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bound), and present an output-sensitive algorithm for computing an explicit representation
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1. Introduction

Let P be a polygon in the plane, possibly with holes, and havingn vertices in total. We
denote byV the set of vertices ofP. For a directed lineλ in the plane, we denote by
hl (λ) (resp.hr (λ)) the open half-plane bounded byλ on the left-hand (resp. right-) side
of λ. The lineλ is anarea bisectorof P if the area ofP ∩ hl (λ) is equal to the area of
P ∩ hr (λ).

A line λ partitionsV into three sets (two of which may be empty):V ∩ hl (λ), V ∩ λ,
andV ∩ hr (λ). We say that two area bisectors ofP arecombinatorially distinctif the
partitioning ofV as above induced by the two bisectors is different. We say that two area
bisectors ofP arecombinatorially equivalentif they induce the same partitioning ofV .

We assume that the polygonP is connected, and nondegenerate in the sense that its
interior is connected.

If instead of a polygon we take a set ofn points, we can ask how many combinatorially
distincthalving linesthere are, namely, instead of equating the area on the two sides of a
line we now wish to equate the cardinality of the subsets on either side of the line. This is
the well-knownk-setproblem (fork = n/2) that has been extensively studied in discrete
geometry [8]. The best bounds known to date for this problem are the recently obtained
upper boundO(n4/3) [5] and a lower boundÄ(n logn) [10]. An obvious upper bound
on the number of distinctarea bisectors of a polygon withn vertices isO(n2)—see
Section 2. In this paper we show that a polygon withn vertices can haveÄ(n2) distinct
area bisectors. (Note that the polygon in our construction issimple.)

We devise an output-sensitive algorithm for computing an explicit representation
of all the area bisectors of a given polygon. In our analysis we give a more refined
distinction between area bisectors (than the distinction by the partitioning ofV). We
order the area bisectors by slope in the range [−π/2, π/2), and partition the range into
maximal connected intervals with bisectors of the same combinatorial equivalence class.
We denote byκ = κ(P) the number of such slope intervals for a polygonP, and byκ(n)
the maximum number of such slope intervals over all nondegenerate polygons withn
vertices. We denote byK = K (P) the number of combinatorially distinct area bisectors
of a polygonP, and byK (n) the maximum number of combinatorially distinct area
bisectors over all nondegenerate polygons withn vertices. It is clear thatκ(n) ≥ K (n);
we show below that there are polygons for whichκ(P) > K (P).

It is convenient to consider the problem at a dual setting as well. Thebisector curve
β is defined in a plane dual to the plane containing the polygon:β is the union of points
dual to area bisectors. We show thatβ is x-monotone in the dual plane (where thex-
coordinate corresponds to the slope of the bisector) and that it is a continuous piecewise
algebraic curve. Each maximal pieceb of β that is defined by the same function describes
a contiguous (in slope) set of bisectors that cross the same set of edges of the polygonP,
the endpoints ofb correspond to bisectors that contain a vertex ofP, and any bisector
described by an interior point ofb does not contain any vertex ofP. Hence,κ(P) denotes
the number of maximal algebraic pieces ofβ for a polygonP.

A c-oriented polygon is a polygon whose edges are all parallel to exactlyc directions,
wherec is a fixed constant. For ac-oriented polygon withn vertices, our algorithm for
computing an explicit representation of the bisectors by determining the pieces of the
curveβ runs in timeO((n + κ) log2 n). For a general nondegenerate polygon having
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n vertices the algorithm runs in timeO((n + κ) log2 n + (n + κ)α(n)ψ(t)). Here and
throughout the paper,α(·) denotes the extremely slowly growing functional inverse of
Ackermann’s function,t denotes the maximum number of distinct slopes of edges of
P intersected by any line, andψ( j ) denotes the time required to find the roots of a
polynomial equation of degreej .

