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Abstract: Abstract—This paper presents general, hardware-independent models and 
algorithms to automate the operation of droplet-based microfluidic systems. In 
these systems, discrete liquid volumes of typically less than 1µl are transported 
across a planar array by dielectrophoretic or electrowetting effects for 
biochemical analysis. Unlike in systems based on continuous flow through 
channels, valves, and pumps, the droplet paths can be reconfigured on demand 
and even in real time. We develop algorithms that generate efficient sequences 
of control signals for moving one or many droplets from start to goal positions, 
subject to constraints such as specific features and obstacles on the array 
surface or limitations in the control circuitry. In addition, an approach towards 
automatic mapping of a biochemical analysis task onto a droplet-based 
microfluidic system is investigated. Achieving optimality in these algorithms 
can be prohibitive for large-scale configurations because of the high 
asymptotic complexity of coordinating multiple moving droplets. Instead, our 
algorithms achieve a compromise between high run-time efficiency and a 
more limited, non-global optimality in the generated control sequences.  

Key words: Droplet-based microfluidic system, digital microfluidic system, parallel 
manipulation, lab on a chip (LOC) 

1. INTRODUCTION 

Advances in microfabrication and microelectromechanical systems 
(MEMS) over the past decades have lead to a rapidly expanding collection 
of techniques to build systems for the handling and analyzing of very small 
quantities of liquids (see, e.g., [1, 2]). These microfluidic systems typically 
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consist of sub-millimeter scale components such as channels, valves, pumps, 
and reservoirs, as well as application-specific sensors and actuators. 
Microfluidic devices hold great promise, for example for novel fast, low-
cost, portable, and disposable diagnostic tools. Applications include the 
massively parallel testing of new drugs, the on-site, real-time detection of 
toxins and pathogens, and PCR (polymerase chain reaction) for DNA 
sequence analysis. They usually operate with continuous flows of liquids, in 
analogy to traditional macro-scale laboratory set-ups, and can integrate all 
functionality into a complete lab-on-a-chip (LOC) or bio-system-on-a-chip 
(bioSOC). 

More recently, an alternative LOC approach has gained momentum using 
individual droplets, with volumes usually in the sub-microliter range. In 
these droplet-based microfluidic systems, droplets are generated, transported, 
merged, analyzed, and disposed on planar arrays of addressable cells; 
therefore they are also sometimes called discrete or digital microfluidic 
systems, and conveniently abbreviated DMFS. This architecture for 
microfluidic systems is attractive because of (a) greater flexibility – analyte 
handling may be reconfigured simply by re-programming rather than by 
changing the physical layout of the microfluidic components; (b) high 
droplet speeds – reportedly up to 25cm/s [3, 4]; (c) no dilution and cross-
contamination due to diffusion and shear-flow; and (d) the possibility for 
massively parallel operation. 
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Figure 12-1.  Two droplets moving in parallel on a DMFS consisting of a 20×20 array with 
obstacle cells (marked black). The droplets start from cells (1,1) and (20,1) and move to cells 

(20,20) and (1,20), respectively. Change in droplet color indicates the elapsed time. The 
droplets share cells (5,13) and (5,14) on their path but their coordinated schedule prevents any 

conflicts. 
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The DMFS approach assumes that it is advantageous to shift complexity 

from microfluidic hardware to control software. Therefore, for a DMFS to 
live up to its promise, it must be accompanied by a complementary set of 
software tools such that its usage can be largely automated. This includes 
software that helps the user to map a biochemical analysis protocol onto a 
given DMFS; as a specific subproblem, algorithms that automatically plan 
and schedule routes for simultaneous droplet motion are required. Fig. 12-1 
shows a schematic example where two droplets move in parallel across a 
DMFS while circumnavigating numerous obstacles. Developing the 
formalisms, models, and control strategies for such automated droplet 
manipulation tasks is the goal of this paper. 

Processing large numbers of discrete droplets simultaneously on an 
integrated microchip indicates a similarity to electronic digital circuits, 
giving rise to microfluidic circuits [5, 6]. This analogy also suggests that 
algorithms for layout, routing, and scheduling of droplet paths in a DMFS 
are computationally expensive, i.e., NP-hard.  

Thus, this paper is organized as follows. Section 2 reviews background 
material on DMFS hardware, and discusses related work in control 
algorithms. Section 3 introduces a formal DMFS model and problem 
specification. Section 4 presents algorithms for coordinating parallel droplet 
motion on a DMFS, and investigates trade-offs between run-time efficiency 
and optimality. Section 5 extends these algorithms to allow for changes of 
the droplet type during DMFS operation, and develops an approach to 
automatically transform a laboratory protocol into a sequence of DMFS 
tasks. Section 6 concludes the paper with a summary and an outlook on 
future work. 

2. RELATED WORK 

Transferring a laboratory task such as DNA analysis, clinical diagnostics, 
or detection and manipulation of bio-molecules into a lab-on-a-chip system 
is a complex endeavor that can involve multiple challenges: the design of 
microfluidic hardware including sensing and actuation mechanisms for 
liquid analytes; the use of specialized techniques and materials such as 
modification and functionalization of surfaces with monolayers or 
antibodies; and the development of algorithms for layout and control of 
massively parallel microfluidic circuits.  

