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Abstract—Surface-tension driven self-assembly techniques
have been successfully employed to assemble and align mi-
cro parts on hydrophobic binding sites on a substrate. The
driving force for assembly is provided by a liquid lubricant
meniscus confined between two hydrophobic surfaces in an
aqueous environment. Therefore, the hydrophobic pattern
design becomes a critical issue for the self-assembly process.
With an ideal design, the part can assemble in a unique po-
sition and orientation. In this paper, we study a series of
geometric designs based on a first-order approximation en-
ergy model. An optimization method is developed to evalu-
ate them, and a class of optimal designs is found consisting
of asymmetric rings with additional geometric constraints.

Keywords— Self-assembly, micro assembly, MEMS, hy-
drophobic, hydrophilic, surface energy, surface tension force,
binding site design.

I. Introduction

Advances in the areas of microelectromechanical systems
(MEMS), materials and chemistry have enabled fabrication
of a large variety of functional micro and even nano compo-
nents. Micro system integration of different functionalities
has emerged as a crucial problem, as they may be produced
from different incompatible processes. A number of meth-
ods have been investigated to assemble micro and nano
components: using the ”pick-and-place” method [1–3]; us-
ing electrostatic force to drive assembly [4,5]; using aligned
wafers to transfer microstructures [6,7]; using fluidic flow to
assemble micro components into matching complementary
trenches in a substrate [8]; using surface-tension force to
self-assemble micro components into specially treated bind-
ing sites on a single substrate [9–14]. Surface-tension driven
self-assembly has demonstrated the capability to assem-
ble micro components with high efficiency and accuracy.
Fig. 1 illustrates the schematic flow of this self-assembly
technique. First, hydrophobic surfaces, which act as active
binding sites, are patterned on hydrophilic background on
a substrate (Fig. 1(a)). A hydrocarbon oil or melted solder
lubricant, which is applied to the substrate, wets exclu-
sively the hydrophobic binding sites in water (Fig. 1(b)).
Micro components with matching hydrophobic patterns are
then added to the water, self-assembled and aligned on
the lubricant-wetted binding sites (Figs. 1(c)(d)). As the
binding site geometries control the hydrocarbon shapes and
therefore affect the assembly results, the geometric design
is important for achieving good alignment. So far, most
self-assembly experiments have been performed only with
devices of symmetric binding sites with no preference in

Fig. 1. Schematic plots of self-assembly flow. (a) The part and the
substrate are patterned with hydrophobic binding sites. (b) The sub-
strate with lubricant is immersed in water, and the lubricant wets
exclusively the hydrophobic binding sites. (c) When the part is in-
troduced in water and touches the lubricant, the lubricant will help
assemble the part to the binding site on the substrate till (d) perfectly
aligned.

orientation, e.g. unpackaged square GaAs/GaAlAs LEDs
and hexagonal mirrors [11, 12, 14]. Such devices can be
aligned in multiple orientations: four for squares and six
for hexagons. However, most other micro devices require
a unique alignment position and orientation. For example,
assembly of a packaged commercial LED requires a unique
alignment in both orientation and position [13]. Therefore,
an ideal geometric design should produce unique alignment,
regardless of the initial pose of the part. From an energy
point of view, the unique alignment corresponds to a global
surface energy minimum without any other local minima
for all configurations. A design satisfying this condition
will be referred to as optimal in the following text.

To find the optimal designs, we discuss a constructive
method. First, we introduce a first-order approximation
model of the interfacial energy. Based on the model,
we can calculate the surface energy, the driving forces or
torques for assembly. A series of geometric designs includ-
ing disks, symmetric rings and asymmetric rings with non-
concentric inner cutout are studied. From the energy and
force (torque) analysis, a constructive optimization method
is used to find optimal binding site shapes. As a result,
symmetric ring shapes ensuring unique alignment position,
and asymmetric rings ensuring unique alignment position
and orientation, are obtained.