Our algorithm proceeds by constructing thezoneof the curveβ in anarrangement
of linesin a plane dual to the plane of the polygon. An arrangementA(L) of a setL of
lines is the subdivision of the plane induced byL into vertices, edges, and faces [8]. The
zone of a curve in an arrangement of lines is the collection of faces of the arrangement
crossed by the curve [12]. In our case the equations defining the curveβ depend on the
face of the arrangement thatβ crosses, that is, these equations change from face to face.
Hence, we could not use ready-made algorithms for computing the zone ofβ since the
algorithms we are aware of assume that the curve for which the zone is computed is
known in advance.

Area bisectors were considered by D´ıaz and O’Rourke [6], [7]. However, their focus
is on the continuous version of theham-sandwich cutproblem, and of a problem they
introduce oforthogonal four-sections; see [6] and [7] for more details.

Our study is motivated by the development of novel, flexible feeding devices for parts
positioning and orienting (such as microelectromechanical systems and transversely
vibrating plates). The question of determining all the bisectors of polygonal parts arises
in connection with the development of efficient part positioning strategies when using
these devices (see Fig. 1). For more details see [1]–[4].

The rest of the paper is organized as follows. In Section 2 we present basic properties of
area bisectors that are later necessary for the development of the algorithm. In Section 3
we present a simple polygon withn vertices that hasÄ(n2) combinatorially distinct
area bisectors, and a simple polygonP with κ(P) > K (P). The algorithmic results are
then presented in Section 4. In Section 5 we give concluding remarks and point to open
problems raised by our study.

2. Properties of Area Bisectors

In this section we show that all combinatorially equivalent bisectors of a fixed equivalence
class of any polygon can be described by a rational function. We develop explicit formulas
for bisectors for given polygon geometry and investigate their algebraic complexity—this
is summarized in Theorems 2 and 3 below.

We extend the definition ofcombinatorial equivalence(see the Introduction) to ar-
bitrary lines that partition a polygon. We define combinatorially equivalent partitioning
lines of a polygonP to be all those linesλ that induce the same vertex partitionV∩hl (λ),
V ∩λ, andV ∩hr (λ). A necessary (but not sufficient) condition for combinatorial equiv-
alence is thatλ intersects the same ordered set of polygon edges.

It is convenient to study the problem in a dual plane: a liney = 2x̄ x− ȳ in the primal
plane is transformed into the point(x̄, ȳ) in the dual plane. A point(x, y) in the primal
plane is transformed into the linēy = 2xx̄ − y in the dual. The dual of an objecto will
be denoted byo∗. If O is a set of objects in the plane,O∗ will denote the set of dual
objects. For details on duality transforms see, e.g., [14].
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(a)

(b)

Fig. 1. Positioning of parts in a two-dimensional force vector field. (a) In asqueeze field, unit forces act
perpendicularly toward a central line (thesqueeze line). The effective forces acting on the left and right portions
of the part are shown as arrows attached to the respective centers of area. (b) The part is in equilibrium if and
only if its bisector coincides with the squeeze line, and if the connector between the left and right centers of
area is perpendicular to the squeeze line. See www.ee.washington.edu/research/mems/Projects/Video for an
animated simulation.

In the following lemma we summarize basic facts on area bisectors of a polygon.

Lemma 1. Given a polygon P with vertices V, n := |V |, and a lineλ.

(i) There exist O(n2) combinatorially distinct ways in which a line can partition P.
(ii) Let A and B be the intersections of a bisectorλ with the boundary of the convex

hull of P. As the slope angle ofλ grows from−π/2 to π/2, A and B progress
monotonically counterclockwise on the boundary of the convex hull of P.

(iii) If the interior of P is connected, then for every slopēx there exists a unique
bisectorλ = λ(x̄) of P.