Lab-on-a-chip design and manufacture has become an extensive research 
area with dedicated conferences (e.g., [7]) and journals (e.g., [8, 9]). This 
paper, however, focuses on the software aspects, and assumes a device 
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model that abstracts away from details of the physical implementation. Here, 
we discuss very briefly important aspects of droplet-based microfluidics that 
are relevant to motivate and justify our modeling assumptions. 

2.1 Droplet Transport Techniques 

The most successful conventional droplet based system in the life 
sciences is arguably the fluorescence activated cell sorter (FACS) [10-12], a 
machine that can sort droplets containing single cells at rates well above 
100kHz. It generates charged droplets, analyzes them in free flight via a 
laser fluorescence detection system, and sorts them accordingly via a 
modulated electrostatic field. Lab-on-a-chip FACS systems exist but so far 
work at much lower processing rates [13-15].  

In micro-scale lab-on-a-chip systems, droplets can be moved across a 
planar surface effectively with a variety of techniques, including electric 
fields (e.g., [3, 16-19]), surface acoustic waves (e.g., [20-22]), 
thermocapillary and Marangoni effects (e.g., [23, 24]), electrochemical 
surface modulation (e.g., [25]), conformational changes in molecular surface 
layers (e.g., [26]), or gradients in surface chemistry (e.g., [27, 28]) and 
texture (e.g., [29, 30]). For this paper, droplet transport with high speed, 
accuracy, and full software control is essential, making electric fields the 
most suitable approach; hence we briefly discuss the two main techniques in 
this realm, dielectrophoresis and electrowetting [31, 32]. 

2.1.1 Dielectrophoresis 

In dielectrophoresis (DEP), neutrally charged objects are first polarized 
by an electric field, and then experience a net force due to the field. This 
force can only be non-zero if a field gradient exists, i.e., the positively and 
negatively polarized regions of the object occupy areas of different field 
strengths. If the object has stronger polarization than the surrounding 
medium then it is pulled towards the areas of higher field strength (this is 
called positive DEP), but if the surrounding medium has higher polarization, 
then the object is pushed towards areas of lower field strength (negative 
DEP). DEP can be considered the electrostatic analogy of induced 
magnetism. Common examples for DEP are charged clothes that attract 
(neutral) lint particles. More information on dielectrophoresis can be found, 
e.g., at [33]. A DMFS system employing DEP with more than ten thousand 
array elements was demonstrated in [34]. 
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2.1.2 Electrowetting 

Electrowetting on dielectric (EWOD) exploits the decrease of contact 
angle that an aqueous droplet on a dielectric surface experiences when 
exposed to an electric field. If the field is localized at only one side of the 
droplet, then the difference in contact angle causes a pressure differential in 
the droplet, which drives it towards the region of higher field strength. 
Electrowetting and its applications in microfluidics have been investigated 
by several groups, including [3, 16, 17, 35, 36]. 

2.2 Droplet Transport Planning and Scheduling 

Finding the optimal plan to generate, store, move, merge, split, and 
dispose multiple droplets on a droplet-based microfluidic system combines 
general path planning and scheduling with the more application-specific task 
of analyte droplet handling. Various researchers have studied parts of the 
overall problem and have shown important results on algorithmic solutions 
and their computational complexity.  

One possible approach to this problem can be taken when the paths of the 
droplets are considered given a priori. This assumption leads to a scheduling 
problem, where the array cells en route are the limited resource that must be 
shared among different droplets. Griffith and Akella [37] show a solution 
with standard optimization tools guided by some user input, building on 
related work in coordinating multiple articulate robots [38, 39]. Many more 
references to related work in the areas of robot motion planning, flexible 
manufacturing systems, queuing theory and networking are also given in 
[37]. 

A related technique was used by Ding, Zhang, et al. [5, 6, 40] who attack 
the problem from the VLSI design perspective. As in [38, 39], this approach 
leads to an integer programming formulation. Both groups show NP-
hardness of the scheduling problem even for fixed droplet routes. 

VLSI circuit routing techniques could also be employed, which address 
the path planning problem but do not apply directly to the inherently two-
dimensional layout of the droplet-based microfluidic platform. 

This paper takes a different approach, by permitting the droplet paths to 
be chosen freely (except for constraints defined by the microfluidics 
hardware). Each droplet is interpreted as a point robot moving in a discrete 
two-dimensional configuration space. Under this assumption, path planning 
of the droplets becomes a motion planning problem with multiple moving 
robots. Erdmann and Lozano-Pérez showed in 1987 that this problem is NP-
hard, but presented an algorithm that may find a good solution in polynomial 
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time [41]. Their approach assigns priorities to each robot (droplet) and 
generates paths successively, starting with the highest priority robot. Lower 
priority robots consider higher priority robots as time-varying obstacles that 
must be avoided. The algorithm is not complete, and generated solutions 
depend on the priority ranking of the robots and may not be optimal. 

In [42], this author described the problem as a graph search, and 
suggested search techniques such as A*. Even though this brute-force 
approach, unlike the other work mentioned above, guarantees optimality and 
completeness, it is not practical for larger scale problems because of its 
computational complexity, which is exponential in the number of moving 
droplets. Reference [43] introduced a formal problem definition and showed 
initial results with a more efficient approach based on Erdmann’s algorithm 
[41]. 

