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Part Orientation with One or Two Stable Equilibria
Using Programmable Force Fields
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Abstract—Programmable force fields are an abstraction to rep-
resent a new class of devices for distributed, nonprehensile manip-
ulation for applications in parts feeding, sorting, positioning, and
assembly. Unlike robot grippers, conveyor belts, or vibratory bowl
feeders, these devices generate force vector fields in which the parts
move until they may reach a stable equilibrium pose.

Recent research in the theory of programmable force fields has
yielded open-loop strategies to uniquely position, orient, and sort
parts. These strategies typically consist of several fields that have to
be employed in sequence to achieve a desired final pose. The length
of the sequence depends on the complexity of the part.

In this paper, we show that unique part poses can be achieved
with just one field. First, we exhibit a single field that positions and
orients any part (with the exception of certain symmetric parts)
into two stable equilibrium poses. Then, we show that for any part
there exists a field in which the part reaches a unique stable equilib-
rium pose (again with the exception of symmetric parts). Besides
giving an optimal upper bound for unique parts positioning and
orientation, our work gives further evidence that programmable
force fields are a powerful tool for parts manipulation.

Our second result also leads to the design of “universal parts
feeders,” proving an earlier conjecture about their existence. We
argue that universal parts feeders are relatively easy to build, and
we report on extensive simulation results which indicate that these
devices may work very well in practice. We believe that the results
in this paper could be the basis for a new generation of efficient,
open-loop, parallel parts feeders.

Index Terms—Equilibrium configuration, manufacturing,
MEMS, part orientation, programmable force fields.
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I. INTRODUCTION

PART manipulation is an important but also time-con-
suming operation in industrial automation. Parts and, in

particular, small parts arrive at manufacturing sites in boxes
and they need to be sorted and oriented before assembly.
Traditionally, part feeding and orienting has been performed
with vibratory bowl feeders ([48], for example). These devices
are customly designed for the orientation of a single part or a
small number of parts and rely on mechanical filters to reject
parts in unwanted orientations. Despite their widespread use,
vibratory bowl feeders have several disadvantages: they have
to be redesigned when the geometry of the part changes; they
may damage parts that repeatedly run through the mechanical
filters, etc.

Recent work investigates alternative ways for feeding parts in
assembly workcells. Parts feeders that are programmed, rather
than mechanically modified, offer an attractive solution since
they can be used for a wide variety of parts [2], [11], [24], [28].
Practical considerations favor feeding methods that require little
or no sensing, employ simple devices, and are as robust as pos-
sible [2], [6], [11], [17], [24], [25], [28], [36], [50]. One of the
proposed alternatives is the use of programmable force fields
[11], [14], [33]. The basic idea is the following: the field is real-
ized on a planar surface on which the part is placed. The forces
exerted on the contact surface of the part translate and rotate the
part to an equilibrium configuration. The manipulation requires
no sensing.

Current technology permits the implementation of certain
force fields in the microscale with actuator arrays [11], [14]
built in microelectromechanical system (MEMS) technology,
and in the macroscale with transversely vibrating plates [5],
[6], [11]. The flexibility and dexterity that programmable force
fields offer has led researchers to investigate the extent to which
these fields can be useful. The work in [11] and [14] analyzes
the properties of force fields that are suitable for sensorless
manipulation and proposes novel manipulation strategies.
These strategies typically consist of sequences of force fields
that cascade the parts through multiple equilibria until a desired
goal state is reached. Fig. 1 shows such a two-step sequence to
orient a polygonal part (reprinted from [12]).

Programmable force fields allow us to shift the complexity of
parts feeding from the design of mechanical tracks, filters, and
cut-outs to control algorithms and circuitry. No sensors or feeder
redesign is required. However, the designs proposed in[11] and
[14] require control software, a clock, and, to some extent,
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Fig. 1. Sensorless parts orienting using a sequence of force fields. The arrows
indicate the direction of the force field. The part reaches unique orientation after
applying two subsequent “squeeze fields.” There exist such orienting strategies
for all polygonal parts (reprinted from [12]).

synchronization between distributed actuators. In this paper, we
show that the device complexity can be further reduced. This
work can be seen as an example ofminimalist robotics[7], [17],
which pursues the following agenda. For a given robot task, find
the minimal configuration of resources required to solve the
task. Minimalism is interesting because doing task A without
resource B proves that B is somehow inessential to the infor-
mation structure of the task.1 This paper presents new results
on minimalist part feeding and gives optimal upper bounds on
parts positioning and orienting.