II. First-order approximation model of surface
energy

In this section, we introduce a first order approximation
model for calculating the surface energy. Due to its compu-
tational simplicity, this method is preferable, e.g. compared
to a three-dimensional finite element method (FEM) [15,16]



using a software package called Surface Evolver [17]. A

Fig. 2. (a) Side view of the lubricant-water interfacial area. (b) The
projection of the interfacial area to the substrate plane is shown as
the shaded area. Note the lubricant thickness has been exaggerated.

brief derivation of the model is described as follows. With
the assumption that shift between the part (P ) and the
substrate binding site (S) is much larger than the lubricant
thickness, the water-lubricant interfacial area (Fig. 2(a))
can be approximated by its projection to the substrate
plane shown as shaded areas in Fig. 2(b). Due to the lin-
ear relationship between the interfacial energy and area, we
can approximate the interfacial energy E by the projection
area (Fig. 2(b)):

E = σ(| S | + | P | −2 | S ∩ P |) (1)

where | P |, | S | and | S∩P | denote the part, the substrate
binding site and their overlap areas respectively, and σ is
the lubricant-water interfacial tension.

Simulation results from the two different methods for a
500µm disk and a 1×1 mm2 square are shown in Figs. 3 and
4. The first order approximation results are in good accor-
dance with those from the three-dimensional FEM (Surface
Evolver). Therefore, the projected area is a good approxi-
mation for the interfacial area, if the lubricant thickness is
small compared to the binding site lateral size. Further-

Fig. 3. Simulation results from the approximation model and Sur-
face Evolver for 500µm circular binding site: (a) surface energy and
(b) lateral surface tension force. Here we use σ=50mJ/m2 and the
lubricant volume is 0.0041mm3.

more, since | S | and | P | in Eq. 1 are constant, the energy
E depends exclusively on the overlap area | S∩P | and E is
linear with −σ | S ∩ P| [18,19]. For simplicity, we calculate
and analyze the overlap area instead of the surface energy
in the rest of the paper. Therefore, the condition for an
optimal design is that it has a unique overlap maximum in
all the configurations.

Fig. 4. Simulation results from the approximation model and Surface
Evolver for 1×1mm2 square binding site: (a) Surface energy and
(b) lateral surface tension force. Here we use σ=50mJ/m2 and the
lubricant volume is 0.033mm3.

In previous research [13, 19], different methods for bind-
ing site design have been discussed: design for a given site;
design by exhaustive search; design by probabilistic ap-
proach; design via Fourier transform. In this paper, we
discuss a new design method by using composite geometric
shapes, formed by addition or subtraction of simple shapes
such as disk, square, triangle, etc. Binding sites with simple
geometry usually have more than one overlap area maxi-
mum. For example, square shapes have four overlap area
maxima every 90◦; circular shapes are rotationally symmet-
ric, and have a unique overlap maximum in position but no
preference in orientation. However, addition or subtraction
of such shapes will break the symmetry. A simple exam-
ple is a ring shape, which is the subtraction of two circular
shapes of different sizes. If two circular shapes are not con-
centric, the ring shape might have a unique maximum in
both position and orientation. Compared to the previous
methods, this method is simple and easy to implement,
however we cannot find all the possible optimal shapes by
using this method.

In the following sections, we will focus on the compos-
ite shape design method. Particulary, composite patterns
consisting of circular shapes of different sizes are used to
create optimal designs.

III. Basic geometric analysis of binding site
designs

In this section, we introduce basic definitions and opera-
tions for pattern analysis. First, we introduce some termi-
nologies that will be consistently used in the paper:
• Position (b, θ) denotes where the part is in a polar coor-
dinate system.
• Orientation (γ) is the angular difference of a part with
respect to a reference frame.
• Pose (b, θ, γ) denotes both the position and orientation.
• Position alignment (∆b, ∆θ) is the relative position of a
part to a binding site.
• Orientation alignment (∆γ) is the relative orientation of
a part to a binding site.
• Alignment (∆b, ∆θ, ∆γ) is the relative pose of a part to
a binding site.



For convenience, we use the substrate binding site center
as the origin. Therefore, the pose of the part and its align-
ment have the same value (b, θ, γ). For pattern analysis,
we generate overlap area profiles. Each profile assigns an
overlap area value to each part pose specified by (b, θ, γ).
Similarly, overlap area derivative profiles are generated in
terms of b, θ, γ respectively, which correspond to different
driving force and torque profiles. We can evaluate these
profiles and search for the optimal designs which ensure a
unique maximum in overlap area.