3. DMFS FORMAL HARDWARE SPECIFICATION 

Let us briefly review the most important physical properties and design 
parameters of a droplet-based microfluidic system (DMFS). Motivated by 
these characteristics, we can then develop an abstract DMFS model that 
captures the essential operational features without depending on specific 
implementation details. 

3.1 DMFS Design Specifications 

• Layout: Typically, a DMFS consists of a planar, rectangular array A with 
m×n cells (but, e.g., an arrangement of hexagonal cells would also be 
possible). 

• Control circuitry: Various addressing schemes are possible to activate 
individual cells in a DMFS. In different physical implementations of 
DMFS, we can distinguish, for instance, individually addressable 
electrodes for each cell (e.g., [36]), or simpler row/column addressing 
(e.g., [44, 45]). For the latter, entire rows and columns are activated, and 
the droplet is attracted to a neighboring cell A(x,y) only if it lies at the 
intersection of active column x and row y. 

• Parallelism: The DMFS controller may be capable of simultaneous 
activation of more than one cell, which will allow simultaneous motion 
of multiple droplets. The total number of addressable cells may be 
limited by a number significantly smaller than m×n. 

• Location of cells with special functions: Droplet generators, reservoirs, 
cells for merging and splitting of droplets, sensors, waste, etc. may 
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require dedicated cells with special embedded hardware. These cells may 
not be available when planning a droplet path across the array. 
These specifications provide a physical framework within which a DMFS 

can operate. Based on this framework, we can establish a formal description 
of the problem of controlling droplets in a DMFS. Once a sufficiently 
general DMFS model exists, we can investigate algorithmic solutions at an 
abstract level without worrying about the varying details of specific 
hardware implementations. 

3.2 Abstract DMFS Specification 

A droplet-based microfluidic system is specified by the droplets on the 
DMFS array, the DMFS hardware itself, and the task to be performed.  

3.2.1 Droplets 

Droplets are described by their type T and their volume V. We are 
assuming here that all droplets in the DMFS have the same volume, except 
when two droplets have been merged. Therefore, we require that a merge 
operation is always immediately followed by a split operation that restores 
the original droplet volumes.  

The droplet type T is a subset of all elementary droplet types, which we 
describe in general as a set 7  = {T1, T2, T3, …}; thus, T is an element of 
the power set of 7, T ∈ 3 (7  ). For example, if T1 represents 
“deionized water”, T2 “methanol”, and T3 “isopropanol”, then a droplet of 
type T = {T1, T3} describes a mixture of DI water and IPA. Note that this 
convention provides a simple representation of mixed droplets, but does not 
keep track of sample concentrations. If needed, different concentrations 
could be represented as different elementary types. 

3.2.2 DMFS Arrays and Tasks 

The DMFS consists of an array A of m×n cells. Each cell in the array is 
either empty or occupied, which we represent by specifying its droplet type 
T. Thus, the DMFS can be described by A(x,y) = Tx,y for (x,y) ∈ 
{1…m}×{1…n} and Tx,y ⊆ 7 . As a special case, Tx,y = ∅ indicates an 
empty cell. We call A ∈ 3 (7  )m×n the state of the DMFS. 

The location of a droplet can be specified by the pair (x,y) ∈ 
{1…m}×{1…n} = C; thus, C is the configuration space [46] of a single 
droplet, and Cd is the configuration space of d droplets, which we also call 
the droplet placement of the DMFS. 
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Time is assumed to be a discrete counter t ∈ {0, 1, 2, …}, i.e., transitions 
in the array occur in integer time steps from t to t+Δt, where Δt = 1 unless 
noted otherwise. We write At to refer to the state of the array at a specific 
time t.   

At this point, we can already outline the definition of a DMFS task: given 
a start state As ∈ 3 (7  )m×n and a goal state Ag ∈ 3 (7  )m×n, we 
need to find a timed sequence of valid transitions that results in the desired 
droplet motions from As to Ag. Various kinds of transitions exist; they 
include simple droplet transport from cell to cell, but also droplet generation, 
disposal, merging, and splitting. In addition to motion, droplets may also be 
modified by operations on cells that change their type. All these operations 
are chosen from the following list of valid droplet transitions, which are 
usually associated to specific cells or groups of cells on the array:   
• Droplet generation: For (x,y) ∈ C and some T ∈ 3 (7  ), a droplet 

is generated at coordinate (x,y) if A(x,y) = ∅ at time t and A(x,y) = T at 
time t+Δt. 

• Disposing: Definition analogous to droplet generation. 
• Moving: Let (x,y) and (x',y') ∈ C and |x–x'| + |y–y'| = 1 (i.e., A(x,y) and 

A(x',y') are directly adjacent). At time t, A(x,y) = T and A(x',y') = ∅ and at 
time t+Δt, A(x,y) = ∅ and A(x',y') = T.  

• Merging: Let (x,y), (x',y'), and (x'',y'') ∈ C such that (x',y') and (x'',y'') are 
directly adjacent to (x,y) but not adjacent to each other. At time t, A(x,y) 
= ∅, A(x',y') = T1, and A(x'',y'') = T2, and at time t+Δt, A(x,y) = T1∪T2 and 
A(x',y') = A(x'',y'') = ∅, where T1∪T2 is the droplet type that results in 
merging droplet types T1 and T2. 