Suppose we take the perspective of an architect seeking to
simplify a parts feeder. MEMS arrays for programmable force
fields require control lines for programmability, plus a clock to
switch between control strategies. In addition, control hardware
and software are required, for example, in a PC connected to
the actuator array. Let us ask the minimalist question:in what
ways can the system be simplified?One direction to explore is
the following:does there exist a single field in which every part

has exactly one stable equilibrium (up to part symmetry)?If
such a field exists, orientation can be done without sensing and
without a clock, achieving minimalism in the corresponding

1In robotics, minimalism has become increasingly influential. Raibert [41]
showed that walking and running machines could be built without static stability.
Erdmann and Mason [26] showed how to do dextrous manipulation without
sensing. McGeer [37] built a biped, kneed walker without sensors, computers, or
actuators. Canny and Goldberg [17] argue that minimalism has a long tradition
in industrial manufacturing and developed geometric algorithms for orienting
parts using simple grippers and accurate, low-cost light beams. Brooks [16] has
developed online algorithms that rely less extensively on planning and world
models. Donaldet al.[23], [7] have built distributed teams of mobile robots that
cooperate in manipulation without explicit communication. Other related work
includes [19], [39] and [47].

dimensions of resources. It is somewhat remarkable that a purely
architectural question can reduce to a conjecture about geometric
dynamics.

This paper answers the above questions by presenting two
specific device architectures. Assuming nonsymmetric parts,
the first design achieves exactly two stable equilibria without
sensor feedback, clock, or control system. More precisely,
unique positioning and orienting are reached modulo 180in
orientation. The second design overcomes this limitation and
for any nonsymmetric part achieves unique positioning and
orientation. We explain that our second result demonstrates
the first known instance of auniversal feeder/orienter (UFO)
device[11], i.e., a general purpose device that can uniquely
position and orient any part without redesigning.

A. Previous Work

In 1994 [14], Böhringer and Donald proposed that there exist
challenging algorithmic problems in MEMS and programmable
force fields, at the intersection of combinatorial algorithms,
geometry, dynamical systems, and distributed systems. A
number of papers (see also Section I-B, below) have emerged
on new algorithms, new analysis, and new arrayed devices
for programmable force fields. From 1993 to 1998, Böhringer
and Donald worked with Noel MacDonald at the Cornell
Nanofabrication Facility to develop and test new arrays of
MEMS microactuators for programmable force fields [14],
[10]–[12]. At the same time, Böhringer and Donald worked
with Greg Kovacs’ group at the Center for Integrated Systems
at Stanford to develop a control system for MEMS organic
ciliary arrays and to perform experiments with these arrays to
manipulate IC dice using array-induced force fields [13], [49].
In parallel, Böhringer and Donald worked with Ken Goldberg
at Berkeley and Vivek Bhatt at Cornell to generalize the theory
to macroscopic devices, by developing algorithms for trans-
versely vibrating plates in order to implement programmable
force fields [6], [5]. Around this time, Lydia Kavraki explored
the power of continuous force vector fields and demonstrated
an elliptical potential field capable of posing any part into
one of two equilibrium states [30], and investigated the effect
of control uncertainty on the stability of equilibria. Finally,
Böhringer and Donald worked with Danny Halperin to develop
new upper and lower bounds, output-sensitive algorithms, and a
precise computational-geometric analysis of the area bisectors
arising in squeeze-field algorithms [8]. For other related papers,
see [5]–[14] and [49].

B. Related Work

Until recently, work on force fields for manipulation has been
dominated by the artificial potential fields pioneered by Khatib
et al.2 While potential fields have been widely used in robot
control
[31], [32], [42], [46], microactuator arrays present us with the
ability to explicitly program the applied forceat every pointin

2A notable exception are the three-dimensional force fields used by Joffe and
his collaborators at JPL [29], where AC magnetic fields are used to orient and
assemble ferromagnetic parts—in 3-D!
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a vector field.3 Several groups have described efforts to apply
MEMS actuators to positioning, inspection, and assembly tasks
with small parts ([3], [14], [27], [33], [40], for example). How-
ever, the fabrication, control, and programming of microdevices
that can interact and actively change their environment remains
challenging.4