Proof. (i) This is a well-known fact. We prove it here to demonstrate how duality is
used in our arguments. The dualV∗ of then polygon verticesV form an arrangement of
n lines in the dual plane. Each point on a linev∗ in the dual plane corresponds to a line
through the polygon vertexv in the primal plane, and vice versa. Each point within a face
of the dual arrangement corresponds to a line in the primal plane that does not intersect
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any polygon vertices. Thus, all points within a particular face of the dual arrangement
correspond to combinatorially equivalent line placements. We also have to account for
equivalence classes where the bisecting lines contain one or more vertices of the polygon.
These correspond to edges and vertices of the dual arrangement respectively. Since an
arrangement ofn lines hasO(n2) vertices, edges, and faces, there are at mostO(n2)

combinatorially distinct ways in which a line can partitionP.
(ii) [6, Lemma 5.3.1] Assume we are givenλ = λ(x̄) with intersection pointsA and

B, and we wish to findλ′ = λ′(x̄+ε), with intersection pointsA′ andB′. If A′ andB′ lie
to the same side ofλ, then it must be the case that one of the partitions ofP determined
byλ lies strictly within one of the partitions determined byλ′, a contradiction since both
must be of equal area. Hence it must be the case thatA′ andB′ lie on opposite sides of
λ and sincēx′ > x̄, the progression must be counterclockwise.

(iii) [6, Section 5.2] The existence and uniqueness ofλ(x̄) is guaranteed since the
area behind any sweep line ofP increases strictly monotonically from zero to the area
of P.

Now consider a bisectorλ of polygon P for varying x̄ values, as described in
Lemma 1(ii). The intersections ofλwith the boundary of the convex hull ofP, A andB,
progress monotonically about that boundary. In general, this progression corresponds to
a simultaneous rotation and translation ofλ.

Our goal is to obtain a precise mathematical relationship between bisector slopex̄ and
interceptȳ. To this end, we first analyze the effects of rotation and translation separately.
To simplify the analysis, we choose a parametrization of the partitioning lineλ different
from x̄ and ȳ. The lineλ is given by a fixed points onλ and a vectorp that specifies its
direction (see Figs. 2 and 3).1

The results of this analysis are given in Theorems 2 and 3 below. Note that during
pure rotation or pure translation, in general the bisector property is not maintained. By
imposing the bisector condition|P ∩ hl (λ)| = |P ∩ hr (λ)| we obtain the relationship
between rotation and translation ofλ. This is addressed in Theorem 3.

Theorem 2. Let P be a polygon with n vertices. Let s be a point inR2, let p be a vector
in R2, and letλ be a line through s in direction p that intersects r edges of P with t≤ r
distinct slopes.

(i) Let λ′ be a line through s in direction p′, where p′ = p + αq for some fixed
vector q and some parameterα ∈ R. If λ′ is combinatorially equivalent toλ,
then the area of P∩ hl (λ

′) is given by a rational function al (α) of numerator
and denominator degree O(t). In particular, the combinatorially equivalent area
bisectors of P passing through s are determined by the roots of a polynomial
equation of degree t.

(ii) Let λ′′ be a line parallel toλ′ with distanceα′ to λ′. If λ′′ is combinatorially
equivalent toλ′, then the area of P∩ hl (λ

′′) is given by a quadratic polynomial
bl (α

′).

1 The transformation tōx and ȳ is straightforward: givens = (sx, sy) and p = (px, py), we getx̄ =
py/2px and ȳ = pysx/px − sy.
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Fig. 2. Two nonparallel linesλ andλ′ in combinatorially equivalent intersection with polygonP.

Note that the rational functionsal andbl express the changing area ofP ∩ hl (λ) for
pure rotation and pure translation ofλ, respectively. Ifλ is a bisector, this area needs to
remain constant, which results in a coupling between the rotational parameterα and the
translational parameterα′. This relationship is characterized in the following theorem:

Theorem 3. Letλ be a bisector of P, and consider the combinatorially equivalent line
λ′′ parametrized byα, α′ ∈ R as described in Theorem2 above. There exists a function
f (α, α′) such thatλ′′ is a bisector of P iff f(α, α′) = 0. f is a polynomial of degree t
in α and a quadratic polynomial inα′, where t≤ r is the number of distinct slopes of
the r polygon edges intersected byλ andλ′′.

Proof (Theorems 2 and 3). Consider a lineλ, and a points that lies onλ (Fig. 2). The
direction ofλ is given by a vectorp. Assume for now that the lineλ intersects two
edgese1 ande2 of the polygonP in pointsp1 andp2. Also assume that these edges have
direction vectorsq1 andq2.

