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Abstract - In digital microfluidic systems, analyte droplets 
(volume typically less than 1µl) are transported across a planar 
electrode array by dielectrophoretic or electrowetting effects. 
This paper outlines a high-level approach to optimally control 
digital microfluidic systems, i.e., to develop efficient algorithms 
that generate a sequence of control signals for moving one or 
many droplets from start to goal positions in the shortest number 
of steps, subject to constraints such as minimum required 
separation between droplets, obstacles on the array surface, and 
limitations in the control circuitry. However, optimality may be 
prohibitive for large-scale configurations because of the high 
asymptotic complexity. Alternative solutions include (1) an 
investigation of still useful but more limited system 
configurations; and (2) approximation algorithms that trade off 
optimality of the control sequences with higher efficiency of the 
algorithms that generate these control sequences.  

Keywords - digital microfluidics; droplet manipulation; control 
strategy; lab on a chip. 

I. INTRODUCTION 
Advances in microfabrication and microelectromechanical 

systems (MEMS) over the past decades have lead to a rapidly 
expanding collection of techniques to build systems for the 
handling and analyzing of very small quantities of liquids (see, 
e.g., [1]). These microfluidic systems typically consist of sub-
millimeter scale components such as channels, valves, pumps, 
and reservoirs, as well as application-specific sensors and 
actuators. Microfluidic devices hold great promise, for example 
for novel fast, low-cost, portable, and disposable diagnostic 
tools. Applications include the massively parallel testing of 
new drugs, the on-site, real-time detection of toxins and 
pathogens, and PCR (polymerase chain reaction) for DNA 
sequence analysis. They usually operate with continuous flows 
of liquids, in analogy to traditional macro-scale laboratory set-
ups, and integrate all functionality into complete “bio-systems-
on-a-chip (bioSOCs)”. 

A. Digital Microfluidic Systems 
More recently, there has been increased interest in 

microfluidic devices that handle discrete droplets, with 
volumes usually in the sub-microliter range. In these “digital 
microfluidic systems” (DMFS), droplets are generated, 
transported, merged, analyzed, and disposed on planar arrays of 

addressable cells. This architecture for microfluidic systems is 
attractive because of (1) greater flexibility – analyte handling 
may be reconfigured simply by re-programming rather than by 
changing the physical layout of the microfluidic components; 
(2) high droplet speeds – reportedly up to 25cm/s [2]; (3) no 
dilution and cross-contamination due to diffusion and shear-
flow; and (4) the possibility for massively parallel microfluidic 
circuits.  

B. Droplet Transport 
Small droplets can be moved across a planar surface 

effectively with a variety of techniques, for example with 
electric fields (e.g., [2-6]), the thermocapillary effect (e.g., [7]), 
electrochemical surface modulation (e.g., [8]), or 
conformational changes in molecular surface layers (e.g., [9]). 
For the work in this paper, droplet transport with electric fields 
is most suitable; hence we briefly discuss the two main 
techniques in this realm. 

1) Dielectrophoresis 
In dielectrophoresis (DEP), neutrally charged objects are 

first polarized by an electric field, and then experience a net 
force due to the field. This force can only be non-zero if a field 
gradient exists, i.e., the positively and negatively polarized 
regions of the object occupy areas of different field strengths. If 
the object has stronger polarization than the surrounding 
medium then it is pulled towards the areas of higher field 
strength (this is called positive DEP), but if the surrounding 
medium has higher polarization, then the object is pushed 
towards areas of lower field strength (negative DEP). DEP can 
be considered the electrostatic analogy of induced magnetism. 
Common examples for DEP are charged clothes that attract 
(neutral) lint particles. More information on dielectrophoresis 
can be found, e.g., at [10]. 