Other groups have also been active in developing new
devices, analysis, and algorithms. Ken Goldberg worked
with John Canny and Dan Reznik at Berkeley to continue
research on using vibrating plates for manipulation, showing
that longitudinal vibrations can generate a rich vocabulary
of programmable force fields [45]. In addition, John Canny
and Dan Reznik developed sophisticated dynamic models and
dynamic simulators for both MEMS devices and macroscopic
vibrating plates [43], [44]. Peter Will and his colleagues at
USC-ISI have explored a number of different MEMS array
designs, as well as algorithms and analysis for programmable
force fields [20]–[22], [33]. Andy Berlin, David Biegelsen,
and Warren Jackson at Xerox PARC have developed a novel
MEMS microactuator array based on controllable air jets, with
integrated control and sensing circuitry [4], [18]. Working at
CMU, Bill Messner and Jonathan Luntz developed a small
room whose floor is tiled with controllable, programmable,
macroscopic wheels that can be driven and steered to manipu-
late large objects such as boxes [34]. Their system employed
distributed, local controllers to implement programmable force
fields. Together with Howie Choset, they analyzed the resulting
dynamical system to obtain interesting results on controllability
and programmable force field algorithms based on conservative
versus nonconservative fields [35]. Working with the Berkeley
Sensor and Actuator Center (BSAC), Karl Böhringer and Ken
Goldberg explored how MEMS devices employing electrostatic
fringing fields can be used to implement programmable force
fields for parts manipulation and self-assembly [15].

In short, there has been an explosion of new and exotic ar-
rayed devices for both MEMS manipulation and macroscopic
manipulation. The theory of programmable force fields has been
applied and extended to a variety of devices and systems. It is
somewhat remarkable that the same analysis tools, fields, and
algorithms apply to such a wide range of systems. Despite these
advances, however, the conjecture [11] about the existence of
a UFO device has remained open since 1995; the problem has
been widely viewed as resistant to solution. In this paper, we
prove the conjecture is true. An earlier version of this proof ap-
peared in [9].

3Whereas previous work had developed control strategies withartificial po-
tential fields, our fields are nonartificial (i.e.,physical). Artificial potential fields
require a tight feedback loop, in which, at each clock tick, the robot senses its
state and looks up a control (i.e., a vector) using a state-indexed navigation func-
tion (i.e., a vector field). In contrast, physical potential fields employ no sensing,
and the motion of the manipulated object evolves open-loop (for example, like
a particle in a gravity field). This alone makes our application of potential field
theory to microdevices a different, and algorithmically challenging enterprise.

4Problems arise from the following: 1) the limited range of motion and force
that can be generated with microactuators; (2) the lack of sufficient sensor infor-
mation with regard to manipulation tasks; (3) design limitations and geometric
tolerances due to the fabrication process; and (4) uncertain material properties
and the lack of adequate models for mechanisms at very small scales.

II. SQUEEZEFIELDS AND RADIAL FIELDS

In this section, we summarize some of the basic results in the
theory of programmable force fields that are necessary for the
remainder of the paper. In a programmable force vector field,
every point in the plane is associated with a force vector in the
plane. For example, a unit squeeze field is defined as

. When a part is placed into a squeeze field, it
experiences a translation and reorientation until a predictable
equilibrium is reached. This property makes squeeze fields very
useful for sensorless positioning and orienting strategies.

Given a polygonal part with vertices, it was shown in
[14] that there exist stable equilibrium orientations for

when placed in ( is the number of combinatorially distinct
bisector placements for 5 ). This result was used to generate
strategies for unique parts posing (up to symmetry) by reducing
the problem to a parts feeding algorithm developed by Goldberg
[28]. The strategies have length and can be generated
in time.

In [11], this result was improved to plan lengths of
and planning time , by employing combined squeeze
and unit radial fields (unit radial fields are defined as

and are described in more detail in Sec-
tion V).

The original algorithm in [14] exhibited three key limitations
as follows.

1) While unique orientations could be achieved (modulo
180 ), the final position was only known to lie
somewhere along the last squeeze axis.

2) The dynamics of the part was assumed to be governed
by quasi-static motion with separate phases of translation
and rotation (“2PHASE assumption” [14]).

3) Uniqueness of the final orientation was only possible
modulo 180 due to the inherent symmetry in the device
design.

The improved algorithm in [11] avoided limitations 1 and 2, but
item 3 remained. At the same time, the improved algorithms
required higher hardware complexity in the device design. In
both approaches, the part complexityappears in the upper
bounds in the plan complexity, or [11].