For simplicity, we start with disks, for which the intersec-
tion area depends exclusively on the disk center distance.
Then we study symmetric ring overlap area profiles, which
can be derived in closed-form directly from overlap areas.
With the analytical results from the disks and symmetric
rings, we further our study to asymmetric rings in order to
find the optimal patterns. From the results of such a series
of shapes, we can derive some general design rules for the
construction of optimal shapes.

A. Basic shapes

Definition 1: Disk: a disk shape is defined as D(c, r)
with center c and radius r.

Definition 2: Ring: a generalized ring is defined as
R(Db,Ds) with outer bigger disk Db and inner circular
cutout Ds.

The parameters for generalized rings (Fig. 5) include
(rb, rs, a), with rb and rs as the radii of Db and Ds re-
spectively and the offset a =|| cb − cs || as the distance
between the disk centers. As the small disk has to be in-
cluded in the large one, the condition rb ≥ rs + a must
be satisfied. When offset a = 0, i.e. cb = cs, the rings are

Fig. 5. The parameters of a generalized ring shape.

referred to as symmetric rings. Otherwise they are called
asymmetric rings.

B. Disk-disk overlap area and its derivatives

Definition 3: Overlap area A(P1, P2) denotes the inter-
section area between two different geometric shapes P1 and
P2.

When the two patterns are disks (D1 and D2), the in-
tersection area between them depends only on the distance
b =|| c1 − c2 || between their centers. As shown in Fig. 6,
the overlap area is the shaded area, which is the addition
of two lens-shapes. Suppose the two circular shapes are
D1 and D2 with their radii of r1 and r2 respectively. The
intersection area can be calculated as:

Fig. 6. The overlap area between two disks.

Proposition 1:

A(D1,D2) =

⎧⎪⎪⎪⎪⎪⎨
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2), for 0 ≤ b ≤| r1 − r2 |
(2)

Definition 4: F (P1, P2) denotes the derivative of overlap
area of two patterns P1 and P2 in terms of b.

When the two patterns are disks (D1,D2), it can be cal-
culated as:

Corollary 1:

F (D1,D2) =
dA(D1,D2)

db

=

⎧⎪⎨
⎪⎩
−
√

(−b+r1+r2)(b+r1−r2)(b−r1+r2)(b+r1+r2)

b ,
for | r1 − r2 |< b < r1 + r2

0, otherwise
(3)

The derivative F (D1,D2) is basically the length of the in-
tersecting segment between two disks.

When two disks D1 and D2 are of same size, i.e. r1 =
r2 = r, the overlap area and its derivative are as follows:

Corollary 2:

A(D1,D2) =

⎧⎨
⎩

− b
2

√
4r2 − b2 + 2r2 arccos( b

2r ),
for 0 ≤ b < 2r
0, for b ≥ 2r

(4)

Corollary 3:

F (D1,D2) =
{ −√

4r2 − b2, for 0 < b < 2r
0, otherwise

(5)

C. Ring-ring overlap area and its derivatives

Suppose the two generalized rings R1(D1b,D1s) and
R2(D2b,D2s) are identical, i.e. r1b = r2b = rb and r1s =
r2s = rs. To describe the relative pose between them, we
use a triplet: (b, θ, γ) in the polar coordinate system, shown
in Fig. 7. Here, b is the magnitude of vector −−−→c1bc2b and θ is
the polar angle of −−−→c1bc2b in the domain of 0 ≤ θ < 2π. The
relative orientation between the two rings is represented by
γ, with 0 ≤ γ < 2π. The overlap area between them can
be decomposed into four parts (Fig. 8) as follows:

A(R1, R2) = | R1 ∩ R2 |
= | D1b ∩ D2b | + | D1s ∩ D2s |
− | D1b ∩ D2s | − | D1s ∩ D2b | (6)



Fig. 7. The parameters to describe the intersection between two
identical rings R1(D1b, D1s) and R2(D2b, D2s).

It can be calculated from four disk-disk intersection areas:

Fig. 8. The intersection between two identical rings can be decom-
posed into four different disk-disk intersections.