2) Electrowetting 
Electrowetting on dielectric (EWOD) exploits the decrease 

of contact angle that an aqueous droplet on a dielectric surface 
experiences when exposed to an electric field. If the field is 
localized at only one side of the droplet, then the difference in 
contact angle causes a pressure differential in the droplet, 
which drives it towards the region of higher field strength. 
Electrowetting and its applications in microfluidics have been 
investigated by several groups, including [2-4, 6]. 
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C.  Examples 
Figure 1 presents examples of control strategies for a 

simple digital microfluidic system. On a 10×10 array, a single 
droplet must be moved from cell (2,2) to cell (9,9). Figure 1a 
shows an optimal strategy consisting of 14 steps. In the system 
in Figure 1b, “forbidden” cells marked as black squares must 
be circumnavigated, resulting in a slightly longer solution 
sequence. In this paper, we describe how these solutions can be 
generated automatically, and generalize the approach to more 
complex scenarios with multiple moving droplets and 
additional constraints stemming from the specific physical 
implementation of the DMFS. 

D. Paper Overview 
The goal of this paper is to generate optimal sequences of 

control signals to move droplets from start to goal positions in 
the shortest number of steps. With growing array size and 
number of droplets, this becomes increasingly challenging: 
closely related optimizations are the traveling salesman 
problem, VLSI circuit routing, factory floor plan layout, 
resource scheduling, and motion planning with multiple 
moving robots, which are known to be computationally 
expensive (i.e., NP-hard [11]). Section II summarizes related 
work. Section III gives a more formal problem definition. 
Algorithms to control DMFS are discussed in Section IV, and 
examples applicable to different DMFS hardware 
configurations are presented in Section V. Section VI 
summarizes the paper, and gives conclusions and an outlook on 
future work. 

II. RELATED WORK 
Finding the optimal plan to generate, store, move, merge, 

split, and dispose multiple droplets on a digital microfluidic 
array is a complex problem, which combines general path 
planning and scheduling tasks with the more application-
specific tasks of droplet generation, merging, and splitting. 
Various researchers have studied parts of the overall problem 
and have shown important results on algorithmic solutions and 
their computational complexity.  

Each droplet can be interpreted as a point robot moving in a 
discrete two-dimensional configuration space. Under this 
assumption, path planning of the droplets becomes a robot 
motion planning problem with multiple moving robots. 
Erdmann and Lozano-Pérez showed in 1987 that this problem 
is NP-hard, but presented an algorithm that may find a good 
solution in polynomial time [12]. This approach assigns 
priorities to each robot (droplet) and generates paths 
successively, starting with the highest priority robot. Lower 
priority robots consider higher priority robots as time-varying 
obstacles that must be avoided. The algorithm is not complete, 
and generated solutions depend on the priority ranking of the 
robots and may not be optimal. 

A rather different approach to this problem can be taken 
when the paths of the droplets are considered given a priori. 
Under this assumption, we obtain a scheduling problem, where 
the array cells en route are the limited resource that must be 
shared among different droplets. Recently, Akella et al. 
attacked this problem, again from the point of view of multiple 
coordinated robots. The problem is formulated as an integer 
programming problem, which can be solved with standard 
optimization tools [13, 14]. 

A similar technique was used by Ding, Zhang, et al. [15-17] 
who attack the problem from the VLSI design perspective. 
Again, the problem leads to an integer programming 
formulation, which is essentially equivalent to Akella’s 
approach. Both groups show NP-hardness of the scheduling 
problem even for fixed robot (droplet) routes. 

VLSI circuit routing techniques could also be employed, 
which address the path planning problem but do not apply 
directly to the inherently two-dimensional layout of the digital 
microfluidic platform. 

In [18], this author described the problem as a graph search, 
and suggested search techniques such as A*. Even though this 
brute-force approach, unlike the other work mentioned above, 
guarantees optimality and completeness, it is not practical for 
larger scale problems because of its computational complexity, 
which is exponential in the number of moving droplets. 

While it is not within the scope of this paper to develop a 
comprehensive algorithmic solution for the general problem of 
droplet manipulation on massively parallel microfluidic 
systems, we will attempt to present a formal problem definition 
and algorithms for partial solutions, and point in the direction 
of more general solutions for future work. 

(a)  

(b)  

Figure 1.  (a) Droplet moving on a 10×10 array from cell (2,2) to cell (9,9). 
The trace of the droplet is shown, with darker color indicating earlier steps. 