• Splitting: Definition analogous to merging. 
• Checking: For (x,y) ∈ C, we require that a droplet remains at A(x,y) from 

time t to time t+Δt. This allows, for example, sensing operations to be 
performed that neither change the location nor the type of the droplet 
(e.g., fluorescence detection). 

• Changing: For (x,y) ∈ C, we define a function f: 3 (7  ) → 
3 (7  ) such that A(x,y) = T1 at time t and A(x,y) = T2 at time t+Δt, 
and f(T1) = T2. This allows transition operations that modify the droplet 
type but not its location (e.g., heating/cooling for PCR). 

• Blocking: For (x,y) ∈ C, we define a set of forbidden droplet types )x,y ⊆ 
7 that are not allowed on A(x,y). In particular, if )x,y ≡ 7 then A(x,y) is 
blocked for all droplets. 
Finally, valid placement and motion of droplets on the array is subject to 

constraints: 
• Placement: To avoid accidental merging of droplets, at least one empty 

cell is required between two occupied cells at all times, i.e., for any (x,y) 
and (x',y') ∈ C with A(x,y) ≠ ∅ and A(x',y') ≠ ∅, |x – x'| > 1 or |y – y'| > 1. 
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Figure 12-2. Parallel droplet transitions: Droplets (blue) and their activated neighbor cells 
(red squares) are shown at the instant when motion is commencing. The transitions in rows (a) 

and (c) are valid, but invalid in row (b) because during these transitions, two of the droplets 
have more than one activated neighbor cell, which could lead to unintentional splitting or 

merging. 

• Parallel transitions: The previous constraint on placements must in 
particular also hold during transitions, i.e., for all pairs of droplet 
placements across the transition interval [t,t+Δt] (see Fig. 12-2), except 
when merging or splitting is intended.  
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4. DROPLET PATH PLANNING 

This section focuses on a central task in the control of DMFS: generating 
efficient paths for multiple droplets that move from a given start 
configuration As to a desired goal configuration Ag. For now, we require that 
the types of the droplets remain unchanged during the transition from As to 
Ag (this constraint will be removed in Section 5). We will first give a simple, 
complete algorithm based on A* search, but find that its computational 
complexity is very high (exponential in the number of droplets). We then 
present a more efficient algorithm for the DMFS motion planning problem 
that trades off completeness for faster execution times, while maintaining 
some “local” optimality guarantees. 

4.1 Basic A* Search 

This approach maintains a graph data structure to keep track of the 
droplet locations in the DMFS array. At any given time t, the state of the 
DMFS is described by At and identified with a node in this graph. A 
transition between two states At and At+Δt defines a directed edge; this 
transition must conform with the conditions set forth in Section 3.2 above. 
Finding an optimal control strategy to transform start state As into goal state 
Ag then becomes a standard graph search problem: the shortest path between 
nodes As and Ag can be determined, e.g., using the A* algorithm known from 
artificial intelligence programming [47]. 

The A* algorithm outlined below maintains two lists of states, Open and 
Closed, which keep track of nodes that still need to be explored, and nodes 
that have already been processed, respectively. For each node, we maintain 
its predecessor p, the cost incurred g (i.e., number of transitions from As), the 
cost remaining h (i.e., number of transitions to Ag), and the total cost f=g+h. 
As has been widely discussed in the literature, h, which is not known in 
advance, can be estimated with an “admissible” heuristic function. The 
Manhattan metric provides such an admissible cost estimate, i.e., if droplet i 
at time t is at (xt,i ,yt,i) and its goal is (xg,i ,yg,i) then h(t) can be estimated as Σi 
|xg,i – xt,i| + |yg,i – yt,i|.  

   
Algorithm 1: A* for droplet path planning 
Input: start state As, goal state Ag 
Output: shortest path from As to Ag 

 
Open ← { As }; 
Closed ← ∅; 
while Open ≠ ∅ begin 
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o ← pop state with smallest f from Open; 
Q ← list of all valid motion transitions from o; // Line 5 
for each q in Q begin 

q.g ← o.g + 1; // q is one step beyond o 
q.h ← distance estimate from q to Ag; 
q.f ← q.g + q.h; 
q.p ← o;  // keep track of path from As via o to q 
if q = Ag, return q; // goal found, success 
if not (∃ q' ∈ Open such that q' = q and q'.f < q.f)  
and not (∃ q' ∈ Closed such that q' = q and q'.f < q.f)  
then add q to Open; // found new state q to be explored 

end 
add o to Closed; // finished exploring node o 

end 
return ∅; // search exhausted, failure 
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Figure 12-3. Two droplets moving simultaneously on a 6×6 DMFS array while avoiding an 
obstacle (black cells). The two droplets start at cells (5,2) and (4,5) and trade their places in 8 

parallel transitions. The activated neighbor cells for their next transitions are also shown. 