Proposition 2:

A(R1, R2) = A(D1b,D2b) + A(D1s,D2s)
− A(D1b,D2s) − A(D1s,D2b) (7)

Since the overlap area of two disks only depends on their
distance, the distances (Figs. 9(a)-(d)) between different
circular shapes are calculated to find the overlap area:

Fig. 9. The four components of the ring-ring overlap areas are inter-
sections between different circular shapes with centers of c1b, c2b, c1s

and c2s respectively. (a) Intersection between c1b and c2b. (b) The
intersection between c1s and c2b. (c) The intersection between c1b

and c2s. (d) The intersection between c1s and c2s.

|| c2b − c1b ||= b

|| c2b − c1s ||=
√

a2 + b2 − 2ab cos(θ)

|| c2s − c1b ||=
√

a2 + b2 + 2ab cos(γ − θ)
|| c2s − c1s ||=√

(2a sin(γ/2))2 + b2 − 4ab sin(γ/2) sin(γ/2 − θ) (8)

Fb(R1, R2), Fθ(R1, R2) and Fγ(R1, R2) denote the
derivatives of the overlap area between R1(D1b,D1s) and
R2(D2b,D2s) in terms of b, θ and γ, respectively.

By substituting b’s in Eq. 2, Eq. 4, Eq. 7 with the dis-
tances obtained in Eq. 8, we can express the overlap area
in terms of (b, θ, γ). The first order derivatives in terms of
b for each term in Eq. 7 can be simply derived as:

Proposition 3:

Fb(R1, R2) = FD1bD2bb + FD1sD2sb − FD1bD2sb − FD1sD2bb

FD1bD2bb = F (D1b,D2b)

FD1sD2bb = F (D1s,D2b)
d(

√
a2 + b2 − 2ab cos(θ))

db

FD1bD2sb = F (D1b,D2s)
d(

√
a2 + b2 + 2ab cos(γ − θ))

db
FD1sD2sb = F (D1s,D2s)

d(
√

(2a sin(γ/2))2 + b2 − 4ab sin(γ/2) sin(γ/2 − θ))
db

(9)
The first order derivatives in terms of θ for each term in

Eq. 7 are:

Fθ(R1, R2) = FD1bD2bθ + FD1sD2sθ − FD1bD2sθ − FD1sD2bθ

FD1bD2bθ = 0;

FD1sD2bθ = F (D1s,D2b)
d(

√
a2 + b2 − 2ab cos(θ))

dθ
;

FD1bD2sθ = F (D1b,D2s)
d(

√
a2 + b2 + 2ab cos(γ − θ))

dθ
;

FD1sD2sθ = F (D1s,D2s)

d(
√

(2a sin(γ/2))2 + b2 − 4ab sin(γ/2) sin(γ/2 − θ))
dθ

(10)

The first order derivatives in terms of γ for each term in
the Eq. 7 are:

Fγ(R1, R2) = FD1bD2bγ + FD1sD2bγ − FD1bD2sγ − FD1sD2sγ

FD1bD2bγ = 0
FD1sD2bγ = 0

FD1bD2sγ = F (D1b,D2s)
d(

√
a2 + b2 + 2ab cos(γ − θ))

dγ

FD1sD2sγ = F (D1s,D2s)

d(
√

(2a sin(γ/2))2 + b2 − 4ab sin(γ/2) sin(γ/2 − θ))
dγ

(11)

With the geometric analysis of the ring-ring overlap area
and its derivatives, we can establish geometric models to
find optimized binding site designs.

IV. Optimal Ring Shape Design

In this section, we first derive the sufficient condition for
optimal patterns. We then study symmetric ring shapes.
As a result, optimal symmetric rings are found, which can
ensure a unique global maximum in overlap area for all po-
sitions. However, symmetric rings have no preference in
orientation. In order to achieve a unique alignment pose,
asymmetric rings are studied. Two feasible solutions are



derived to satisfy the optimization condition, and corre-
spondingly two classes of optimal asymmetric rings are ob-
tained.

A. Optimization objective and condition

As discussed above, an optimal pattern should allow only
one energy minimum for all poses (b, θ, γ) between two geo-
metric patterns. Therefore, the corresponding overlap area
should have only one maximum. A sufficient condition for
such designs is that regardless of the part’s initial pose,
there should exist a motion path, by following which the
overlap area monotonically increases until the global max-
imum is reached. In the following sections, we discuss the
possible paths satisfying this condition. To assure the ex-
istence of such paths, we derive the geometric constraints
for different ring shapes including symmetric and asym-
metric. Therefore, by finding the ring shapes satisfying the
constraints, we can obtain a group of optimal rings.