(b) Droplet moving from cell (2,2) to (9,9) while avoiding obstacles 
(“forbidden” cells shown in black). Here, an optimal strategy requires 16 

steps, two more than in (a). 
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III. DMFS HARDWARE SPECIFICATION AND  
FORMAL PROBLEM DEFINITION 

Let us first specify the important physical properties and 
design parameters of a digital microfluidic system. Then we 
can move on to a more abstract DMFS model that is 
independent of specific implementation details. 

A. DMFS Design Specifications 
• Layout: Typically, a DMFS consists of a rectangular array 

A with m×n cells (but, e.g., an arrangement of hexagonal 
cells is also possible).  

• Control circuitry: Various addressing schemes are possible 
to activate individual cells in a DMFS. We can distinguish, 
e.g., individually addressable electrodes for each cell, or 
simpler row/column addressing. For the latter, entire rows 
and columns are activated, and the droplet is attracted to a 
neighboring cell A(x,y) only if it lies at the intersection of 
active column x and row y. 

• Parallelism: Does the DMFS controller allow simultaneous 
activation of more than one cell, and is the total number of 
active cells limited by a number significantly smaller than 
m×n? 

• Location of cells with special functions: Droplet 
generators, reservoirs, cells for merging and splitting of 
droplets, sensors, waste, etc. may require dedicated cells 
with special embedded hardware.  

These specifications provide a physical framework within 
which a DMFS can operate. Based on this framework, we can 
establish a formal description of the problem of controlling 
droplets in a DMFS. Once a sufficiently general DMFS model 
exists, we can investigate algorithmic solutions at an abstract 
level, without worrying about the specific details of varying 
hardware implementations. 

B. Problem Definition 
A digital microfluidic system is given by an array A with d 

droplets, their start locations, and their goal locations. Our aim 
is to automatically generate a strategy to move the droplets 
from start to goal (as shown, e.g., in Figure 1). More 
specifically, droplets can be of several types Ti (e.g., T1 = “DI 
water”, T2 = “buffer solution”, etc.), with i ∈ {1…t}, and t the 
total number of different droplet types.  

Each cell A(x,y) in the array can be either occupied by a 
droplet (denoted as “Ti”), empty (“∅”), or blocked by an 
obstacle (“X”). Thus, at any given time the system can be 
described by A(x,y) = cxy  for  (x,y) ∈ {1…m}×{1…n}  and  cxy 
∈ C = {T1,…,Tt,∅,X}. In particular, given a start placement As 
∈ Cm×n and a goal placement Ag ∈ Cm×n, we need to find a 
sequence of valid transitions that results in the desired droplet 
motion from As to Ag. 

Various kinds of transitions exist, including droplet 
generation, moving, disposing, merging, and splitting. 

• Droplet generation: For (x,y) ∈ {1…m}×{1…n} and some 
i ∈ {1…t}, a droplet is generated at coordinate (x,y) if 

A(x,y) = ∅ at time t and A(x,y) = Ti at time t+1. 

• Moving: Let (x,y) and (x',y') ∈ {1…m}×{1…n} and |x–x'| 
+ |y–y'| = 1 (i.e., A(x,y) and A(x',y') are directly adjacent). 
At time t, A(x,y) = Ti and A(x',y') = ∅ and at time t+1, 
A(x,y) = ∅ and A(x',y') = Ti.  

• Merging: Let again (x,y) and (x',y') ∈ {1…m}×{1…n} and 
|x–x'| + |y–y'| = 1. At time t, A(x,y) = Ti and A(x',y') = Tj, 
and at time t+1, A(x,y) = Tk and A(x',y') = ∅, where Tk is 
the droplet type that results in merging types Ti and Tj. 

• Splitting: Definition similar to merging. 

• Disposing: Definition similar to droplet generation. 

In addition, to avoid accidental merging of droplets, at least one 
empty cell is required between two occupied cells at all times. 
Transitions are further restricted by the addressing circuitry and 
cells with specialized functions. 