We use the following notation throughout this proof. For two vectorsv1 = (x1, y1)

andv2 = (x2, y2), v1× v2 denotes the signed real whose value isx1y2− y1x2. This value
constitutes the area of the parallelogram defined byv1 andv2.

Rotating the Bisector. Consider another lineλ′ with directionp′ that intersectsλ in s (λ′

can be understood as a rotation ofλ arounds). Assume thatλ andλ′ have combinatorially
equivalent intersections with polygonP, and thatλ′ intersects the polygon edgese1 and
e2 in p′1 andp′2 respectively. We writepi = s+%i p andp′i = s+%′i p′. Then the polygon
areaa betweenλ andλ′ is

a = 1
2(%
′
2 p′ × %2 p− %′1 p′ × %1 p)

= 1
2(%
′
2%2− %′1%1)(p

′ × p).
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In the general case whereλ andλ′ intersect multiple edges with directionsqi of some
arbitrary polygonP at pointsp1, p2, . . . , pr andp′1, p′2, . . . , p′r (r even), we can compute
the polygon areaa betweenλ andλ′ as a sum of signed areas of trianglesspi p′i :

a = 1
2

r∑
i=1

(−1)iwi

= 1
2(p
′ × p)

r∑
i=1

(−1)i%′i%i .

Without loss of generality assume%r 6= 0. Thenp′ can be written asp′ = p+ αqr for
someα ∈ R, and the above equation becomes

a = 1
2((p+ αqr )× p)

r∑
i=1

(−1)i%′i%i

= α

2
(qr × p)

r∑
i=1

(−1)i%′i%i . (1)

From the two vector equationsp′i = s+ %′i p′ and p′i = s+ %i p+ µqi , µ ∈ R, we can
determine%′i as

%′i =
%i (qi × p)

(qi × p)+ α(qi × qr )
. (2)

Note that the denominator in (2) can be written asqi × (p+αqr ) = qi × p′ 6= 0 sinceqi

cannot be parallel top′ as long as the intersectionspi lie in the same equivalence class.
If we also choose the edge direction vectorsqi such that(qi × p) = 1, then (2) and (1)
simplify respectively to the following rational functions inα:

%′i =
%i

1+ α(qi × qr )
, (3)

a(α) = α

2

r∑
i=1

(−1)i
%2

i

1+ α(qi × qr )
. (4)

We look at the denominatordi (α) = 1+ α(qi × qr ) in more detail. This is important
because we shall see that in the formulas that we obtain, the denominators consist only
of di (α)’s. For an arbitrary polygon,di is a linear function ofα. If all qi are parallel, then
di = 1.

Equation (4) can be used to find a bisector ofP that passes through a given points.
Givenqi and%i (i = 1 · · · r ), a is chosen such that|P ∩ hl (λ

′)| = |P ∩ hr (λ
′)| = 1

2|P|.
Then (4) can be transformed into a polynomial inα of degreer . More specifically, the
degree of the polynomialα is equal to the numbert of distinct slopes of polygon edges
that the bisector crosses, which in the worst case isr , andc for a c-oriented polygon.
This result was summarized in Theorem 2(i).

Translating the Bisector. We now consider the case whereλ′ shifts parallel (Fig. 3)
and show that the change in polygon areab is a quadratic function of the translation
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Fig. 3. Two parallel linesλ′ andλ′′ in combinatorially equivalent intersection with polygonP.

parameterα′. Intuitively, as long as the lineλ′(α′) remains in the same combinatorial
class, the total length of the intersectionP ∩ λ′(α′) is a linear function ofα′. Using an
integral argument, it follows that the change in areab(α′) is a quadratic function ofα′.