Fig. 12-3 shows a simple example where two droplets swap their position 
while avoiding an obstacle. The A* algorithm is guaranteed to always find 
an optimal solution if one exists, and indicate failure otherwise. However, 
the downside of this approach is its high asymptotic complexity. Suppose the 
number of droplets is d. In the simplest case, all are of the same type T0. 
Then the number of different placements of droplets on the array is )(   

mn
d , 

which for modest numbers m=n=10 and d=10 yields more than 1.7×1013 
possibilities. If all droplets are of distinct type T1 … Td, this number 
increases by d! (to ≈ 6.3×1019). One might hope that in practice, most of these 
choices need not be explored. However, at each step, d droplets offer up to 
4d choices to be moved, assuming 4 neighbor cells per droplet. Thus, finding 
a strategy with s steps could mean checking up to (4d)s choices or risk 
missing the solution, resulting again in astronomical numbers even for s<10.  

We conclude that the search graph explored with the A* algorithm has 
O((mn)!) nodes and a branching factor of O(4d), leading to a run-time 
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complexity exponential in d, which is prohibitive for any non-trivial array 
size with more than a few droplets. 

4.2 Prioritized A* Search 

The discussion above has shown that droplet path planning for DMFS 
has two main aspects: generating efficient droplet path plans, and finding 
efficient algorithms to generate these plans. Erdmann and Lozano-Pérez’s 
[41] NP-hardness results for coordinating multiple moving objects indicate 
that compromises need to be made to obtain practical solutions, and 
completeness or optimality in motion plans has to be traded off with 
efficiency in plan generation. They propose to impose a priority order on the 
moving objects, and sequentially find “locally” optimal solutions. In our 
case, the order can be assigned at random, or based on application-specific 
guidelines (e.g., water may have lower priority than droplets containing 
expensive or volatile compounds): 

 
Algorithm 2: Prioritized A* for droplet path planning 
Input: start state As, goal state Ag, priority order for droplets 
Output: path from As to Ag 

 
S ← ∅; // partial prioritized solution 
for all droplets i in decreasing priority order begin 

call Algorithm 1 to determine an optimal path for droplet i while 
considering all droplets with higher priority as moving obstacles and 
ignoring all droplets with lower priority; 

if solution for droplet i exists 
then add solution to S;  
else return ∅; // failure 

end 
return S; // success 
 
Fig. 12-1 was generated using this algorithm. It eliminates the 

exponential complexity in d, where d is the number of droplets in the DMFS. 
Instead, the prioritized algorithm is linear in d. As a trade-off, (a) it is no 
longer complete: existing solutions may be missed; and (b) the solution may 
not be “globally” optimal: while each droplet i finds a “locally” optimal path 
among the moving droplets of higher priority, the complete solution will in 
general depend on the priority order and not be “globally” optimal. Thus, as 
was pointed out in [41], selecting the priority order can greatly influence the 
final solution. For instance, if a short path is important for a specific droplet 
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type, then it should receive high priority. However, total run time is 
dominated likely by low priority droplets, since they may take convoluted 
paths to circumnavigate all higher priority droplets. A good heuristic for 
assigning priorities will take these points into account, as well as other, 
application-specific factors. For example, droplets whose type appears 
frequently on the DMFS could be assigned lower priorities than rare droplet 
types, because it is likely that one of the abundant droplets is already close to 
a desired destination.   

4.3 Parallel Droplet Motion 

The algorithms given so far are able to generate plans with simultaneous 
motion of multiple droplets. Beside the physical limitations to parallelism 
discussed with Fig. 12-2, the DMFS control hardware may impose additional 
constraints. For example, [44, 45] describe a DMFS with simpler 
row/column addressing, where a droplet moves to a neighboring cell A(x,y) 
only if it lies at the intersection of activated column x and row y. Such 
conditions are encoded in line 5 of Algorithm 1:  

“ Q ← list of all valid motion transitions from o; ” 
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Figure 12-4. Two droplets trading places as in Fig. 12-3, but here droplets move only to 
neighbor cells whose row and column has been activated (indicated by a green line). An 

optimal strategy now requires 9 steps. Note that even though parallel droplet motion occurs in 
several steps, transitions 1 and 4 in Fig. 12-3 would not be possible with this addressing 

scheme 

Generation of this list of transitions must be implemented depending on 
the hardware specifications. Fig. 12-4 shows an optimal solution for the 
same start and goal states as in Fig. 12-3 but with this more limited 
row/column addressing scheme. 
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4.4 Duplicate Droplet Types 

An important special case occurs when multiple droplets in the DMFS 
have the same droplet type. This is a likely scenario in practice, especially in 
DMFS with large numbers of droplets. In this case, there is no unique 
mapping between droplets in As and Ag (or with any intermediate state At). 
This complicates the calculation of the cost estimate h, but can also provide 
for more efficient plans by choosing opportune droplets that are closest to 
their respective goals.  

Suppose we are given two sets of d droplet placements, S1 and S2 ∈ Cd, 
and all droplets have the same type T. We can find the minimum cost match 
between S1 and S2 efficiently (in analogy to bipartite graph matching [48]) by 
a greedy algorithm that sequentially matches up coordinate pairs with 
minimal Manhattan distance until all coordinates are paired up. This pairing 
leads to a monotone underestimate of the actual cost, and can thus be used as 
an admissible estimate for h. With this addition, both the basic and the 
prioritized A* algorithm for droplet path planning can efficiently handle 
inputs with duplicate droplet types. 

