largely automated. This includes
software that helps the user to map a biochemical analysis protocol onto a
given DMFS; as a specific subproblem, algorithms that automatically plan
and schedule routes for simultaneous droplet motion are required. Fig. 12-1
shows a schematic example where two droplets move in parallel across a
DMFS while circumnavigating numerous obstacles. Developing the
formalisms, models, and control strategies for such automated droplet
manipulation tasks is the goal of this paper.

Processing large numbers of discrete droplets simultaneously on an
integrated microchip indicates a similarity to electronic digital circuits,
giving rise to microfluidic circuits [5, 6]. This analogy also suggests that
algorithms for layout, routing, and scheduling of droplet paths in a DMFS
are computationally expensive, i.e., NP-hard.

Thus, this paper is organized as follows. Section 2 reviews background
material on DMFS hardware, and discusses related work in control
algorithms. Section 3 introduces a formal DMFS model and problem
specification. Section 4 presents algorithms for coordinating parallel droplet
motion on a DMFS, and investigates trade-offs between run-time efficiency
and optimality. Section 5 extends these algorithms to allow for changes of
the droplet type during DMFS operation, and develops an approach to
automatically transform a laboratory protocol into a sequence of DMFS
tasks. Section 6 concludes the paper with a summary and an outlook on
future work.

2. RELATED WORK

Transferring a laboratory task such as DNA analysis, clinical diagnostics,
or detection and manipulation of bio-molecules into a lab-on-a-chip system
is a complex endeavor that can involve multiple challenges: the design of
microfluidic hardware including sensing and actuation mechanisms for
liquid analytes; the use of specialized techniques and materials such as
modification and functionalization of surfaces with monolayers or
antibodies; and the development of algorithms for layout and control of
massively parallel microfluidic circuits.

Lab-on-a-chip design and manufacture has become an extensive research
area with dedicated conferences (e.g., [7]) and journals (e.g., [8, 9]). This
paper, however, focuses on the software aspects, and assumes a device

4 Chapter 12

model that abstracts away from details of the physical implementation. Here,
we discuss very briefly important aspects of droplet-based microfluidics that
are relevant to motivate and justify our modeling assumptions.

2.1 Droplet Transport Techniques

The most successful conventional droplet based system in the life
sciences is arguably the fluorescence activated cell sorter (FACS) [10-12], a
machine that can sort droplets containing single cells at rates well above
100kHz. It generates charged droplets, analyzes them in free flight via a
laser fluorescence detection system, and sorts them accordingly via a
modulated electrostatic field. Lab-on-a-chip FACS systems exist but so far
work at much lower processing rates [13-15].

In micro-scale lab-on-a-chip systems, droplets can be moved across a
planar surface effectively with a variety of techniques, including electric
fields (e.g., [3, 16-19]), surface acoustic waves (e.g., [20-22]),
thermocapillary and Marangoni effects (e.g., [23, 24]), electrochemical
surface modulation (e.g., [25]), conformational changes in molecular surface
layers (e.g., [26]), or gradients in surface chemistry (e.g., [27, 28]) and
texture (e.g., [29, 30]). For this paper, droplet transport with high speed,
accuracy, and full software control is essential, making electric fields the
most suitable approach; hence we briefly discuss the two main techniques in
this realm, dielectrophoresis and electrowetting [31, 32].

2.1.1 Dielectrophoresis

In dielectrophoresis (DEP), neutrally charged objects are first polarized
by an electric field, and then experience a net force due to the field. This
force can only be non-zero if a field gradient exists, i.e., the positively and
negatively polarized regions of the object occupy areas of different field
strengths. If the object has stronger polarization than the surrounding
medium then it is pulled towards the areas of higher field strength (this is
called positive DEP), but if the surrounding medium has higher polarization,
then the object is pushed towards areas of lower field strength (negative
DEP). DEP can be considered the electrostatic analogy of induced
magnetism. Common examples for DEP are charged clothes that attract
(neutral) lint particles. More information on dielectrophoresis can be found,
e.g., at [33]. A DMFS system employing DEP with more than ten thousand
array elements was demonstrated in [34].

12. Modeling and Controlling Parallel Tasks in Droplet-based
Microfluidic Systems

5

2.1.2 Electrowetting

Electrowetting on dielectric (EWOD) exploits the decrease of contact
angle that an aqueous droplet on a dielectric surface experiences when
exposed to an electric field. If the field is localized at only one side of the
droplet, then the difference in contact angle causes a pressure differential in
the droplet, which drives it towards the region of higher field strength.
Electrowetting and its applications in microfluidics have been investigated
by several groups, including [3, 16, 17, 35, 36].

2.2 Droplet Transport Planning and Scheduling

Finding the optimal plan to generate, store, move, merge, split, and
dispose multiple droplets on a droplet-based microfluidic system combines
general path planning and scheduling with the more application-specific task
of analyte droplet handling. Various researchers have studied parts of the
overall problem and have shown important results on algorithmic solutions
and their computational complexity.

One possible approach to this problem can be taken when the paths of the
droplets are considered given a priori. This assumption leads to a scheduling
problem, where the array cells en route are the limited resource that must be
shared among different droplets. Griffith and Akella [37] show a solution
with standard optimization tools guided by some user input, building on
related work in coordinating multiple articulate robots [38, 39]. Many more
references to related work in the areas of robot motion planning, flexible
manufacturing systems, queuing theory and networking are also given in
[37].

A related technique was used by Ding, Zhang, et al. [5, 6, 40] who attack
the problem from the VLSI design perspective. As in [38, 39], this approach
leads to an integer programming formulation. Both groups show NP-
hardness of the scheduling problem even for fixed droplet routes.

VLSI circuit routing techniques could also be employed, which address
the path planning problem but do not apply directly to the inherently two-
dimensional layout of the droplet-based microfluidic platform.

This paper takes a different approach, by permitting the droplet paths to
be chosen freely (except for constraints defined by the microfluidics
hardware). Each droplet is interpreted as a point robot moving in a discrete
two-dimensional configuration space. Under this assumption, path planning
of the droplets becomes a motion planning problem with multiple moving
robots. Erdmann and Lozano-Pérez showed in 1987 that this problem is NP-
hard, but presented an algorithm that may find a good solution in polynomial

6 Chapter 12

time [41]. Their approach assigns priorities to each robot (droplet) and
generates paths successively, starting with the highest priority robot. Lower
priority robots consider higher priority robots as time-varying obstacles that
must be avoided. The algorithm is not complete, and generated solutions
depend on the priority ranking of the robots and may not be optimal.