IV. DMFS CONTROL STRATEGIES 
This section focuses on a limited but important subproblem 

in the control of DMFS: generating efficient paths for multiple 
droplets that move from a given start configuration As to a 
desired goal configuration Ag. We will first give a simple, 
complete algorithm based on A* search, but find that its 
computational complexity is very high (exponential in number 
of droplets). We then present a more efficient algorithm that 
trades off completeness for faster execution times. 

A. Basic Algorithm Outline 
This algorithm maintains a graph data structure to represent 

the array (inclusive special cells and obstacles) and to keep 
track of droplet locations. At any given time ti, the state of the 
DMFS is described by Ai ∈ Cm×n, representing a node in the 
graph. Transitions between states define edges in this graph, 
and finding an optimal control strategy to transform start state 
As into goal state Ag becomes a standard graph search problem, 
which can be solved, for example, using an A* algorithm 
known from artificial intelligence programming [19]: A* graph 
search employs a metric that estimates the expected cost of a 

Figure 2.  Three droplets with respective start and goal positions (indicated by 
S and G). The number of choices grows exponentially with the number of 

droplets. At any time there are up to 43 choices for the next step, and at least 12 
steps are required to move all droplets simultaneously from start to goal. 

Hence, straightforward programming could produce software attempting to 
explore (43)12 > 1028 choices. 
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partial solution path in the directed graph. This estimate 
provides a heuristic that gives preference to the more promising 
paths. It can be shown that if certain “admissible” metrics are 
used, then A* is guaranteed to find an optimal solution if one 
exists, and indicates failure otherwise. 

The downside of this approach is its high asymptotic 
complexity. Suppose the number of droplets is d. In the 
simplest case, all are of the same type T0. Then the number of 
different placements of droplets on the array is )(mn

d , which for 
modest numbers m=n=10 and d=10 yields more than 1.7×1013 
possibilities. If all droplets are of distinct type T1 … Td, this 
number increases by d! (to ≈3×1019). One might hope that in 
practice, most of these choices need not be explored. However, 
at each step, d droplets offer up to 4d choices to be moved, 
assuming 4 neighbor cells per droplet. Thus, finding a strategy 
with s steps could mean checking up to (4d)s choices or risk 
missing the solution, resulting again in astronomical numbers 
even for s<10. This is illustrated in Figure 2. 

We conclude that the search graph explored with the A* 
algorithm has O((mn)!) nodes and a branching factor of O(4s), 
leading to prohibitive complexity for any non-trivial array size 
with more than a few droplets. 

B. Prioritized Droplet Control 
The discussion above has shown that droplet motion 

planning for DMFS has two main aspects: generating efficient 
droplet motion plans, and finding efficient algorithms to 
generate these plans. Because of the inherent complexity of the 
problem, compromises need to be made to obtain practical 
solutions, and completeness or optimality in motion plans has 
to be traded off with efficiency in plan generation. 

This section applies ideas from Erdmann and Lozano-Pérez 
[12] to DMFS control. The algorithm proceeds as follows: 

(1) Assign priorities to each droplet in the DMFS. This can be 
done at random, or based on application-specific 
guidelines (e.g., water may have lower priority than 
droplets containing expensive or volatile compounds). 

Figure 3.  Optimal solution to the setup in Figure 2 by the prioritizing 
algorithm. The blue droplet was assigned highest priority and an optimal 
motion (12 steps) was generated. The yellow droplet requires 9 steps and 

moves over cell (2,2) previously occupied by the blue droplet. The red droplet 
does not interfere with the other droplets in this case.  

(a)  

(b)  

(c)  

(d)  

(e)  
Figure 4.  (a) Four droplets moving simultaneously from start S1=(1,1), 
S2=(16,1), S3=(8,16), S4=(16,8) to goal G1=(16,16), G2=(1,16), G3=(8,1), 

G4=(1,8).   (b-e) Individual paths (with time stamps) for droplets 1 through 4 in 
decreasing order of priority. Solutions generated with sequential prioritized A* 

algorithm. 
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(2) For each droplet, starting with the highest priority, 
generate an optimal motion plan. Droplets with higher 
priorities are considered time-dependent obstacles. 
Droplets with lower priorities are ignored. 