B. Symmetric rings

With offset a = 0, the overlap area between two sym-
metric rings depends exclusively on their distance b, not θ
or γ. Symmetric rings might have local maxima in over-
lap area [18] depending on the ratio rs/rb. Here, we ana-
lyze different ring configurations (rs/rb) based on our op-
timization model, and obtain quantitative results for opti-
mized symmetric rings. Illustrations of the overlap area of
R1(D1b,D1s) and R2(D2b,D2s) and its derivatives in terms
of b are shown in Fig. 10. A sufficient condition for the ring

Fig. 10. (a) The overlap area profile between two identical symmet-
ric rings R1(D1b, D1s) and R2(D2b, D2s). Different terms plotted in
different colors denote the overlap areas of different disks. (b) The
overlap area derivatives of with respect to b terms.

shape for having a unique maximum is

Theorem 1: The symmetric rings have unique overlap
area maximum when the ratio between the inner disk ra-
dius and outer disk radius is no more than

√√
108/2 − 5.

The proof of this theorem is based on the sufficient condi-
tion that there must exist a continuous path, along which
b decreases and overlap area increases. In other words,
the derivative in terms of b: Fb(R1, R2) = F (D1b,D2b) +
F (D1s,D2s)−F (D1b,D2s)−F (D1s,D2b), has to be no more
than zero in the domain of 0 ≤ b ≤ 2rb. The different over-
lap area terms and their derivatives are shown in Fig. 10.
From Fig. 10(b), we can see that F (D1b,D2s)+F (D1s,D2b)
in the domains of (0, rb − rs] and [rb + rs, 2rb) are zero. In
addition, the maximum of the derivatives is in the domain
of [

√
r2
b − r2

s , rb +rs). The sufficient condition is equivalent
to that the derivative in the domain of [

√
r2
b − r2

s), rb + rs)
has to be no more than zero:

F (D1b,D2b) − F (D1b,D2s) − F (D1s,D2b)

= −
√

4r2
b − b2+

2
√

(−b + rb + rs)(b + rb − rs)(b − rb + rs)(b + rb + rs)
b

≤ 0,

for
√

r2
b − r2

s ≤ b < rb + rs (12)

The solution to Eq. 12 is rs ≤
√√

108/2 − 5rb, with
numerical approximation of rs ≤ 0.442891rb. The rings
satisfying this constraint will have a unique alignment po-
sition.

C. Asymmetric rings

For the asymmetric rings, the configurations include the
ratios of rs/rb and a/rb. With the inner cutout and outer
disk not being concentric, both the orientation parameters
θ and γ have to be considered for analysis. A parametric
overlap derivative profile (γ = π) in terms of b and θ is
shown in Fig. 11. From the profiles, we can see there exists

Fig. 11. An example of the overlap derivative profile for asymmetric
ring shape. (a) Three-dimensional plot. (b) Intensity plot with color
representing the derivative values.

a maximum derivative for any given (θ, γ). Such maxima



decrease from θ = 0 to θ = π at γ = π (Fig. 11(b)). From
Eqs. 8 and 9, we can derive their lower bound at (θ = π,
γ = π) and upper bound at (θ = 0, γ = π). Therefore, we
have:

Proposition 4: If the maximal derivative at (θ = 0, γ =
π) is smaller than zero, all the derivatives are smaller than
zero and the overlap function will have a unique global
maximum.

Proposition 5: If the maximal derivative at (θ = π, γ =
π) is greater than zero, all the maxima at other orientations
will be greater than zero and the overlap area will have local
maxima.

With the sufficient condition for an optimal design: the
existence of a motion path monotonically decreasing the
overlap area, we construct two such motion paths from
Proposition 4 and Proposition 5:
1. Motion path I (Fig. 12): translation and rotation. As il-
lustrated in Fig. 12(a), one ring moves toward the center of
the other until concentric, and during this movement the
overlap area increases. Though two rings are concentric,
they might not be aligned (Fig. 12(b)) and the ring will
rotate until they are perfectly aligned (Fig. 12(c)) corre-
sponding to maximum overlap area.

Fig. 12. Constructed path I. (a) The part approaches the fixed
binding site with the derivative smaller than zero until their centers
coincide. (b) The part then rotates till (c) perfect alignment.