In [42], this author described the problem as a graph search, and
suggested search techniques such as A*. Even though this brute-force
approach, unlike the other work mentioned above, guarantees optimality and
completeness, it is not practical for larger scale problems because of its
computational complexity, which is exponential in the number of moving
droplets. Reference [43] introduced a formal problem definition and showed
initial results with a more efficient approach based on Erdmann’s algorithm
[41].

3. DMFS FORMAL HARDWARE SPECIFICATION

Let us briefly review the most important physical properties and design
parameters of a droplet-based microfluidic system (DMFS). Motivated by
these characteristics, we can then develop an abstract DMFS model that
captures the essential operational features without depending on specific
implementation details.

3.1 DMFS Design Specifications

• Layout: Typically, a DMFS consists of a planar, rectangular array A with
m×n cells (but, e.g., an arrangement of hexagonal cells would also be
possible).

• Control circuitry: Various addressing schemes are possible to activate
individual cells in a DMFS. In different physical implementations of
DMFS, we can distinguish, for instance, individually addressable
electrodes for each cell (e.g., [36]), or simpler row/column addressing
(e.g., [44, 45]). For the latter, entire rows and columns are activated, and
the droplet is attracted to a neighboring cell A(x,y) only if it lies at the
intersection of active column x and row y.

• Parallelism: The DMFS controller may be capable of simultaneous
activation of more than one cell, which will allow simultaneous motion
of multiple droplets. The total number of addressable cells may be
limited by a number significantly smaller than m×n.

• Location of cells with special functions: Droplet generators, reservoirs,
cells for merging and splitting of droplets, sensors, waste, etc. may

12. Modeling and Controlling Parallel Tasks in Droplet-based
Microfluidic Systems

7

require dedicated cells with special embedded hardware. These cells may
not be available when planning a droplet path across the array.
These specifications provide a physical framework within which a DMFS

can operate. Based on this framework, we can establish a formal description
of the problem of controlling droplets in a DMFS. Once a sufficiently
general DMFS model exists, we can investigate algorithmic solutions at an
abstract level without worrying about the varying details of specific
hardware implementations.

3.2 Abstract DMFS Specification

A droplet-based microfluidic system is specified by the droplets on the
DMFS array, the DMFS hardware itself, and the task to be performed.

3.2.1 Droplets

Droplets are described by their type T and their volume V. We are
assuming here that all droplets in the DMFS have the same volume, except
when two droplets have been merged. Therefore, we require that a merge
operation is always immediately followed by a split operation that restores
the original droplet volumes.

The droplet type T is a subset of all elementary droplet types, which we
describe in general as a set 7 = {T1, T2, T3, …}; thus, T is an element of
the power set of 7, T ∈ 3 (7). For example, if T1 represents
“deionized water”, T2 “methanol”, and T3 “isopropanol”, then a droplet of
type T = {T1, T3} describes a mixture of DI water and IPA. Note that this
convention provides a simple representation of mixed droplets, but does not
keep track of sample concentrations. If needed, different concentrations
could be represented as different elementary types.

3.2.2 DMFS Arrays and Tasks

The DMFS consists of an array A of m×n cells. Each cell in the array is
either empty or occupied, which we represent by specifying its droplet type
T. Thus, the DMFS can be described by A(x,y) = Tx,y for (x,y) ∈
{1…m}×{1…n} and Tx,y ⊆ 7 . As a special case, Tx,y = ∅ indicates an
empty cell. We call A ∈ 3 (7)m×n the state of the DMFS.

The location of a droplet can be specified by the pair (x,y) ∈
{1…m}×{1…n} = C; thus, C is the configuration space [46] of a single
droplet, and Cd is the configuration space of d droplets, which we also call
the droplet placement of the DMFS.

8 Chapter 12

Time is assumed to be a discrete counter t ∈ {0, 1, 2, …}, i.e., transitions
in the array occur in integer time steps from t to t+Δt, where Δt = 1 unless
noted otherwise. We write At to refer to the state of the array at a specific
time t.

At this point, we can already outline the definition of a DMFS task: given
a start state As ∈ 3 (7)m×n and a goal state Ag ∈ 3 (7)m×n, we
need to find a timed sequence of valid transitions that results in the desired
droplet motions from As to Ag. Various kinds of transitions exist; they
include simple droplet transport from cell to cell, but also droplet generation,
disposal, merging, and splitting. In addition to motion, droplets may also be
modified by operations on cells that change their type. All these operations
are chosen from the following list of valid droplet transitions, which are
usually associated to specific cells or groups of cells on the array:
• Droplet generation: For (x,y) ∈ C and some T ∈ 3 (7), a droplet

is generated at coordinate (x,y) if A(x,y) = ∅ at time t and A(x,y) = T at
time t+Δt.

• Disposing: Definition analogous to droplet generation.
• Moving: Let (x,y) and (x',y') ∈ C and |x–x'| + |y–y'| = 1 (i.e., A(x,y) and

A(x',y') are directly adjacent). At time t, A(x,y) = T and A(x',y') = ∅ and at
time t+Δt, A(x,y) = ∅ and A(x',y') = T.

• Merging: Let (x,y), (x',y'), and (x'',y'') ∈ C such that (x',y') and (x'',y'') are
directly adjacent to (x,y) but not adjacent to each other. At time t, A(x,y)
= ∅, A(x',y') = T1, and A(x'',y'') = T2, and at time t+Δt, A(x,y) = T1∪T2 and
A(x',y') = A(x'',y'') = ∅, where T1∪T2 is the droplet type that results in
merging droplet types T1 and T2.

• Splitting: Definition analogous to merging.
• Checking: For (x,y) ∈ C, we require that a droplet remains at A(x,y) from

time t to time t+Δt. This allows, for example, sensing operations to be
performed that neither change the location nor the type of the droplet
(e.g., fluorescence detection).

• Changing: For (x,y) ∈ C, we define a function f: 3 (7) →
3 (7) such that A(x,y) = T1 at time t and A(x,y) = T2 at time t+Δt,
and f(T1) = T2. This allows transition operations that modify the droplet
type but not its location (e.g., heating/cooling for PCR).