5. DMFS TASK PLANNING 

The previous section addressed the DMFS motion planning problem. 
However, transitions of the droplet types (due to mixing or other processing 
as discussed in Section 3) are essential parts of DMFS operation. Thus, this 
section extends the previously introduced algorithms to the general DMFS 
planning problem, which allows all remaining droplet transitions listed in 
Section 3.2, including merging, splitting, and changing of droplet type. This 
ultimately leads to the much broader question of how to transform a general 
laboratory protocol into a specific sequence of commands that can be 
executed on a DMFS. 

5.1 Basic Graph Search 

A straightforward algorithm to solve the general DMFS planning 
problem can be derived from Algorithm 1, where we can again modify line 5 
to allow the complete set of transitions listed in Section 3.2, including in 
particular also changes of droplet type. However, this causes some 
immediate problems: (a) the number of possible transitions from each state 
(i.e., the branching factor in the search graph) becomes very large; (b) it is 
difficult to find an admissible heuristic for the A* algorithm, causing it to 
degenerate into breadth-first-search; in combination, this would result in 
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very inefficient searches. These problems would apply equally to a modified 
Algorithm 2. 

5.2 DMFS Task Protocols 

To develop a more useful algorithm, it is important to keep in mind that 
the tasks to be executed here typically are laboratory protocols. Thus, it is 
reasonable to assume that the user (e.g., a chemical engineer or a researcher 
in molecular biology) has carefully worked out the individual steps in this 
protocol, and identified the intermediate products that are being generated 
during its execution. With this additional input, we can find efficient 
algorithms to perform these tasks on a DMFS, while leaving the task design 
to a knowledgeable human operator.  

We now introduce a very simple DMFS task language; the user of a 
DMFS specifies the tasks to be executed in this language, based on the 
laboratory protocol for the process of interest. Our Algorithms 3 and 4 then 
interpret this task description and translate it into actual DMFS commands. 

 
DMFS Task Language 
// Textual description of DMFS protocol 
// x ∈ {1…m}; y ∈ {1…n}; Δx, Δy ∈ {0, 1, …}; t ∈ {1, 2, …} 
// T ∈ 3 (7  );  f: 3 (7  ) → 3 (7  ) 
// id is an arbitrary textual identifier for a cell 
 
in  x y  T  id  [time t] 
out  x y  T  id  [time t] 
waste  x y  id 
mergesplit  x y  Δx Δy  T  id  [time t]  
check  x y  T  id  [time t] 
change  x y  f  id   [time t] 
block  x y  T  id  
connect  from-id to-id 
 
The statements in this language correspond to the DMFS array transitions 

listed in Section 3.2 with the following additional explanations:  
x and y are the cell coordinates in the array. In general, we assume that 

transitions happen on a single array cell, except merge/split operations, 
which may require larger cells (specified by Δx and Δy such that x+Δx ≤ m 
and y+Δy ≤ n).  
• A droplet of type Td is allowed on a cell with specified type T only if Td 

⊆ T. 
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• in, out, mergesplit, check, and change have an optional argument time t 

with default value t = 1 that specifies the time required for the transition. 
• “waste x y id” is a short form for “out x y 7 id” which implies that the 

droplet type does not matter because the droplet will be discarded. 
• “block x y T id” prohibits any droplet of type Td ⊆ T. 
• “connect from-id to-id” implies a single droplet moving between the two 

specified cells. 
Note that identifiers need not be unique. However, if multiple transitions 

have the same identifier, then they belong to the same cell group and must 
describe the same transition. For example, we can write “in 1 1 H2O DI-
input” and “in 3 1 H2O DI-input” to specify two cells (1,1) and (3,1) that 
provide a supply of DI water. Thus if we write “connect DI-input mix” then 
our algorithm will choose one of the DI water inputs to route a droplet to the 
cell with identifier “mix”.  

The following Fig. 12-5 gives a sample DMFS task input. Four input 
droplets of three different initial droplet types go through a sequence of 
merges, splits, type transitions, and checks, before finally reaching an output 
or waste cell. The user specifies these steps and their locations on the DMFS 
array. Our algorithms automatically generate the order of these operations, 
the selection of specific cells from cell groups, and the exact droplet paths 
and schedule.  

 
in 0 0 {R} red 
in 0 2 {G} green 
in 0 4 {B} blue 
in 0 6 {B} blue 
mergesplit 4 2 0 0 magenta 

connect red magenta 
connect blue magenta 

mergesplit 4 5 0 0 cyan 
connect green cyan 
connect blue cyan 

mergesplit 4 8 0 0 pale 
connect magenta pale 
connect cyan pale 

change 14 1 {R,B}→{M) modify 
connect magenta modify 

change 14 3 {G,B}→{C} change 
connect cyan change 

change 14 5 {R,G,B}→{W} process 
connect pale process 

check 10 2 all sensor 
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check 10 5 all sensor 

connect modify sensor 
connect change sensor 

out 20 0 all out 
out 20 2 all out 
out 20 4 all out 

connect process out 
connect pale out 

waste 20 10 trash 
connect sensor trash 
connect sensor trash 

  
Figure 12-5. Sample DMFS tasks. There are three cell groups: blue, sensor, and out, 

consisting of multiple cells with the same identifier and the same transitions (in, check, out, 
respectively). The keyword all indicates the entire set of droplet types 7. Note that only two 

out of the three out cells will be used. 