Using elliptic force fields such that
, this bound can be reduced to a constant number (2)

independent of . We show this result in Section IV.
It was conjectured in [11] that a field which combines a ra-

dial and gravitational field ( and
is a small positive constant), has the property of uniquely ori-
enting and positioning parts. We call this field the radial-gravity
field, and we prove in Section V that for any nonsymmetric part,
there is a radial-gravity field inducing exactly one stable equilib-
rium. Our paper also includes a discussion on implementation
issues relating to the radial-gravity field. Such a field could be
used to build auniversal parts feeder(inspired by the “universal
gripper” as proposed by Abell and Erdmann6 [1]). In contrast

5For details on combinatorially distinct bisector placements, see [8].
6In a universal gripper, a part is free to rotate after being picked up from an

arbitrary initial state. Its center of mass will settle at the unique minimum of
potential energy, causing the part to reach a unique, predictable equilibrium.
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TABLE I
FIELDS AND ALGORITHMS FORMANIPULATION TASKS WITH PROGRAMMABLE FORCEFIELDS. THE RESULTS ONELLIPTIC AND RADIAL -GRAVITY

FIELDS ARE PROVEN IN THIS PAPER. REMARKS. (a) TRANSLATION EQUILIBRIUM ONLY. ORIENTATION IS UNCONSTRAINED. (b) ORIENTATION

UNIQUE MODULO 180 SYMMETRY, TRANSLATION ALONG SQUEEZE LINE IS UNCONSTRAINED. (c) REQUIRES NUMERICAL

COMPUTATION OF AXES OF INERTIA. (d) POSE IS UNIQUE MODULO 180 SYMMETRY. (e) REQUIRES

NUMERICAL COMPUTATION OF FIELD PARAMETER �

to the universal manipulator fields proposed in [44], such a de-
vice could uniquely position a part without the need of a clock,
sensors, or programming.

Table I gives a summary of our results on part manipulation
using programmable force fields. The first column of that table
specifies a task. The three last columns show the complexity of
generating a plan, the number of steps required during plan exe-
cution, and the number of final equilibria states for the particular
task. The inertial field was defined as .
In Table I, denotes the number of vertices of the part andde-
notes the combinatorially distinct bisectors of the part.

III. CONDITIONS FOREQUILIBRIA

In this section, we give some definitions and establish the no-
tation that will be used in the two following sections. We inves-
tigate the conditions for equilibrium for a partin the presence
of a force field . It is assumed that , for

, and . Here, can be seen as
the support (characteristic) function of the part, this function is
1 on the part and 0 elsewhere. We assume that the support of
is compact.

Without loss of generality, the origin of the reference frame
in the plane can be chosen as the center of mass of

When the part is in configuration , the resultant
force is given by

and the resultant torque at the center of mass is given by

where and

is the rotation matrix of angle. From now on, all integrals
extend over unless otherwise stated.

A total equilibrium is achieved when the resultant force and
torque on the part is zero. For a total equilibrium, the following
two equations must hold:

(1)

(2)

IV. TWO STABLE EQUILIBRIUM ORIENTATIONS

In this section, we show a force field that can orient most
parts into two stable equilibria. The field derives from an elliptic
potential field, and we will call it theelliptic field

(3)
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Fig. 2. Force field for� = 1 and� = 2.

Fig. 3. Elliptic potential function for� = 1 and� = 2.

where and are twodistinctpositive constants. Without loss
of generality, let us assume that . Fig. 2 displays one
such force field with and . Note that this vector
field is the negative gradient of the elliptic potential function

. This potential function is plotted
in Fig. 3, for and .

A. Force and Moment Equilibrium

1) Force Equilibrium: We first establish the condition for
the force equilibrium. If are the coordinates of the center
of mass of in configuration , ( is defined in Section III),
the total force exerted on, given by the left-hand side of (1),
is equal to

Condition (1) is thus equivalent to . Therefore,
in looking for equilibrium configurations , we only need to
consider the configurations of the type .

2) Moment Equilibrium: We now proceed to the investiga-
tion of condition (2). It turns out that, for “most” partsand for
whatever distinct positive values ofand with , there
are exactly four values of for which (2) holds.

Taking into account the force equilibrium, the expression of
the torque becomes now

The cross product of two vectors and
is defined as

and the above equation gives after calculations

(4)

Thus, since , we have if and only if

(5)

In the above

(6)

defines moments of , and for any real part these quantities are
finite.

Equivalently, we want the vectors

and

to be orthogonal. We now have to distinguish two cases.
“SYMMETRY:” and .
Clearly in this case, (5) is satisfied for all , and

we have equilibrium regardless of orientation. When a part is in
equilibrium for all , we say that orientation fails for the part.

“A SYMMETRY:” or .
When goes from 0 to , the vector tra-

verses the unit circle twice. The two vectors
and will be orthogonal for exactly four
values of , say ,
and . In addition, either the first pair of them
is stable and the second unstable, or vice versa. The reason is
that the sign of in (4) determines the direction in which mo-
ment rotates the part. If this sign is positive, rotates the
part counter-clockwise, else the rotation is done clockwise (see
also [11]). While is rotated around the vector

, the sign of the left-hand side of (5)
changes after the two vectors attain an orthogonal orientation.
Hence, we observe sign changes of the left-hand side of (5) for
the four values of given above. Let and be the roots of (5)
for which the sign of its left-hand side changes from a negative
value to a positive value while moving in a counter-clockwise
direction. Since we assumed that and indicate
stable equilibrium configurations of the part [see (4)], whereas

and are unstable configurations.
This leads to the following theorem.
Theorem 1: Let be a part with finite with

and whose “center of mass” is at, and let
, with , be the underlying force field.