• Blocking: For (x,y) ∈ C, we define a set of forbidden droplet types)x,y ⊆
7 that are not allowed on A(x,y). In particular, if)x,y ≡ 7 then A(x,y) is
blocked for all droplets.
Finally, valid placement and motion of droplets on the array is subject to

constraints:
• Placement: To avoid accidental merging of droplets, at least one empty

cell is required between two occupied cells at all times, i.e., for any (x,y)
and (x',y') ∈ C with A(x,y) ≠ ∅ and A(x',y') ≠ ∅, |x – x'| > 1 or |y – y'| > 1.

12. Modeling and Controlling Parallel Tasks in Droplet-based
Microfluidic Systems

9

(a)
(b)

(c)

(a)
(b)

(c)

(a)
(b)

(c)

t = 0

t = 1

t = 2

Figure 12-2. Parallel droplet transitions: Droplets (blue) and their activated neighbor cells
(red squares) are shown at the instant when motion is commencing. The transitions in rows (a)

and (c) are valid, but invalid in row (b) because during these transitions, two of the droplets
have more than one activated neighbor cell, which could lead to unintentional splitting or

merging.

• Parallel transitions: The previous constraint on placements must in
particular also hold during transitions, i.e., for all pairs of droplet
placements across the transition interval [t,t+Δt] (see Fig. 12-2), except
when merging or splitting is intended.

10 Chapter 12

4. DROPLET PATH PLANNING

This section focuses on a central task in the control of DMFS: generating
efficient paths for multiple droplets that move from a given start
configuration As to a desired goal configuration Ag. For now, we require that
the types of the droplets remain unchanged during the transition from As to
Ag (this constraint will be removed in Section 5). We will first give a simple,
complete algorithm based on A* search, but find that its computational
complexity is very high (exponential in the number of droplets). We then
present a more efficient algorithm for the DMFS motion planning problem
that trades off completeness for faster execution times, while maintaining
some “local” optimality guarantees.

4.1 Basic A* Search

This approach maintains a graph data structure to keep track of the
droplet locations in the DMFS array. At any given time t, the state of the
DMFS is described by At and identified with a node in this graph. A
transition between two states At and At+Δt defines a directed edge; this
transition must conform with the conditions set forth in Section 3.2 above.
Finding an optimal control strategy to transform start state As into goal state
Ag then becomes a standard graph search problem: the shortest path between
nodes As and Ag can be determined, e.g., using the A* algorithm known from
artificial intelligence programming [47].

The A* algorithm outlined below maintains two lists of states, Open and
Closed, which keep track of nodes that still need to be explored, and nodes
that have already been processed, respectively. For each node, we maintain
its predecessor p, the cost incurred g (i.e., number of transitions from As), the
cost remaining h (i.e., number of transitions to Ag), and the total cost f=g+h.
As has been widely discussed in the literature, h, which is not known in
advance, can be estimated with an “admissible” heuristic function. The
Manhattan metric provides such an admissible cost estimate, i.e., if droplet i
at time t is at (xt,i ,yt,i) and its goal is (xg,i ,yg,i) then h(t) can be estimated as Σi
|xg,i – xt,i| + |yg,i – yt,i|.

Algorithm 1: A* for droplet path planning
Input: start state As, goal state Ag
Output: shortest path from As to Ag

Open ← { As };
Closed ← ∅;
while Open ≠ ∅ begin

12. Modeling and Controlling Parallel Tasks in Droplet-based
Microfluidic Systems

11

o ← pop state with smallest f from Open;
Q ← list of all valid motion transitions from o; // Line 5
for each q in Q begin

q.g ← o.g + 1; // q is one step beyond o
q.h ← distance estimate from q to Ag;
q.f ← q.g + q.h;
q.p ← o; // keep track of path from As via o to q
if q = Ag, return q; // goal found, success
if not (∃ q' ∈ Open such that q' = q and q'.f < q.f)
and not (∃ q' ∈ Closed such that q' = q and q'.f < q.f)
then add q to Open; // found new state q to be explored

end
add o to Closed; // finished exploring node o

end
return ∅; // search exhausted, failure

12 Chapter 12

start

goal

1

3

5

7

2

4

6

8

Figure 12-3. Two droplets moving simultaneously on a 6×6 DMFS array while avoiding an
obstacle (black cells). The two droplets start at cells (5,2) and (4,5) and trade their places in 8

parallel transitions. The activated neighbor cells for their next transitions are also shown.

Fig. 12-3 shows a simple example where two droplets swap their position
while avoiding an obstacle. The A* algorithm is guaranteed to always find
an optimal solution if one exists, and indicate failure otherwise. However,
the downside of this approach is its high asymptotic complexity. Suppose the
number of droplets is d. In the simplest case, all are of the same type T0.
Then the number of different placements of droplets on the array is)(

mn
d ,

which for modest numbers m=n=10 and d=10 yields more than 1.7×1013
possibilities. If all droplets are of distinct type T1 … Td, this number
increases by d! (to ≈ 6.3×1019). One might hope that in practice, most of these
choices need not be explored. However, at each step, d droplets offer up to
4d choices to be moved, assuming 4 neighbor cells per droplet. Thus, finding
a strategy with s steps could mean checking up to (4d)s choices or risk
missing the solution, resulting again in astronomical numbers even for s<10.

We conclude that the search graph explored with the A* algorithm has
O((mn)!) nodes and a branching factor of O(4d), leading to a run-time

12. Modeling and Controlling Parallel Tasks in Droplet-based
Microfluidic Systems

13

complexity exponential in d, which is prohibitive for any non-trivial array
size with more than a few droplets.