2. Motion path II (Fig. 13): translation, rotation, transla-
tion and rotation. This motion path includes four different
movements: first one ring translates toward the other un-
til the overlap area no longer increases (Fig. 13(a)); the
ring then rotates until the overlap area no longer increases
(Fig. 13(b)); the next two movements are the same to those
in motion path I, including translation and rotation shown
in Figs. 13(c) and (d). Finally, the maximum overlap area
is reached as shown in Fig. 13(e).
In summary, motion path I imposes stricter constraints on
the rings, while motion path II is a less strict constraint for
asymmetric rings to reach perfect alignment. The following
sections are dedicated to analyze the different situations in
order to find the solutions.

C.1 Motion path I

If paths in the motion path I category exist, they have
to satisfy two conditions:
1. There is only one overlap maximum at b = 0, regardless
of the values of θ and γ.

Fig. 13. Constructed path II. (a) The part approaches the fixed
binding site till the derivative is greater than zero. (b) The part then
rotates along the center of the fixed binding site until the maximum
overlap area is achieved. (c) The part then moves towards the center
of the binding site till their centers coincides. (d) The part then
rotates till (e) perfect alignment.

2. When b = 0, there is only one overlap maximum at
γ = 0.

In order to satisfy the first condition of unique maxi-
mum at b = 0, the overlap derivatives in terms of b have
to be non-negative for all possible θ and γ. From Propo-
sition 4, such condition is satisfied when the derivatives
are negative at (θ = 0, γ = π) as shown in Fig. 12(a).
The derivative consists of four different terms, illustrated

Fig. 14. The four terms of the first order overlap area derivative with
respect to b.

in Fig. 14. From similar arguments in the symmetric ring
section, we can derive the following inequality in the do-
main of

√
r2
b − r2

s + a < b < rb + rs + a:

−
√

4r2
b − b2 −

√
4r2

s − (b − 2a)2

+
2
√

(a − b + rb + rs)(b − a + rb − rs)
b

×
√

(b − a − rb + rs)(b − a + rb + rs) ≤ 0,

when
√

r2
b − r2

s + a < b < rb + rs + a (13)



Numerical solutions are obtained to Ineq. 13 and shown
in Fig. 15(a). Each point in the plot of Fig. 15(a) is the
solution to Ineq. 13, with the horizontal axis denoting the
ratio of rs/rb and vertical axis of a/rb .

From the second condition, we have that the first deriva-
tive of γ is non-positive, when b = 0 and the rotation angle
γ is in the range of [0, π] (Fig. 12(c)).

FD1sD2sγ − FD1bD2sγ ≤ 0,when b = 0, θ = 0 and 0 ≤ γ ≤ π.

From Eq. 11, we have

FD1sD2sγ = −
√

4r2
s − 4a2 sin(γ/2)2a cos(γ/2)

when b = 0, θ = 0 and 0 ≤ γ ≤ π. (14)

FD1bD2sγ = F (D1b,D2s)
d(

√
a2 + b2 + 2ab cos(γ − θ))

dγ
= 0,

when b = 0, θ = 0 (15)

Therefore, Ineq. 14 can be simplified as

FD1sD2sγ = −
√

4r2
s − 4a2 sin(γ/2)2a cos(γ/2) ≤ 0,

when b = 0, θ = 0 and 0 ≤ γ ≤ π. (16)

The solution to Ineq. 16 is
4r2

s − 4a2 sin(γ/2)2 ≥ 0, as a cos(γ/2) ≥ 0,when 0 ≤ γ ≤
π.
Therefore we have a ≤ rs, which means the inner circular
cutout must include the center of the large circle. By com-
bining both of the solutions for the translation and rotation
conditions, we have the solutions as plotted in Fig. 15(b).

Fig. 15. Numerical solutions satisfying two constraints of motion
path I. (a) Solutions to the first condition. (b) Solutions to both of
the conditions.

In addition, we evaluate each feasible solution (rs, a) by
calculating the maximal derivative Fbmax(R1, R2) for all
feasible b in the domain of (

√
r2
b − r2

s + a, rb + rs + a). As
in Fig. 16, each point in the surface represents a triplet
(rs/rb, a/rb, Fbmax(R1, R2)) with the feasible solution of
(rs/rb, a/rb) and the corresponding maximum derivative
value of Fbmax(R1, R2) with rb = 1.