“SYMMETRY”: If , the part
is at (force and moment) equilibrium whenever .
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Fig. 4. Orientation of a polygonal part under the elliptic force field the� = 1

and� = 2.

“A SYMMETRY”: Otherwise, the distribution is in
equilibrium only when and for exactly four distinct values
of . These four values of are apart and only
two of them, say and , represent stable equilibria, the
others, and , being unstable.

B. Prediction of Equilibria

In practice, we seek to orient a finite part, and it is very easy to
compute with numerical techniques the values of , and

. We can thus predict, for a given part, whether it will have
two stable equilibria in the force field considered. The equilib-
rium orientations can be calculated using (5). Note that the equi-
librium configurations of a part are independent ofand , as
long as .

Fig. 4 shows the orientation of a polygonal part, called the
ratchet, under the elliptic field with and .

In many cases, it is clear that a part will have many equilib-
rium orientations. For example, consider a planar part that is a
regular -gon. This part will be at equilibrium when its “center
of mass,” as defined in Section III, is atno matter what its
orientation is. The “center of mass” in this case is the center of
its -gon surface. Suppose now that the part had only two equi-
libria and and that the part is at equilibrium. If we
rotate the part by , then we should have an equilibrium
again, due to the geometrical symmetry of the part. Hence, since
this part cannot have only two equilibrium orientations it must
be in equilibrium for any value of, according to Theorem 1.
Indeed, for this part, it can be shown that .
Note that symmetry and asymmetry as in the above theorem do
not always correspond to the notion of geometric symmetry and
asymmetry, i.e., there may exist parts that are not geometrically
symmetric but are symmetric according to the definitions above.

A note about the relationship of equilibria to the principal
axes of inertial of a part is in order. The constructive proof of
Theorem 1 provides a method to predict the stable and unstable
equilibria of any two-dimensional part . For a given , we
determine its center of massand the angles . is
in stable equilibrium in the force field if and only if the line
through at angle coincides with the -axis.

Readers familiar with theoretical mechanics will recognize
the analogy between the proof of Theorem 1 and the transfor-
mation equations for moments and products of inertia. These
equations are the basis for the argument that the principle axes

Fig. 5. Radial-gravity field with� = 0:4.

of any two-dimensional part are perpendicular. It is worthwhile
to explore this analogy in more detail. For any part, there exists a
coordinate frame such that . The axes of this coordinate
frame are the principal axes of inertia of the part (i.e., axes with
maximum or minimum moment of inertia). It can be shown that
these axes intersect at the center of mass. From the previous
computations, it is easy to deduce that in the two stable config-
urations, these axes are lined up with the axis of the force field.
More specifically, and are the second area moments of

, often denoted and , and is the product of
inertia. The line through at angles or (corresponding to
the stable equilibrium) is the major principal axis, and the line
through at angles or (corresponding to the unstable equi-
librium) is the minor principal axis. These observations explain
why the equilibrium is independent of the values ofand as
long as .

Since all axes of symmetry are principal axes, it further fol-
lows that a sufficient condition for “SYMMETRY” as defined in
Theorem 1 is that has two nonperpendicular axes of sym-
metry. Conversely, a necessary condition for “SYMMETRY” is
that the product of inertia of must be zero for any axis through
, and that the moment of inertia is equal for all axes through.

For more details on principal axes and moments of inertia, see,
for example, [38].

V. ONE STABLE EQUILIBRIUM ORIENTATION

We now exhibit a class of force fields that induce one stable
equilibrium for most parts. These fields are combinations of a
unit radial and gravity field, and we will call themradial-gravity
fields.

• A unit radial field is defined by
.

• A unit gravity field is given by .
• For a given , theradial-gravity fieldis defined as the

sum of a unit radial field and a gravity field scaled by
.

Figs. 5 and 6 plot a radial-gravity field for which .

A. Force and Moment Equilibrium

In this section, we reason with potential fields instead of using
directly (1) and (2). First, we notice that derives from the
potential field and we define the
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Fig. 6. Combination of a unit radial and a gravitational potential field with
� = 0:4.

following potential field over the configuration spaceof the
part

A configuration is a stable equilibrium of the part if and only
if is a local minimum of the function .