4.2 Prioritized A* Search

The discussion above has shown that droplet path planning for DMFS
has two main aspects: generating efficient droplet path plans, and finding
efficient algorithms to generate these plans. Erdmann and Lozano-Pérez’s
[41] NP-hardness results for coordinating multiple moving objects indicate
that compromises need to be made to obtain practical solutions, and
completeness or optimality in motion plans has to be traded off with
efficiency in plan generation. They propose to impose a priority order on the
moving objects, and sequentially find “locally” optimal solutions. In our
case, the order can be assigned at random, or based on application-specific
guidelines (e.g., water may have lower priority than droplets containing
expensive or volatile compounds):

Algorithm 2: Prioritized A* for droplet path planning
Input: start state As, goal state Ag, priority order for droplets
Output: path from As to Ag

S ← ∅; // partial prioritized solution
for all droplets i in decreasing priority order begin

call Algorithm 1 to determine an optimal path for droplet i while
considering all droplets with higher priority as moving obstacles and
ignoring all droplets with lower priority;

if solution for droplet i exists
then add solution to S;
else return ∅; // failure

end
return S; // success

Fig. 12-1 was generated using this algorithm. It eliminates the

exponential complexity in d, where d is the number of droplets in the DMFS.
Instead, the prioritized algorithm is linear in d. As a trade-off, (a) it is no
longer complete: existing solutions may be missed; and (b) the solution may
not be “globally” optimal: while each droplet i finds a “locally” optimal path
among the moving droplets of higher priority, the complete solution will in
general depend on the priority order and not be “globally” optimal. Thus, as
was pointed out in [41], selecting the priority order can greatly influence the
final solution. For instance, if a short path is important for a specific droplet

14 Chapter 12

type, then it should receive high priority. However, total run time is
dominated likely by low priority droplets, since they may take convoluted
paths to circumnavigate all higher priority droplets. A good heuristic for
assigning priorities will take these points into account, as well as other,
application-specific factors. For example, droplets whose type appears
frequently on the DMFS could be assigned lower priorities than rare droplet
types, because it is likely that one of the abundant droplets is already close to
a desired destination.

4.3 Parallel Droplet Motion

The algorithms given so far are able to generate plans with simultaneous
motion of multiple droplets. Beside the physical limitations to parallelism
discussed with Fig. 12-2, the DMFS control hardware may impose additional
constraints. For example, [44, 45] describe a DMFS with simpler
row/column addressing, where a droplet moves to a neighboring cell A(x,y)
only if it lies at the intersection of activated column x and row y. Such
conditions are encoded in line 5 of Algorithm 1:

“ Q ← list of all valid motion transitions from o; ”

12. Modeling and Controlling Parallel Tasks in Droplet-based
Microfluidic Systems

15

start

goal

1

3

5

7

2

4

6

8

9

Figure 12-4. Two droplets trading places as in Fig. 12-3, but here droplets move only to
neighbor cells whose row and column has been activated (indicated by a green line). An

optimal strategy now requires 9 steps. Note that even though parallel droplet motion occurs in
several steps, transitions 1 and 4 in Fig. 12-3 would not be possible with this addressing

scheme

Generation of this list of transitions must be implemented depending on
the hardware specifications. Fig. 12-4 shows an optimal solution for the
same start and goal states as in Fig. 12-3 but with this more limited
row/column addressing scheme.

16 Chapter 12

4.4 Duplicate Droplet Types

An important special case occurs when multiple droplets in the DMFS
have the same droplet type. This is a likely scenario in practice, especially in
DMFS with large numbers of droplets. In this case, there is no unique
mapping between droplets in As and Ag (or with any intermediate state At).
This complicates the calculation of the cost estimate h, but can also provide
for more efficient plans by choosing opportune droplets that are closest to
their respective goals.

Suppose we are given two sets of d droplet placements, S1 and S2 ∈ Cd,
and all droplets have the same type T. We can find the minimum cost match
between S1 and S2 efficiently (in analogy to bipartite graph matching [48]) by
a greedy algorithm that sequentially matches up coordinate pairs with
minimal Manhattan distance until all coordinates are paired up. This pairing
leads to a monotone underestimate of the actual cost, and can thus be used as
an admissible estimate for h. With this addition, both the basic and the
prioritized A* algorithm for droplet path planning can efficiently handle
inputs with duplicate droplet types.

5. DMFS TASK PLANNING

The previous section addressed the DMFS motion planning problem.
However, transitions of the droplet types (due to mixing or other processing
as discussed in Section 3) are essential parts of DMFS operation. Thus, this
section extends the previously introduced algorithms to the general DMFS
planning problem, which allows all remaining droplet transitions listed in
Section 3.2, including merging, splitting, and changing of droplet type. This
ultimately leads to the much broader question of how to transform a general
laboratory protocol into a specific sequence of commands that can be
executed on a DMFS.

5.1 Basic Graph Search

A straightforward algorithm to solve the general DMFS planning
problem can be derived from Algorithm 1, where we can again modify line 5
to allow the complete set of transitions listed in Section 3.2, including in
particular also changes of droplet type. However, this causes some
immediate problems: (a) the number of possible transitions from each state
(i.e., the branching factor in the search graph) becomes very large; (b) it is
difficult to find an admissible heuristic for the A* algorithm, causing it to
degenerate into breadth-first-search; in combination, this would result in

12. Modeling and Controlling Parallel Tasks in Droplet-based
Microfluidic Systems

17

very inefficient searches. These problems would apply equally to a modified
Algorithm 2.

5.2 DMFS Task Protocols

To develop a more useful algorithm, it is important to keep in mind that
the tasks to be executed here typically are laboratory protocols. Thus, it is
reasonable to assume that the user (e.g., a chemical engineer or a researcher
in molecular biology) has carefully worked out the individual steps in this
protocol, and identified the intermediate products that are being generated
during its execution. With this additional input, we can find efficient
algorithms to perform these tasks on a DMFS, while leaving the task design
to a knowledgeable human operator.

We now introduce a very simple DMFS task language; the user of a
DMFS specifies the tasks to be executed in this language, based on the
laboratory protocol for the process of interest. Our Algorithms 3 and 4 then
interpret this task description and translate it into actual DMFS commands.

DMFS Task Language
// Textual description of DMFS protocol
// x ∈ {1…m}; y ∈ {1…n}; Δx, Δy ∈ {0, 1, …}; t ∈ {1, 2, …}
// T ∈ 3 (7); f: 3 (7) → 3 (7)
// id is an arbitrary textual identifier for a cell

in x y T id [time t]
out x y T id [time t]
waste x y id
mergesplit x y Δx Δy T id [time t]
check x y T id [time t]
change x y f id [time t]
block x y T id
connect from-id to-id

The statements in this language correspond to the DMFS array transitions

listed in Section 3.2 with the following additional explanations:
x and y are the cell coordinates in the array. In general, we assume that

transitions happen on a single array cell, except merge/split operations,
which may require larger cells (specified by Δx and Δy such that x+Δx ≤ m
and y+Δy ≤ n).
• A droplet of type Td is allowed on a cell with specified type T only if Td

⊆ T.