In large DMFS with many moving droplets and many in, out, 
mergesplit, check, and change cells, choosing the locations where droplets 
are processed should also be automated. A greedy algorithm and simulated 
annealing are discussed in [49] to attack this NP-hard layout problem. 

 
While this list of statements may look tedious, it is simply a textual 

description of a graph in which every node represents a transition (in, out, 
waste, mergesplit, check, change) at a specific location on the DMFS, and 
every edge corresponds to a droplet motion (connect). We call this directed 
graph, which specifies the flow of the droplets through the DMFS, the task 
graph. It gives a more intuitive representation of the DMFS task to be 
executed and will be discussed in the following section. 

5.3 DMFS Planning Algorithm 

The final part of this paper is dedicated towards translating a DMFS task 
description, given in the language from the previous subsection, into a 
sequence of commands that can be executed on the array. This algorithm 
will do the following: (1) Generate the task graph from the textual input. (2) 
Identify initial transitions (typically, in nodes) that do not have any incoming 
edges. (3) Assign levels to all nodes in the task graph according to their 
precedence relationships such that transitions on the same level can be 
executed in parallel.  

 
Algorithm 3: Task Graph Generation  
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Input: DMFS task description tasks 
Output: task graph G with level assignments 
 
parse tasks and generate the corresponding task graph G; 
old ← ∅; 
new ← all nodes in G; 
current ← all nodes in G that do not have predecessors; 
i ← 0; 
while current ≠ ∅ begin 
mark all nodes in current with level i; 
add all nodes in current to old; 
current ← all nodes in new that have only predecessors in old; 
remove all nodes in current from new; 
i ← i + 1; 
end 
if new = ∅ 
then return G (with level numbers); // success 
else return ∅;  // failure 

 
If the directed graph is acyclic then this algorithm finds a level 

assignment with a minimum number of levels (which we call l), thus 
maximizing the potential for parallel execution of the transitions represented 
by its nodes and edges. Note that these level assignments merely reflect 
precedence relationships, not actual execution times: droplet transitions on a 
specific level and droplet motions between levels may have varying 
transition times (and the latter are not yet known). Thus, faster droplets may 
have to wait until slower droplets are finished on each level.  

Algorithm 3 assumes that there are no resource conflicts between 
droplets on any given level, i.e., no two transitions require the same cell on 
the DMFS array. If this cannot be guaranteed during the specification of the 
DMFS task, then the algorithm must be modified to assign conflicting 
transitions to different levels. See, e.g., [50] for a comprehensive approach to 
dealing with such resource constraints.  
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Figure 12-6. Task graph with level assignments generated from the task description in Fig. 
12-5. Transitions on the same level can be executed in parallel. Note: (a) there are two 

droplets moving from the sensor cell group to trash, indicated by a double thickness arrow; 
(b) only two of the three output cells will be used. 

Fig. 12-6 shows the task graph generated by Algorithm 3 from the DMFS 
command input given in Fig. 12-5. From its level assignment, we can 
immediately generate array states Ai– and Ai+ that correspond to each level i 
∈ {0, …, l}, such that Ai– and Ai+ are the state of A immediately before and 
after the transitions of level i, respectively. Then, we can use Algorithm 2 to 
determine the droplet motions between arrays Ai-1+ and Ai– for all 0 < i ≤ l: 

 
Algorithm 4: DMFS Planning 
Input: DMFS task description tasks 
Output: task graph G and corresponding droplet motions S 
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G ←  call Algorithm 3 with input tasks 
if G = ∅ then return ∅; // no task graph exists, failure 
S ← ∅; 
for i ← {1… l} begin // l is the maximum level number of G 
determine Ai-1+ and Ai– , using G and S; 
Si ← call Algorithm 2 with start Ai-1+ and goal Ai–; 
if Si = ∅  
then return ∅; // no droplet path i exists, failure 
else add Si to S; // droplet path i found 
end 
return G and S; // success 

Table 12-1. Start, intermediate, and goal states generated from the task graph in Fig. 12-6. For 
each state Ai, i ∈ {0, … , 4}, droplet placements and their respective types are shown before 
and after the transition on level i. Three or four droplets move simultaneously during the four 
transitions from Ai-1+ to Ai– (for i>0), indicated by downward arrows. 