We now derive the exact formula forb(α′). Analogously to the rotation case, let
p′i = s′ + %′i p′ andp′′i = s′′ + %′′i p′. Also s′ ands′′ are chosen such thats′′ − s′ = α′q2.
Then the polygon area betweenλ′ andλ′′ is

b = α′q2× 1
2((p

′
2+ p′′2)− (p′1+ p′′1))

= α′

2
(%′2+ %′′2 − %′1− %′′1)(q2× (p+ αq2))

= α′

2
(%′2+ %′′2 − %′1− %′′1). (5)

Note that the edge direction vectorsqi were chosen such thatqi × p = 1. In the
general caseλ′ andλ′′ intersect multiple edges of some arbitrary polygonP at points
p′1, p′2, . . . , p′r and p′′1, p′′2, . . . , p′′r . We chooses′ ands′′ such thats′′ − s′ = α′qr . Now
the%′′i can be determined from the two vector equationsp′′i = p′i + µqi , µ ∈ R, and
p′′i = s′′ + %′′i p′:

%′′i = %′i − α′
qi × qr

qi × p′

= %′i − α′
qi × qr

1+ α(qi × qr )

= %i − α′(qi × qr )

1+ α(qi × qr )
. (6)
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Then the polygon area betweenλ′ andλ′′ is

b = α′

2

r∑
i=1

(−1)i (%′i + %′′i )

= α′

2

r∑
i=1

(−1)i
2%i − α′(qi × qr )

1+ α(qi × qr )
. (7)

This is a quadratic polynomial inα′ (unless allqi are parallel, in which case it simplifies
to the linear equationb = α′∑r

i=1(−1)i%i ). Equation (7) can be used to find a bisector
of P with a given directionp, i.e., with a given slope. This result was summarized in
Theorem 2(ii).

Maintaining the Bisector Property. From the analysis so far we see that if the bisector
λ is rotated toλ′, then the left and right areas are changed by a valuea (6= 0 in general)
as described in (4). Hence a subsequent shift ofλ′ is necessary to restore the bisector
property, by changing the areas by a valueb, as described in (7).

This implies the conditiona+ b = 0, with a andb given by (4) and (7):

a+ b = 1
2

r∑
i=1

(−1)i
α%2

i + 2α′%i − (α′)2(qi × qr )

1+ α(qi × qr )

= 0. (8)

This equation ensures thatλ is a bisector ofP. Equation (8) describesa+b as a rational
function inα, and a quadratic polynomial inα′. Hence for all combinatorially equivalent
bisectors, we can obtain an explicit formula to describeα′ as a function ofα. We conclude
that all combinatorially equivalent bisectors can be represented by an explicit expression
parametrized byα.

In general, (8) is equivalent to a polynomial inα andα′ whose degree depends on
the numbert ≤ r of distinct slopes of polygon edges intersected by the bisectorsλ,
λ′, or λ′′, provided that thedi (α)’s are all nonzero; see the remark above. The poly-
nomial is at most quadratic inα′. In the case that allqi are parallel, (8) simplifies to
the linear equation

∑r
i=1(−1)i

(
α(%i /2)+ α′

)
%i = 0. This result was summarized in

Theorem 3.

With Theorem 3 we obtain a parametric description for every set of combinatorially
equivalent bisectors ofP: Given a polygon, we can generate (8) for any particular
equivalence class, which yields the polynomial equationf (α, α′) = 0. Solving f for α′,
we finally obtainx̄ and ȳ parametrized byα.

While Theorem 3 gives an algebraic characterization of the area bisectors, in subse-
quent sections we only use an intermediate result, summarized in Theorem 2(i), describ-
ing the area bisectors through a given point in the plane. In this case we have a univariate
(in α) polynomial equation. We use this equation in the time analysis of the algorithm
in Section 4, and for a combinatorial upper bound onκ in Section 5. In the following
section on lower bounds we show that there exist polygonsP for whichκ(P) is strictly
greater thanK (P).
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Fig. 4. A simple polygon withn vertices that hasÄ(n2) combinatorially distinct bisectors.

3. Lower Bounds

As argued above, a polygon withn vertices can have at mostO(n2) combinatorially
distinct area bisectors. Here we give an example where the boundÄ(n2) is attained.

Theorem 4. There exist simple polygons P with n vertices andÄ(n2) combinatorially
distinct bisectors.