18 Chapter 12

• in, out, mergesplit, check, and change have an optional argument time t

with default value t = 1 that specifies the time required for the transition.
• “waste x y id” is a short form for “out x y 7 id” which implies that the

droplet type does not matter because the droplet will be discarded.
• “block x y T id” prohibits any droplet of type Td ⊆ T.
• “connect from-id to-id” implies a single droplet moving between the two

specified cells.
Note that identifiers need not be unique. However, if multiple transitions

have the same identifier, then they belong to the same cell group and must
describe the same transition. For example, we can write “in 1 1 H2O DI-
input” and “in 3 1 H2O DI-input” to specify two cells (1,1) and (3,1) that
provide a supply of DI water. Thus if we write “connect DI-input mix” then
our algorithm will choose one of the DI water inputs to route a droplet to the
cell with identifier “mix”.

The following Fig. 12-5 gives a sample DMFS task input. Four input
droplets of three different initial droplet types go through a sequence of
merges, splits, type transitions, and checks, before finally reaching an output
or waste cell. The user specifies these steps and their locations on the DMFS
array. Our algorithms automatically generate the order of these operations,
the selection of specific cells from cell groups, and the exact droplet paths
and schedule.

in 0 0 {R} red
in 0 2 {G} green
in 0 4 {B} blue
in 0 6 {B} blue
mergesplit 4 2 0 0 magenta

connect red magenta
connect blue magenta

mergesplit 4 5 0 0 cyan
connect green cyan
connect blue cyan

mergesplit 4 8 0 0 pale
connect magenta pale
connect cyan pale

change 14 1 {R,B}→{M) modify
connect magenta modify

change 14 3 {G,B}→{C} change
connect cyan change

change 14 5 {R,G,B}→{W} process
connect pale process

check 10 2 all sensor

12. Modeling and Controlling Parallel Tasks in Droplet-based
Microfluidic Systems

19

check 10 5 all sensor

connect modify sensor
connect change sensor

out 20 0 all out
out 20 2 all out
out 20 4 all out

connect process out
connect pale out

waste 20 10 trash
connect sensor trash
connect sensor trash

Figure 12-5. Sample DMFS tasks. There are three cell groups: blue, sensor, and out,

consisting of multiple cells with the same identifier and the same transitions (in, check, out,
respectively). The keyword all indicates the entire set of droplet types 7. Note that only two

out of the three out cells will be used.

In large DMFS with many moving droplets and many in, out,
mergesplit, check, and change cells, choosing the locations where droplets
are processed should also be automated. A greedy algorithm and simulated
annealing are discussed in [49] to attack this NP-hard layout problem.

While this list of statements may look tedious, it is simply a textual

description of a graph in which every node represents a transition (in, out,
waste, mergesplit, check, change) at a specific location on the DMFS, and
every edge corresponds to a droplet motion (connect). We call this directed
graph, which specifies the flow of the droplets through the DMFS, the task
graph. It gives a more intuitive representation of the DMFS task to be
executed and will be discussed in the following section.

5.3 DMFS Planning Algorithm

The final part of this paper is dedicated towards translating a DMFS task
description, given in the language from the previous subsection, into a
sequence of commands that can be executed on the array. This algorithm
will do the following: (1) Generate the task graph from the textual input. (2)
Identify initial transitions (typically, in nodes) that do not have any incoming
edges. (3) Assign levels to all nodes in the task graph according to their
precedence relationships such that transitions on the same level can be
executed in parallel.

Algorithm 3: Task Graph Generation

20 Chapter 12

Input: DMFS task description tasks
Output: task graph G with level assignments

parse tasks and generate the corresponding task graph G;
old ← ∅;
new ← all nodes in G;
current ← all nodes in G that do not have predecessors;
i ← 0;
while current ≠ ∅ begin
mark all nodes in current with level i;
add all nodes in current to old;
current ← all nodes in new that have only predecessors in old;
remove all nodes in current from new;
i ← i + 1;
end
if new = ∅
then return G (with level numbers); // success
else return ∅; // failure

If the directed graph is acyclic then this algorithm finds a level

assignment with a minimum number of levels (which we call l), thus
maximizing the potential for parallel execution of the transitions represented
by its nodes and edges. Note that these level assignments merely reflect
precedence relationships, not actual execution times: droplet transitions on a
specific level and droplet motions between levels may have varying
transition times (and the latter are not yet known). Thus, faster droplets may
have to wait until slower droplets are finished on each level.

Algorithm 3 assumes that there are no resource conflicts between
droplets on any given level, i.e., no two transitions require the same cell on
the DMFS array. If this cannot be guaranteed during the specification of the
DMFS task, then the algorithm must be modified to assign conflicting
transitions to different levels. See, e.g., [50] for a comprehensive approach to
dealing with such resource constraints.

12. Modeling and Controlling Parallel Tasks in Droplet-based
Microfluidic Systems

21

red
0,0

green
0,2

blue
0,4

blue
0,6

magenta
4,2

cyan
4,5

pale
4,8

modify
14,1

change
14,3

process
14,5

sensor
10,2

sensor
10,5

out
20,0

out
20,2

out
20,4

trash
20,10

Level
0

2

1

3

4

in merge
split change cell

group
check

out waste

Legend connect

red
0,0

green
0,2

blue
0,4

blue
0,6

blue
0,4

blue
0,6

magenta
4,2

cyan
4,5

pale
4,8

modify
14,1

change
14,3

process
14,5

sensor
10,2

sensor
10,5

sensor
10,2

sensor
10,5

out
20,0

out
20,2

out
20,4

out
20,0

out
20,2

out
20,4

trash
20,10

Level
0

2

1

3

4

Level
0

2

1

3

4

in merge
split change cell

group
check

out waste

Legend connect

Figure 12-6. Task graph with level assignments generated from the task description in Fig.
12-5. Transitions on the same level can be executed in parallel. Note: (a) there are two

droplets moving from the sensor cell group to trash, indicated by a double thickness arrow;
(b) only two of the three output cells will be used.