In order to take advantage of the radial symmetry of ,
we define a new system of coordinates from the stan-
dard one by

The expression of in this new system of coordinates is ob-
tained by a change of variable in the integral

To establish the existence and uniqueness of a stable equilib-
rium, we proceed in two steps. First, we state the existence and
uniqueness of a local minimum of the potential field for any
fixed . This partial minimum is theforce equilibrium. Then,
we study the curve of force equilibria whendescribes and
reason about moment equilibria. For our discussion below, we
define the following functions:

1) Force Equilibrium: A force equilibrium is a local min-
imum of . Using common results of the theory of integra-
tion, we find that is of the class and that its partial deriva-
tives with respect to and are obtained by differentiating

under the integral. The following proposition establishes the ex-
istence and uniqueness of a stable force equilibrium for a fixed

by proving that the function is convex.
Proposition 2: If has a unique local minimum.

Proof: We first notice that for tends toward
infinity with . We show then that is convex, i.e.,
the Hessian of is positive definite, that is its eigenvalues
are both positive. This condition is fulfilled iff the trace and
determinant of the Hessian are both positive

Hess

Hess

Let us compute the partial second derivatives of

From these expressions, we deduce easily that
Hess . Then, using the identities

,
we obtain the equation, shown at the bottom of the next page,
where has been omitted to make the
notation clearer.

2) Moment Equilibria: Having established the force equi-
librium, we proceed to express it as a function of.

a) Equilibrium Curve: We denote by ,
the unique force equilibrium relative to and by

its expression in the system of
coordinates:

(7)

(8)

We call equilibrium curve of parameter the curve
of force equilibria.

When (pure radial field), due to the radial symmetry of
the field, the set of equilibrium configurations is generated by
the rotations of the part about one of its points called thepivot
point [11].

Proposition 3: are continuously differen-
tiable.

Proof: The proof of this proposition is based on the im-
plicit function theorem. Let us define the following function
from into :
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minimizes the potential function for constant
and , and therefore fits the following implicit representation:

is continuously differentiable and the differential of the par-
tial function of the variables is exactly the Hessian
of . From Proposition 2, this differential is invertible every-
where. All the hypotheses of the implicit function theorem are
thus satisfied, and therefore and are contin-
uously differentiable. From relations (7) and (8),and are
also continuously differentiable.

Let us now denote by the minimum value of the poten-
tial function for each . Then, it is straightforward that
is a local minimum of if and only if is a local minimum of

and and . The following propo-
sition establishes a relation between the derivative ofand the
position in the plane of the force equilibrium.

Proposition 4: For any

Proof: In this proof we omit in the expressions of
and to make the notation simpler. By definition

. Differentiating this expression w.r.t. to
leads to

since the partial derivatives of w.r.t. and are null at
.

Proposition 4 states that a stable equilibrium configuration
corresponds to a value ofwhere the equilibrium curve crosses
the -axis from to . Fig. 10(d) shows the value

Fig. 7. Decomposition of the equilibrium curve for� = 0 into four intervals.

of along the equilibrium curve for the ratchet part in the
same figure and illustrates perfectly the linearity of the relation
between and . Indeed, it can be easily checked that
the torque is equal to the partial derivative of w.r.t. .

b) Unique Global Equilibrium: We combine our results
in Propositions 2–4 to establish the concluding theorem of this
section.

Theorem 5: For any compact part , if ,
(i.e., the center of mass and the pivot point

are distinct) then there exists such that has a unique
stable equilibrium configuration under the potential field.

Proof: First, let us notice that the curve
is reduced to a point since when ,

the potential field does not depend on. Let us express this
point in polar coordinates

Then, if , from relations (7) and (8), the curve
is a circle centered on (Fig. 7). We

have

Hess
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(a) (b)

Fig. 8. Detailed equilibrium curves for the ratchet. (a) Curves from� = 0 to � = 0:975, increment 0.025. (b) Curves from� = 0:42 to � = 0:50, increment
0.01. We observe that up to� = 0:46, the curve has only two intersections with they-axis, hence the equilibrium is unique.

The current proof is based on the continuity of the functions
and and their derivatives. We proceed in two steps: near

and , where crosses 0, the variation of
the tangent vector to the curve can be made
sufficiently small in order to prevent the curve to cross twice
the -axis. For the remaining values of, the variation of the
position of the curve can be bounded in such a way that the curve
cannot cross the-axis. The complete proof follows.

Let us recall that is a continuous function and
that and

. Therefore, there exists and such that

These inequalities imply that the equilibrium curve does not
cross more than once the-axis on the corresponding intervals
of .