Proof. Consider Fig. 4. All the verticesvi , v
′
i ,ui , andu′i lie on a circle whose center is

atc. The verticeswj lie very close toc on a small circle whose center isc as well, along
two convex polygonal chains.

We fix an integerm (that we determine later; for the polygon in the figurem = 3).
The distance between the verticesvi andvi+1 is the same fori = 1, . . . ,m, and it is
the same as the distance betweenv′i andv′i+1 for i = 1, . . . ,m. The area of all triangles
vi ui vi+1 for i = 1, . . . ,m is the same and is equal to the area of all trianglesv′i u

′
i v
′
i+1 for

i = 1, . . . ,m. There are 2m verticeswj nearc and they are equally spaced on a small
circle centered atc. As can be easily verified, for every pair of verticesvi andv′i , there
is a bisector passing through these points that passes also through the center pointc. We
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next claim that as we rotate the bisector fromvi to vi+1 it will move off the centerc and
sweepm verticeswj .

The reason that the bisector will move off center as it rotates fromvi to vi+1 is that
the angle∠ui vi vi+1 is greater than the angle∠u′i v

′
i v
′
i+1. Hence, as the bisector rotates, it

will proceed “faster” on the bottom part of our polygon than on the top part and therefore
will sweep half of the verticeswj on its way.

Finally, m is chosen such that (roughly)n = 6m+ 8. It follows that the number of
distinct area bisectors isÄ(m2) = Ä(n2).

Recall from the Introduction that for a polygonP, K (P) is the number of combi-
natorially distinct bisectors ofP, andκ(P) is the number of maximal bisector slope
intervals such that within each interval the bisectors are combinatorially equivalent. We
conclude this section by showing a polygonP for which K (P) andκ(P) are not equal.
This example is due to Lovett.2

Theorem 5. There exist simple polygons P such thatκ(P) > K (P).

Proof. We show that for a given polygon withn vertices and two combinatorially
equivalent area bisectorsλ1 andλ2, as we vary the slope between the slope ofλ1 and
λ2 the corresponding area bisectors exit and enter the equivalence class ofλ1 (andλ2)
Ä(n) times.

Let abcbe a triangle. It is easily verified that a median in a triangle is an area bisector
of the triangle. We denote the median incident toc by λ1, and the median incident toa
by λ2. Consider the familyF of all the area bisectors obtained when we vary the slope
between the slopes ofλ1 andλ2, in the interval where all area bisectors intersect the edges
ab andbc. We take the upper envelope of the lines inF , which is a convex curveE.3

See Fig. 5 for an illustration. For a givenn, we take a setQ of b(n−1)/3c evenly spaced
points alongE, and draw the tangent line toE at each of these points. Each tangent line
is an area bisector. Consider two consecutive points and their tangents: In between the
points, slightly below the envelope and above the two tangent lines we draw the apex of
a thin spike extending from the edgeac of the triangle. We carve this spike out of the
triangle. We repeat this process for each pair of consecutive points ofQ∪{a, c}. Finally
we pull the edgeac outward so that the area of the polygon aboveλ1 (which is half the
area of the original triangle) will be equal to the area belowλ1, compensating for the
area of the spikes.

All the tangent lines induced by the setQ are area bisectors of the same equivalence
class—they have the single vertexb on one side of the bisector. Evidently as we let the
slope vary, every time we cross a spike the equivalence class changes. Hence we obtained
a polygon withn vertices and an equivalence class of area bisectors that is entered and
exitedÄ(n) times as we let the slope vary.

2 S. Lovett, personal communication, Tel Aviv University, 1997.
3 For example, if we choose the coordinates ofT ’s vertices to bea = (0,1),b = (0,0), andc = (2,0),

thenE is the hyperbolaf (x) = 1/4x.
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Fig. 5. A simple polygon withn vertices for whichκ > K : by continuously changing the slope ofλ, a
particular equivalence class of bisectors is entered and exitedÄ(n) times.