Fig. 12-6 shows the task graph generated by Algorithm 3 from the DMFS
command input given in Fig. 12-5. From its level assignment, we can
immediately generate array states Ai– and Ai+ that correspond to each level i
∈ {0, …, l}, such that Ai– and Ai+ are the state of A immediately before and
after the transitions of level i, respectively. Then, we can use Algorithm 2 to
determine the droplet motions between arrays Ai-1+ and Ai– for all 0 < i ≤ l:

Algorithm 4: DMFS Planning
Input: DMFS task description tasks
Output: task graph G and corresponding droplet motions S

22 Chapter 12

G ← call Algorithm 3 with input tasks
if G = ∅ then return ∅; // no task graph exists, failure
S ← ∅;
for i ← {1… l} begin // l is the maximum level number of G
determine Ai-1+ and Ai– , using G and S;
Si ← call Algorithm 2 with start Ai-1+ and goal Ai–;
if Si = ∅
then return ∅; // no droplet path i exists, failure
else add Si to S; // droplet path i found
end
return G and S; // success

Table 12-1. Start, intermediate, and goal states generated from the task graph in Fig. 12-6. For
each state Ai, i ∈ {0, … , 4}, droplet placements and their respective types are shown before
and after the transition on level i. Three or four droplets move simultaneously during the four
transitions from Ai-1+ to Ai– (for i>0), indicated by downward arrows.

DMFS Task States and Transitions

State Droplet Placements

A0 (0,0) (0,2) (0,4) (0,6)
+ {R} {G} {B} {B}

↓

↓

↓

↓

A1 (4,2) (4,5) (4,2) (4,5)
– {R} {G} {B} {B}
+ {R,B} {G,B} {R,B} {G,B}

↓

↓

↓

↓

A2 (14,1) (14,3) (4,8) (4,8)
– {R,B} {G,B} {R,B} {G,B}
+ {M} {C} {R,G,B} {R,G,B}

↓

↓

↓

•

A3 (10,2) (10,5) (14,5) (4,8)
– {M} {C} {R,G,B} (R,G,B}
+ {M} {C} {P} {R,G,B}

↓

↓

↓

↓

12. Modeling and Controlling Parallel Tasks in Droplet-based
Microfluidic Systems

23

A4 (20,10) (20,10) (20,4) (20,2)
– {M} {C} {P} {R,G,B}

Figure 12-7. Simultaneous droplet motion during transition between states A3+ and A4–. (a)
shows all droplets, with change in color indicating progressing time. Cells with special

functions are marked as black squares. (b), (c), (d), and (e) show individual droplet paths for
the droplets of type {M}, {C}, {P}, and {R,G,B}, respectively. Note: In (b) and (c), droplet

{C} follows the path of droplet {M} at a distance of 3 cells; in (e), the droplet
circumnavigates the mergesplit cells at (4,2) and (4,5) but is allowed to pass over the sensor

cell at (10,2).

24 Chapter 12

Table 12-1 lists all the states and transitions generated by Algorithm 4

from the task graph in Fig. 12-6. Fig. 12-7 attempts to visualize parallel
motion of multiple droplets on the DMFS for the transition from A3+ to A4–.

Algorithm 3 is linear in the number of nodes and edges in the task graph.
The complexity of Algorithm 4 is dominated by the calls to Algorithm 2,
which occur l – 1 times total. These algorithms were implemented in Java.
The total run times for the examples in this paper are in the millisecond
range. The code is available upon request from the author.

6. CONCLUSION

This paper makes the following contributions: (1) A formal, hardware
independent model of droplet-based microfluidic systems (DMFS). (2)
Novel algorithms for motion and task planning with DMFS, leading to
efficient (albeit not necessarily optimal or complete) solutions for
coordinating large numbers of simultaneously moving droplets on a two-
dimensional array. (3) An approach to automate the transition from general
laboratory protocols to DMFS control command sequences. (4) Results
using an implementation of these algorithms in Java.

The developed models and algorithms are “modular”, such that results
from the different sections are largely independent; e.g., DMFS task
planning in Section 5 does not rely on a particular droplet path planning
algorithm so some other algorithm could be readily substituted for
prioritized A*. Similarly, the path planning algorithms from Section 4 could
be applied to a different task planning algorithm.

Droplet manipulation based on electrowetting on arrays with up to
hundred cells has been demonstrated by several groups (e.g., [3, 44, 51]),
and an electrophoresis-based system with integrated CMOS addressing of
tens of thousands of cells by [34]. The computational complexity for
generating optimal droplet motion plans has been shown to be prohibitive
even for much smaller systems. Thus, we have focused on finding an
acceptable trade-off between efficiency and optimality.

A very different approach to this problem could be to limit droplet
manipulation to a few standard, “pre-packaged” strategies. For example, on a
100×100 array, about 50 droplets could move in parallel across the array,
followed by another wave of 50 droplets, etc., resembling a repetitive
“peristaltic” motion [43]. However, in this case, the fundamental advantage
of flexibility and reprogrammability in DMFS versus conventional (channel,
valve, and pump based) microfluidic architectures is lost. In addition, the
question still remains how to initially generate the “pre-packaged” strategies

12. Modeling and Controlling Parallel Tasks in Droplet-based
Microfluidic Systems

25

if they involve more complicated motion paths by many simultaneously
moving droplets.

Other future work should explore the following directions:
1. Polynomial approximation algorithms exist for NP-hard problems (e.g.,

traveling salesman [52, 53]), which guarantee a tight limit on non-
optimality. If, e.g., a control strategy for a complex DMFS can be
generated in polynomial time that is guaranteed to be at most twice as
long as an optimal solution then this might be sufficient for most
practical purposes.

2. While the (prioritized) A* algorithm has been effective in solving graph
search problems, it is incomplete and worst-case exponential in the
branching factor. More detailed benchmark tests could provide insights
about scenarios where the algorithm fails to find solutions efficiently.

3. The optimal level number l produced by Algorithm 3 does not
automatically imply maximal parallelism in droplet motion. Some nodes
in the task graph can be assigned to a range of levels without affecting l,
but varying level assignments may produce droplet motion plans with
varying efficiency. For example, the droplet motion from (4,8) to (20,2)
in Table 12-1 and Fig. 12-7(e) can be executed during transition A2+ →
A3– or during A3+ → A4–.

4. A related question is whether it is essential to allow parallel droplet
motion in line 5 of Algorithm 1. An alternative approach would first
generate plans without parallelism, and then post-process the generated
plan to identify all droplet motions that could be executed in parallel.