C.2 Motion path II

In this section, we analyze paths in the motion path II
category, which include four different movements. This

Fig. 16. Evaluations of solutions to motion path I. The function value
corresponding to each point (rs/rb, a/rb) is the maximal overlap area

derivative with respect to b in its domain of (
√

r2
b − r2

s +a, rb+rs+a).

(a) Solutions to the first condition. (b) Solutions to both of the
conditions.

path is derived from Proposition 5: the lower bound of the
maximal derivatives at (θ = π, γ = π) has to be smaller
than zero. Otherwise, there is no translation path that
leads toward the binding site center and local maxima in
overlap exist.

As illustrated in Figs. 13(a) and (b), the part can al-
ways reach the position shown in Fig. 13(c), as the overlap
area reaches its maximum in terms of θ and γ. There-
fore, to achieve the final perfect alignment, the overlap area
must keep increasing during the movements illustrated in
Fig. 13(c) and (d), which leads to two constraints:
1. The first order derivative of b is negative, when the part
approaches from the thickest edge of the ring (Fig. 13(c)).

FD1bD2bb + FD1sD2sd − FD1bD2sb − D1sD2bb ≤ 0 (17)

2. When b = 0, there is only one overlap maximum at
γ = 0 (Fig. 13(d)). This condition is exactly the same as
the second condition in Path I, with the solution to it as
a ≤ rs.

The numerical solution of (rs/rb, a/rb) for the first con-
dition is shown in Fig. 17(a). By combining both of the so-
lutions to the translation and rotation conditions, we have
the solutions as plotted in Fig. 17(b).

Fig. 17. Numerical solutions to motion path II. (a) Solutions to the
first condition. (b) Solutions to both of the conditions.

In addition, we evaluate each feasible solution
rs/rb, a/rb, by calculating the maximal derivative Fbmax(R1, R2)
for all feasible b in the domain of (

√
r2
b − r2

s −a, rb+rs−a).



Fig. 18. Evaluations of solutions to motion path II. The function
value corresponding to each point (rs/rb, a/rb) is the maximal overlap

area derivative with respect to b in its domain of (
√

r2
b − r2

s − a, rb +

rs − a). (a) Solutions to the first condition. (b) Solutions to both of
the conditions.

As in Fig. 18, each point in the surface represents a feasible
solution pair of (rs/rb, a/rb) with the evaluation value of
Fbmax(R1, R2).

By comparing solutions to motion path I and II, we ob-
serve the solutions to path II actually include those of path
I due to the fact that the constraints on path I is stricter
than those on path II.

V. Summary and conclusions

In this paper, we have discussed an optimization model of
binding site design for surface-tension driven self-assembly
techniques. We use a first order approximation model to
simulate the surface energy by calculating overlap area.
Based on the simulation results, we investigate a method
to find optimal geometric shapes for alignment by using
composite shapes. An analytical model is derived for sim-
ple composite shapes: rings. By using a constructive opti-
mization method, we can decide the configurations of the
rings in order to achieve unique alignment results.

From the results of optimizations, we have:
• Symmetric rings with the constraint rs ≤ 0.442891rb

achieve perfect alignment.
• We can generalize this results for symmetric rings. Any
disk with a cutout pattern that can be enclosed in a circle
with radius r ≤ 0.442891rb, with rb as the disk radius, can
reach perfect alignment.
• Asymmetric rings that satisfy the constraints shown in
Fig. 17 and Fig. 15 are optimal.

In practice, experiments are performed to test these de-
signs [20], and accordant results have been obtained. In
conclusion, these geometric binding site design methods
have provided solutions to achieve unique alignment for
self-assembly techniques. The results from this work will
help us gain more general insights into this technique, with
the intention to understand and optimize the self-assembly
process and to improve the assembly yield for microsystem
integration.
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and K. F. Böhringer, “Capillary forces in micro-fluidic self-
assembly,” in Fifth International Conference on Modeling and
Simulation of Microsystems (MSM’02), San Juan, Puerto Rico,
USA, April 22-25, 2002.

[16] J. Lienemann, A. Greiner, J. G. Korvink, X. Xiong, Y. Hanein,
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