DMFS Task States and Transitions 

State Droplet Placements 

A0 (0,0) (0,2) (0,4) (0,6) 
+ {R} {G} {B} {B} 

  
↓ 
 

 
↓ 

 
↓ 

 
↓ 

A1 (4,2) (4,5) (4,2) (4,5) 
– {R} {G} {B} {B} 
+ {R,B} {G,B} {R,B} {G,B} 

  
↓ 
 

 
↓ 

 
↓ 

 
↓ 

A2 (14,1) (14,3) (4,8) (4,8) 
– {R,B} {G,B} {R,B} {G,B} 
+ {M} {C} {R,G,B} {R,G,B} 

  
↓ 
 

 
↓ 

 
↓ 

 
• 

A3 (10,2) (10,5) (14,5) (4,8) 
– {M} {C} {R,G,B} (R,G,B} 
+ {M} {C} {P} {R,G,B} 

  
↓ 

 
↓ 

 
↓ 

 
↓ 
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A4 (20,10) (20,10) (20,4) (20,2) 
– {M} {C} {P} {R,G,B} 

 

 

Figure 12-7. Simultaneous droplet motion during transition between states A3+ and A4–. (a) 
shows all droplets, with change in color indicating progressing time. Cells with special 

functions are marked as black squares. (b), (c), (d), and (e) show individual droplet paths for 
the droplets of type {M}, {C}, {P}, and {R,G,B}, respectively. Note: In (b) and (c), droplet 

{C} follows the path of droplet {M} at a distance of 3 cells; in (e), the droplet 
circumnavigates the mergesplit cells at (4,2) and (4,5) but is allowed to pass over the sensor  

cell at (10,2). 
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Table 12-1 lists all the states and transitions generated by Algorithm 4 

from the task graph in Fig. 12-6. Fig. 12-7 attempts to visualize parallel 
motion of multiple droplets on the DMFS for the transition from A3+ to A4–. 

Algorithm 3 is linear in the number of nodes and edges in the task graph. 
The complexity of Algorithm 4 is dominated by the calls to Algorithm 2, 
which occur l – 1 times total. These algorithms were implemented in Java. 
The total run times for the examples in this paper are in the millisecond 
range. The code is available upon request from the author. 

6. CONCLUSION 

This paper makes the following contributions: (1) A formal, hardware 
independent model of droplet-based microfluidic systems (DMFS). (2) 
Novel algorithms for motion and task planning with DMFS, leading to 
efficient (albeit not necessarily optimal or complete) solutions for 
coordinating large numbers of simultaneously moving droplets on a two-
dimensional array. (3) An approach to automate the transition from general 
laboratory protocols to DMFS control command sequences. (4) Results 
using an implementation of these algorithms in Java.  

The developed models and algorithms are “modular”, such that results 
from the different sections are largely independent; e.g., DMFS task 
planning in Section 5 does not rely on a particular droplet path planning 
algorithm so some other algorithm could be readily substituted for 
prioritized A*. Similarly, the path planning algorithms from Section 4 could 
be applied to a different task planning algorithm. 

Droplet manipulation based on electrowetting on arrays with up to 
hundred cells has been demonstrated by several groups (e.g., [3, 44, 51]), 
and an electrophoresis-based system with integrated CMOS addressing of 
tens of thousands of cells by [34]. The computational complexity for 
generating optimal droplet motion plans has been shown to be prohibitive 
even for much smaller systems. Thus, we have focused on finding an 
acceptable trade-off between efficiency and optimality.  

A very different approach to this problem could be to limit droplet 
manipulation to a few standard, “pre-packaged” strategies. For example, on a 
100×100 array, about 50 droplets could move in parallel across the array, 
followed by another wave of 50 droplets, etc., resembling a repetitive 
“peristaltic” motion [43]. However, in this case, the fundamental advantage 
of flexibility and reprogrammability in DMFS versus conventional (channel, 
valve, and pump based) microfluidic architectures is lost. In addition, the 
question still remains how to initially generate the “pre-packaged” strategies 
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if they involve more complicated motion paths by many simultaneously 
moving droplets. 

Other future work should explore the following directions: 
1. Polynomial approximation algorithms exist for NP-hard problems (e.g., 

traveling salesman [52, 53]), which guarantee a tight limit on non-
optimality. If, e.g., a control strategy for a complex DMFS can be 
generated in polynomial time that is guaranteed to be at most twice as 
long as an optimal solution then this might be sufficient for most 
practical purposes. 

2. While the (prioritized) A* algorithm has been effective in solving graph 
search problems, it is incomplete and worst-case exponential in the 
branching factor. More detailed benchmark tests could provide insights 
about scenarios where the algorithm fails to find solutions efficiently. 

3. The optimal level number l produced by Algorithm 3 does not 
automatically imply maximal parallelism in droplet motion. Some nodes 
in the task graph can be assigned to a range of levels without affecting l, 
but varying level assignments may produce droplet motion plans with 
varying efficiency. For example, the droplet motion from (4,8) to (20,2) 
in Table 12-1 and Fig. 12-7(e) can be executed during transition A2+ → 
A3– or during A3+ → A4–. 

4. A related question is whether it is essential to allow parallel droplet 
motion in line 5 of Algorithm 1. An alternative approach would first 
generate plans without parallelism, and then post-process the generated 
plan to identify all droplet motions that could be executed in parallel.  

5. More generally, it may be possible to improve the output of Algorithm 2 
with some post-processing that locally improves the droplet motions. 

6. The previous three points hint that our DMFS formalism could be 
developed much further. A general approach in this direction based on 
state complexes was given recently in [54], which presents efficient 
algorithms to detect and optimize parallelism. 

7. As mentioned in Section 3.1, parallelism may be limited by the hardware 
controller to a number smaller than the total droplet count. This was not 
explicitly addressed in this paper, but could again appear as an additional 
constraint in line 5 of Algorithm 1. 
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