5. More generally, it may be possible to improve the output of Algorithm 2
with some post-processing that locally improves the droplet motions.

6. The previous three points hint that our DMFS formalism could be
developed much further. A general approach in this direction based on
state complexes was given recently in [54], which presents efficient
algorithms to detect and optimize parallelism.

7. As mentioned in Section 3.1, parallelism may be limited by the hardware
controller to a number smaller than the total droplet count. This was not
explicitly addressed in this paper, but could again appear as an additional
constraint in line 5 of Algorithm 1.

7. ACKNOWLEDGMENT

The author thanks Srinivas Akella, Sankar Basu, Bruce R. Donald, Mike
Erdmann, Rajinder Khosla, Eric Klavins, Xiaorong Xiong, and the
anonymous reviewers for helpful insights and comments, Ji Hao Hoo and

26 Chapter 12

Tsung-Hao Suh for programming, Rohit Malhotra also for programming of
an earlier software version, and Masayoshi Esashi, Hiroyuki Fujita and
Osamu Tabata for their hospitality during a sabbatical visit at their
laboratories.

Support for this project was provided in part by NSF SGER grant
0342632, NIH grant 1 P50 HG002360-01, and an invitational fellowship for
research in Japan from the Japan Society for the Promotion of Science.

8. REFERENCES

1. Kovacs, G.T.A., Micromachined Transducers Sourcebook. 1998:
McGraw-Hill.

2. Stone, H.A., A.D. Stroock, and A. Ajdari, Engineering Flows in Small
Devices: Microfluidics Toward a Lab-on-a-Chip. Annual Review of
Fluid Mechanics, 2004. 36:381-411.

3. Moon, H., S.K. Cho, R.L. Garrell, and C.-J. Kim, Low voltage
electrowetting-on-dielectric. Journal of Applied Physics, 2002.
92(7):4080-4087.

4. Fair, R.B., V. Srinivasan, H. Ren, P. Paik, V.K. Pamula, and M.G.
Pollack. Electrowetting-based on-chip sample processing for integrated
microfluidics, in IEEE International Electron Devices Meeting (IEDM).
2003.

5. Zhang, T., K. Chakrabarty, and R.B. Fair, Integrated hierarchical design
of microelectrofluidic systems using SystemC. Microelectronics Journal,
2002. 33:459-470.

6. Zhang, T., K. Chakrabarty, and R.B. Fair, Design of Reconfigurable
Composite Microsystems Based on Hardware/Software Codesign
Principles. IEEE Transactions on Computer-aided Design of Integrated
Circuits and Systems, 2002. 21(8):987-995.

7. International Conference on Miniaturized Chemical and Biochemical
Analysis Systems (microTAS). Annual.

8. Sensors and Actuators B: Chemical. Monthly, Elsevier.
9. Lab on a Chip. Monthly, Royal Society of Chemistry.
10. Shapiro, H.M., Practical flow cytometry. 1995, New York: Wiley.
11. Melamed, M.R., T. Lindmo, and M.L. Mendelsohn, Flow cytometry and

sorting. 1990, New York: Wiley.
12. Crosland-Taylor, P.J., A device for counting small particles suspended in

a fluid through a tube. Nature, 1953. 171(4340):37-38.
13. Fu, A.Y., C. Spence, A. Scherer, F.H. Arnold, and S.R. Quake, A

microfabricated fluorescence-activated cell sorter. Nature
Biotechnology, 1999. 17(11):1109-1111.

12. Modeling and Controlling Parallel Tasks in Droplet-based
Microfluidic Systems

27

14. Krueger, J., K. Singh, A. O'Neill, C. Jackson, A. Morrison, and P.

O'Brien, Development of a microfluidic device for fluorescence activated
cell sorting. Journal of Micromechanics and Microengineering, 2002.
12:486-494.

15. Tartagni, M., L. Altomare, R. Guerrieri, A. Fuchs, N. Manaresi, G.
Medoro, and R. Thewes, Microelectronic Chips for Molecular and Cell
Biology, in Sensors Update, H. Baltes, G.K. Fedder, and J.G. Korvink,
Editors. 2004, Wiley-VCH. p. 156-200.

16. Beni, G. and M.A. Tenan, Dynamics of electrowetting displays. Applied
Physics, 1981. 52(10):6011-6015.

17. Pollack, M.G., R.B. Fair, and A.D. Shenderov, Electrowetting-based
actuation of liquid droplets for microfluidic applications. Applied
Physics Letters, 2000. 77(11):1725-1726.

18. Jones, T.B., M. Gunji, M. Washizu, and M.J. Feldman, Dielectrophoretic
liquid actuation and nanodroplet formation. Journal of Applied Physics,
2001. 89(2):1441-1448.

19. Nanolytics, www.nanolytics.com.
20. Wixforth, A., Verfahren und Vorrichtung zur Manipulation kleiner

Flüssigkeitsmengen auf Oberflächen, German Trademark and Patent
Office. 2002, Advalytix AG, 85649 Brunnthal, DE: Germany.

21. Wixforth, A. and C. Gauer, Mischvorrichtung und Mischverfahren für
die Durchmischung kleiner Flüssigkeitsmengen, in European Patent
Office. 2004: European Union.

22. Wixforth, A., A. Rathgeber, C. Gauer, and J. Scriba, Vorrichtung und
Verfahren zur Vermessung kleiner Flüssigkeitsmengen und/oder deren
Bewegung, German Trademark and Patent Office. 2002, Advalytix AG,
80799 München, DE: Germany.

23. Kataoka, D.E. and S.M. Troian, Patterning Liquid Flow at the
Microscopic Scale. Nature, 1999. 402(6763):794-797.

24. Darhuber, A.A., J.P. Valentino, J.M. Davis, S.M. Troian, and S. Wagner,
Microfluidic actuation by modulation of surface stresses. Applied
Physics Letters, 2003. 82(4):657-659.

25. Gallardo, B.S., V.K. Gupta, F.D. Eagerton, L.I. Jong, V.S. Craig, R.R.
Shah, and N.L. Abbott, Electrochemical principles for active control of
liquids on submillimeter scales. Science, 1999. 283(5398):57-60.