We are now going to show that for the remaining values of,
there exists a small enough such that the corresponding part
of the equilibrium curve does not cross the-axis. To make the
notation clearer, let us define the following compact set:

Then, for and , the equilibrium curve stays at a
strictly positive distance from the-axis

is continuous, thus its restriction to the compact set
is uniformly continuous. Therefore, there exists a constant

such that

and this condition ensures that the equilibrium curves does not
cross the -axis for and .

Therefore, for any , the equilibrium curve
crosses the-axis exactly twice—once in each direction.

B. Prediction of Equilibria

The previous computation shows that if a part has a pivot
point different from the center of mass, then there exists a small
value of to uniquely orient this part. However, this does not
mean that there exists one unique value oforienting any part.
In other words, the combination of a radial unit field and a grav-
itational field is a strategy that can orient almost any part, but
for each part the maximumis different.

Fig. 8 shows equilibrium curves for the ratchet for different
values of . In this example, we can see that for large, the
equilibrium curve crosses the-axis several times, and thus the
minimum is not unique anymore. An annealing process may be
used to determine. The process starts with a value ofjust
below 1. This causes the part to be centered and oriented quickly.
By reducing , we ensure that eventually we obtain a field that
uniquely orients the part.

Alternatively, we can determine the maximum value forfor
which the equilibrium is unique by performing a binary search.
By using numerical methods, we observed that for the ratchet for
all values up to 0.46 the equilibrium is unique. This is demon-
strated in Fig. 8. Numerous simulation runs were performed to
observe the behavior of the ratchet in the field . It con-
sistently reaches the unique final position. Some of these simu-
lation runs are shown in Fig. 9.

Fig. 10 combines all these observations for the field .

VI. I MPLEMENTATION

The previous sections show that there exist universal
feeder/orienter devices that can uniquely position almost any
part. We now briefly investigate practical issues on building
such devices. To this end, we pose the following two key
questions.
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Fig. 9. Simulation runs for the ratchet in the fieldr + 0:46g. In all runs, the part reaches the same final pose.

• How difficult is it to build devices that implement pro-
grammable force fields?

• How efficient is a universal feeder/orienter device in prac-
tice?

The first question concerns the initial setup cost as compared,
e.g., with a vibratory bowl feeder or a robotic parts feeder. The
second question addresses the issue that even though unique
equilibria exist for almost all parts, it is not obviousa priori how
quickly these equilibria will be reached. To obtain an answer to
these questions, we have built a comprehensive simulation and
analysis system, and we have investigated multiple designs that
implement prototype devices for programmable force fields.

A. Simulation

We have implemented a sophisticated simulator for pro-
grammable force vector fields in MATLAB . The system is
capable ofexactcalculation of the force acting on polygonal
parts in various fields, including squeeze, unit radial, gravity
fields, and combinations thereof. To calculate the force acting
on a polygon in the field, the polygon is triangulated and
the force field is integrated over the individual areas. This
can be done without numerical integration since there exist
closed-form integrals for all these fields. To predict the part
motion in the field, we have implemented a full dynamic
simulator that includes inertia, viscous damping, and Coulomb

friction. Force equilibria are determined numerically by solving
the constraints as given in (1). Pivot points are also
determined numerically.

Figs. 9 and 10 consist of output from the software package
and include dynamic simulation, numerical computation of
force equilibria, and computation of torque when the part
already is in force equilibrium (i.e., the torque associated with
each point on the equilibrium curve). For the torque calculation,
see the last part of Fig. 10.

B. Device Construction

In SectionI-A and I-B we have already mentioned some de-
vice designs that implement programmable force fields. The
idea of open-loop parts feeding is particularly attractive when
dealing with very small or microfabricated parts, where pre-
cise feedback is difficult or extremely expensive. It also opens
the opportunity for massively parallel positioning and assembly:
since no control is required, the positioning process can be par-
allelized without communication overhead.

Toward this end, various researchers have demonstrated
microfabricated actuator arrays based on MEMS technology.
These devices consist of a surface with potentially thousands or
even millions of microscopic actuators, each of them capable
of generating a unit force in a specific direction ([40], [3], [27],
[14], [33], for example).
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(a) (b) (c)

(d) (e)

Fig. 10. Analysis of the radial-gravity fieldF with the ratchet part. (a) Equilibrium curve for� = 0:3. Each point on this curve corresponds to a specific�

value). (b) Equilibrium curve with simulated trajectories of the ratchet. The center of mass always reaches the unique stable equilibrium (corresponding to the
lower intersection of the curve with thex-axis). (c) Multiple simulation runs. The ratchet always reaches the same stable total equilibrium. (d) Equilibrium curve
with corresponding torques. (e) Torque onE as a function of�.