This algorithm eliminates the exponential complexity in d, 
where d is the number of droplets in the DMFS. Instead, as the 
complexity of the A* algorithm for path planning of a single 
droplet is O(nmlog(nm)), the complexity to determine d droplet 
paths with this sequential prioritized approach is simply 
O(dnmlog(nm)). However, as stated above, this algorithm is 
neither complete, nor are the generated paths necessarily 
optimal. Figure 3 gives an example of this algorithm for the 
start and goal configurations of Figure 2. 

Figure 4 shows a more extensive example of this algorithm. 
On a 16×16 array with randomly distributed obstacles, four 
droplets are initially placed at (1,1), (16,1), (8,16), and (16,8). 
Their respective goals are at (16,16), (1,16), (8,1), and (1,8). 
Figure 4a shows the simultaneous trace of all droplets. Figures 
4b-e depict the individual traces for each of the four droplets. 
We can observe that the two droplets with the highest priorities 
(Figures 4b and 4c) achieve an optimal path with 31 steps each. 
Droplet 3 (Figure 4d) has to evade droplets 1 and 2 and 
therefore turns left in steps 10 and 13, instead of choosing the 
shorter path towards the right. Similarly, droplet 4 (Figure 4e) 
would interfere with higher priority droplets, were it to travel 
on a more direct path towards its goal. 

The solution in Figure 4 was generated in a few seconds by 
a simple MATLAB implementation 
of this algorithm. 

In the following section we 
show more examples performed 
with variations of this algorithm. 
They include multiple droplets, 
obstacles, and constraints on the 
control circuitry. Even though 
rather simple, these examples 
should summarize the basic 
principles of DMFS control 
strategies, and motivate ideas for 
improved algorithms, which will be 
summarized in Section VI. 

V. OTHER SAMPLE DROPLET 
MANIPULATION STRATEGIES 
 In this section we show two 

additional examples of optimal 
control strategies. In Figure 5 two 
droplets of different types require 8 
steps to switch their positions while 
circumnavigating an obstacle.  

This strategy assumes that the 
electrode in each cell can be 
activated independently from all 
other cells. The two droplets are 
always separated by at least one 
empty cell, such that accidental 
merging is avoided. Note that the 

darker droplet moves more than necessary (gratuitous steps 4 
and 5), but this does not affect the overall number of 8 steps in 
the control strategy. Future software improvements will 
eliminate this programming artifact. 

A. Limited Row-Column Addressing 
The previous examples (Figure 1-5) assumed that each cell 

in the array is individually addressable. However, [20] 
introduced a simpler addressing scheme for DMFS based on a 
top layer of row electrodes and a bottom layer of column 
electrodes. Droplets move to a neighboring cell whose row and 
column address has been activated. This scheme creates 
additional constraints on the droplet motion. Two droplets trade 
places as in Figure 5 above, but here droplets move only to 
cells whose row and column address has been activated 
(indicated by triangular arrows). An optimal strategy now 
requires 9 steps, one more step than in Figure 5. Figure 6 shows 
the same task as Figure 5 but performed only with row-column 
addressing, resulting in a longer sequence. 

Note that here we assumed that we can activate an arbitrary 
number of rows and columns simultaneously (for d droplets, up 
to d active rows and columns are useful). Further hardware 
constraints could limit this number, possibly to a single row 
and column. If so, longer control sequences could result, but 
the branching factor at each step would drop from O(4d) to 
O(d). 

 

 

 

Figure 5.  Two droplets moving simultaneously on a 6×6 array while avoiding an obstacle (black cells). The two 
droplets start at cells (5,2) and (4,5), and require 8 steps to trade places. Solution generated with complete multi-

droplet A* algorithm. 
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VI. CONCLUSIONS AND FUTURE WORK 
Digital microfluidic systems (DMFS) based on droplet 

manipulation are promising because of their flexibility and 
reconfigurability: they shift complexity from microfluidics 
hardware to control software.  