26. Lahann, J., S. Mitragotri, T.-N. Tran, H. Kaido, J. Sundaram, I.S. Choi,
S. Hoffer, G.A. So-morjai, and R. Langer, A Reversibly Switching
Surface. Science, 2003. 299(5605):371-374.

27. Chaudhury, M.K. and G.M. Whitesides, How to make water run uphill?
Science, 1992. 256(5063):1539-1541.

28 Chapter 12

28. Daniel, S., S. Sircar, J. Gliem, and M.K. Chaudhury, Ratcheting Motion

of Liquid Drops on Gradient Surfaces. Langmuir, 2004. 20(10):4085-
4092.

29. Sandre, O., L. Gorre-Talini, A. Adjari, J. Prost, and P. Silberzan, Moving
droplets on asymmetrically structured surfaces. Physical Review E,
1999. 60(3):2964-2972.

30. Shastry, A., M. Case, and K.F. Böhringer. Engineering Surface Texture
to Manipulate Droplets in Microfluidic Systems, in IEEE Conference on
Micro Electro Mechanical Systems (MEMS). 2005. Miami Beach, FL.

31. Jones, T.B., J.D. Fowler, Y.S. Chang, and C.-J. Kim, Frequency-Based
Relationship of Electrowetting and Dielectrophoretic Liquid
Microactuation. Langmuir, 2003. 19(18):7646-7651.

32. Zheng, J. and T. Korsmeyer, Principles of droplet electrohydrodynamics
for lab-on-a-chip. Lab on a Chip, 2004. 4:265-277.

33. Gascoyne, P.R.C., www.dielectrophoresis.org.
34. Fuchs, A., N. Manaresi, D. Freida, L. Altomare, C.L. Villiers, G.

Medoro, A. Romani, I. Chartier, C. Bory, M. Tartagni, P.N. Marche, F.
Chatelain, and R. Guerrie. A Microelectronic Chip Opens New Fields in
Rare Cell Population Analysis and Individual Cell Biology, in Micro
Total Analysis Systems (MicroTAS). 2003. Squaw Valley, CA.

35. Paik, P., V.K. Pamula, and R.B. Fair, Rapid droplet mixers for digital
microfluidic systems. Lab on a Chip, 2003. 4:253-259.

36. Cho, S.K., H. Moon, and C.-J. Kim, Creating, transporting, cutting, and
merging liquid droplets by electrowetting-based actuation for digital
microfluidic circuits. Journal of Microelectromechanical Systems, 2003.
12(1):70-80.

37. Griffith, E. and S. Akella. Coordinating multiple droplets in planar array
digital microfluidics systems, in Sixth Workshop on the Algorithmic
Foundations of Robotics. 2004. Utrecht, Zeist, The Netherlands.

38. Peng, J. and S. Akella. Coordinating Multiple Robots with Kinodynamic
Constraints along Specified Paths, in Workshop on the Algorithmic
Foundations of Robotics (WAFR). 2002.

39. Akella, S. and S. Hutchinson. Coordinating the Motions of Multiple
Robots with Specified Trajectories, in IEEE International Conference on
Robotics and Automation. 2002. Washington D.C.

40. Ding, J., K. Chakrabarty, and R.B. Fair, Scheduling of Microfluidic
Operations for Reconfigurable Two-Dimensional Electrowetting Arrays.
IEEE Transactions on Computer-aided Design of Integrated Circuits and
Systems, 2001. 20(12):1463-1468.

41. Erdmann, M. and T. Lozano-Pérez, On Multiple Moving Objects.
Algorithmica, 1987. 2(4):477-521.

12. Modeling and Controlling Parallel Tasks in Droplet-based
Microfluidic Systems

29

42. Böhringer, K.F. Optimal Strategies for Moving Droplets in Digital

Microfluidic Systems, in Seventh International Conference on
Miniaturized Chemical and Biochemical Analysis Systems
(MicroTAS'03). 2003. Squaw Valley, CA.

43. Böhringer, K.F. Towards Optimal Strategies for Moving Droplets in
Digital Microfluidic Systems, in IEEE International Conference on
Robotics and Automation (ICRA). 2004. New Orleans, LA.

44. Fan, S.-K., P.-P.d. Guzman, and C.-J. Kim. EWOD Driving of Droplet on
NxM Grid Using Single Layer Electrode Patterns, in Solid-State Sensor,
Actuator, and Microsystems Workshop. 2002. Hilton Head Island, SC.

45. Fan, S.-K., C. Hashi, and C.-J. Kim. Manipulation of multiple droplets on
NxM grid by cross-reference EWOD driving scheme and pressure
contact packaging, in IEEE International Conference on
Microelectromechanical Systems. 2003. Kyoto, Japan.

46. Lozano-Pérez, T., Spatial planning: A configuration space approach.
IEEE Transactions on Computers, 1983. C-32(2):108-120.

47. Nilsson, N.J., Principles of Artificial Intelligence. 1982, Berlin
Heidelberg New York: Springer Verlag.

48. Aho, A.V., J.E. Hopcroft, and J.D. Ullman, Data Structures and
Algorithms. 2 ed. 1987, Reading, WA: Addison-Wesley.

49. Su, F. and K. Chakrabarty. Design of fault-tolerant and dynamically-
reconfigurable microfluidic biochips, in Design, Automation and Test in
Europe (DATE). 2005.

50. Su, F. and K. Chakrabarty. Architectural-level synthesis of digital
microfluidics-based biochips, in IEEE International Conference on
Computer Aided Design. 2004.

51. Srinivasan, V., V.K. Pamula, M.G. Pollack, and R.B. Fair. Clinical
Diagnostics on Human Whole Blood, Plasma, Serum, Urin, Saliva,
Sweat, and Tears on a Digital Microfluidic Platform, in Micro Total
Analysis Systems (MicroTAS). 2003. Squaw Valley, CA.

52. Christofides, N. Worst-case analysis of a new heuristic for the traveling
salesman problem, in Symposium on New Directions and Recent Results
in Algorithms and Complexity. 1976. Orlando, FL: Academic Press.

53. Arora, S., Polynomial Time Approximation Schemes for Euclidean
Traveling Salesman and Other Geometric Problems. Journal of the
ACM, 1998. 45(5):753-782.

54. Abrams, A. and R. Ghrist, State Complexes for Metamorphic Robots. The
International Journal of Robotics Research, 2004. 23(7-8):811-826.