While MEMS actuator arrays may be useful to implement
force fields that require high spatial resolution, alternative
(macroscopic) designs are possible as well. In the following
sections, we give some specific design ideas.

1) Elliptic Fields: The realization of elliptic fields could be
achieved with MEMS actuator arrays [10], [13], or arrays of
motors [35], and possibly with vibrating plates [6]. The main
challenge for vibrating plates will be to obtain a surface that ap-
proximates the elliptic force profile with sufficient spatial reso-
lution. Microscopic (MEMS) or macroscopic (motor) actuator
arrays offer alternatives. Note that individual control of the ac-
tuators is not necessary; control by rows and columns only is
sufficient. Furthermore, the proposed force field could be im-
plemented with a technology that allows the specification of a
force only in one of the or directions at each pixel/actuator.
Then, two arrays, one controlled only in thedirection and the
other controlled only in the direction, can be “interleaved”.
If the arrays are dense, the resulting force will be a force with
the desired magnitude and direction. The main challenge for mi-
croactuators remains the generation and control of forces over a
sufficiently large range of force magnitudes.

2) Universal Fields: A prototype unidirectional array was
built by Böhringeret al. [10] (see Fig. 11). This array can gen-
erate a unit gravity field. Its design could be modified such that
the actuators are arranged in a circular pattern, which would re-

Fig. 11. Unidirectional MEMS actuator array build on a silicon wafer. Each
actuator is about 0.2 mm in size.

sult in a unit radial field. The variable gravity field could then
be added simply by tilting the array accordingly (see Fig. 12).
Hence, such a device would be relatively easy to build. The key
observation is that with current MEMS technology, it is easy
to build actuator arrays with high spatial resolution ( mm)
and constant force, but it is difficult to build actuators withvari-
ableforce. In addition, MEMS actuators can be easily arranged
into arbitrary patterns (in particular, a radial pattern). Hence, it
is easy to build arrays that implement unit radial fields.
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Fig. 12. Conceptual design of an actuator array that implements a combined
radial-gravity field. Individual actuators are tiled in a circular array pattern. The
array is tilted between� = 0 and45 to add a gravity component�g. Under
some simplifying assumptions,� = tan�.

Alternatively, a resonating speaker, or a vibrating disk-shaped
plate that is fixed at the center, might be used to create a radial
force field.

VII. D ISCUSSION

This paper proves the existence of devices for parts posi-
tioning and orienting that can bring arbitrary (nonsymmetric)
parts into exactly one or two stable equilibria. These devices
are extremely simple: they do not require a feedback control,
a clock, synchronization, or programming. Their functioning
principle is based on force vector fields. Such a device could
revolutionize industrial and precision parts handling.

This result opens the door for a multitude of new questions,
some of which are briefly outlined below.

A. Open Questions

1) Parallelism: So far we have considered only the equi-
libria of one part in a force field. But what happens if two parts
are placed into the field simultaneously? It is conceivable that
the parts will settle in predictable configurations. This effect
could be exploited for automated assembly.

When parts are initially placed far enough apart, it may be
possible to implement several radial-gravity fields next to each
other to achieve parallel positioning. This issue is particularly
interesting since there is no overhead for parallelism in such a
device, as no communication and control are required.

2) Symmetric Parts:In Section IV, we have shown that el-
liptic fields achieve two equilibria for any part with
and . Parts that do not satisfy this condition will be in
neutral orientation equilibrium once their centers of mass reach
the center of the elliptic field. Since the above conditions are
not met for parts with rotational symmetry, these parts cannot
be uniquely oriented in an elliptic field.

Similarly, Theorem 5 requires that the pivot point and center
of mass of a part do not coincide. Thus, this result does not
apply to rotationally symmetric parts such as, e.g., squares or
hexagons. However, simulation results indicate that symmetric
parts may still reach a unique equilibriumup to part symmetry.
In case a part is symmetric, the user may not care about multiple
equilibria as long as there exists no noticeable difference in the
final poses. Therefore, we generalize Theorem 5 to obtain the
following conjecture:a radial-gravity field uniquely poses any
part up to part symmetry.

3) Large Values: We have shown that there always exists
a such that for all , we obtain a unique equi-
librium. Fig. 8 shows that for , the equilibrium curve
becomes more complicated, causing multiple equilibria. How-
ever, as approaches 1, the curve becomes simpler again. Since
higher values imply faster convergence, it would be interesting
to know whether unique equilibria can be found forclose to 1.
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