Droplet manipulation based on electrowetting on arrays 
with up to hundred cells has been demonstrated by several 
groups (e.g., [2, 20, 21]), and electrophoresis-based systems 
with integrated CMOS addressing include tens of thousands of 
cells [22]. Unfortunately, our investigations suggest that for 
such large-scale DMFS, the generation of optimal strategies for 
droplet manipulation may become computationally intractable. 
This raises the question whether DMFS can really live up to the 
promise of full programmability and reconfigurability. Instead 
of making full use of these advantages, the computational 
complexity may limit DMFS to much more constraint 
applications. 

In this paper, we have shown one possible answer to this 
challenge: Instead of insisting on optimal strategies, an 
algorithm that trades off completeness and optimality for 
polynomial run-time was presented. Motion planning for 
multiple simultaneously moving droplets is replaced with a 

sequence of motion planning tasks 
for individual droplets, whereby 
higher priority droplets are 
considered moving obstacles for 
lower-priority droplets. In our initial 
experiments, the resulting motion 
strategies are computed efficiently 
and are generally near-optimal. 
Future work will include a more 
rigorous analysis of this algorithm. 

Another possible answer could 
be to limit the droplet manipulation 
strategies to a few standard, “pre-
packaged” strategies. For example, 
on a 100×100 array, about 50 
droplets could move in parallel 
across the array, followed by 
another wave of 50 droplets, etc., 
resembling a “peristaltic” motion 
(Figure 7). However, in this case, 
the fundamental advantage of 
flexibility and reprogrammability in 
DMFS versus conventional 
microfluidic architectures (channel, 
valve, and pump based) is lost. In 
addition, the question still remains 
how to initially generate the “pre-
packaged” strategies if they involve 

more complex non-linear motions of many droplets. 

Thus, our goal is to find efficient algorithms for more 
general control strategies with DMFS. Towards this end, this 
paper presented a formal problem definition and several 
algorithms and examples. Future work can expand in the 
following directions: 

1. Polynomial approximation algorithms exist for NP-hard 
problems (e.g., traveling salesman), which guarantee a 
tight limit on non-optimality. If, e.g., a control strategy for 
a complex DMFS can be generated in polynomial time that 
is guaranteed to be at most twice as long as an optimal 
solution then this might be sufficient for most practical 
purposes. 

2. As suggested at the end of Section V, the branching factor 
for the graph search is greatly reduced if it is assumed that 
only one droplet can move at each step. Thus, even if the 
hardware allows simultaneous motion of droplets (e.g., 
with individually addressable cells), it may be more 
effective to first generate a motion plan consisting of 
single droplet moves, and then perform a post-processing 
step that “parallelizes” the plan as much as possible. At the 
moment, it is unknown whether the plans thus generated 

 

 

Figure 6.  Two droplets trading places as in Figure 5 above, but here droplets move only to cells whose row and 
column address has been activated (indicated by triangular arrows). An optimal strategy now requires 9 steps, 

one more step than in Figure 5. Solution generated with complete multi-droplet A* algorithm. 

Figure 7.  “Peristaltic” droplet motion on DMFS. In this simple example, groups of 3 droplets move in parallel along straight paths without any overlap. Every 
three steps, the pattern repeats.  
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would still be optimal, and whether the asymptotic 
complexity of the algorithm would improve. 

3. In practical systems, even if there are very large numbers 
of individual droplets, there may be only a rather small 
number of different types of droplets. The algorithms 
presented here do not take full advantage of this fact, even 
though it is believed that this could lead to a substantial 
decrease in the search space. The resulting algorithms 
might be significantly different from those presented in 
Section V, as there is no a priori correspondence between 
initial and final placement for each droplet within a set of 
droplets of a given type. 

4. Finally, extending the software to handle other common 
operations in DMFS, such as splitting and merging of 
droplets, is an important direction of future research. 

Our software is available at www.ee.washington.edu/ 
research/mems/digitalfluidics. 
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