4. Output-Sensitive Algorithm

Let P be a polygon withn vertices as defined in the Introduction, namely, connected,
nondegenerate, and possibly with holes. Throughout this section we assume that no three
vertices ofP are collinear (see also the remark at the end of the section). In the dual
plane every vertexv of P is transformed into a linev∗ which is the collection of all
points dual to lines in the primal plane that pass throughv.

For any given direction there is a unique area bisector. We denote the oriented bisector
of P that makes an angleθ with the positivex-axis byB(θ), and (because of symmetry)
confine ourselves to the range [−π/2, π/2) for θ . We denote the collection of points dual
to area bisectors ofP in that range byβ. Note that anyθ (besides−π/2) corresponds
to anx̄-coordinate in the dual plane.

The curveβ is a piecewise algebraic and̄x-monotone curve (see Theorem 3 and
Lemma 1(iii)). We callβ thebisector curveof P, as it gives a complete specification of
all the area bisectors of the polygonP. The numberκ as defined in the Introduction cor-
responds to the number of maximal connected algebraic pieces inβ, where the function
describing each piece is defined by the fixed set of edges that the corresponding set of
bisectors cross. In this section we describe an output-sensitive algorithm to computeβ.

Since we aim for output-sensitivity, we cannot afford to compute the entire arrange-
mentA(V∗) whose complexity can beÄ(n2). We will discover the maximal pieces of
β in their order alongβ by dynamically exploring the faces of the arrangement through
whichβ passes, and by computing the intersection points ofβ with the edges bounding
these faces.
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Fig. 6. (a) The facef containingp is the intersection of half-planes containingp; (b) the maximal pieces of
β inside f and its exit points fromf .

We choose an arbitrary directionθ0 ∈ [−π/2, π/2) and look for the area bisector of
P in that direction. This can be done inO(n logn) time for an arbitrary polygon [7],
and inO(n) time for a simple polygon [16]. We assume that the bisectorB(θ0) does not
pass through a vertex ofP, otherwise we changeθ0 slightly so thatB(θ0) does not pass
through a vertex.

Next, we obtain the set of edges crossed byB(θ0) in O(n) time (this could also be
obtained as a by-product of the algorithm for findingB(θ0)). We denote byE(θ) the set
of edges crossed byB(θ). The setE(θ0) determines the function describing the bisector
curveβ in a neighborhood ofθ0. More precisely, the setE(θ0) induces a function that
describes the bisectors as long as the set of edges crossed by the bisector does not change
(see Section 2). In the dual plane this function describes the curveβ as long as we do
not leave the face ofA(V∗) which contains the pointp := (B(θ0))

∗.
Our next step is to construct the facef = f (p) that contains the pointp in A(V∗).

We do a little more than just exploring the facef , in preparation for the rest of the
algorithm. For each linev∗i ∈ V∗, let hi ( f ) denote the half-plane bounded byv∗i and
containing the facef . Let H = H( f ) denote the collection ofn half-planeshi ( f ). The
face f equals the intersection of all half-planes inH( f ); see Fig. 6 for an illustration. We
explore the faces of the zone ofβ in the arrangementA(V∗) by dynamically maintaining
the intersection of half-planesH [15]. We denote the necessary dynamic data structure
by D. The time to construct the facef and prepareD is O(n log2 n) [15].

Now we determine the maximal pieces ofβ∩ f . We split the edges boundingf into an
upper chain and a lower chain, each set being ordered from left to right. For each edge on
the upper chain we compute the intersection of its supporting line withβ. Computing the
intersection ofβ with the linev∗ supporting an edge is equivalent to finding the bisectors
that pass through the vertexv and intersect a fixed set of edges ofP. Hence we can
use (4) (see also Theorem 2(i)). The roots of the polynomial determine the intersection
points; we may have to filter out roots that correspond to bisectors with slope outside
the given slope interval. We order the resulting intersections along thex̄-axis. We repeat
the same for the edges of the lower chain, and merge the two lists of intersection points
into a single listI . Since the curveβ is x̄-monotone, the listI provides a description of
the curveβ inside f . Moreover, the listI indicates what are the neighboring faces that
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β crosses. We mark each of these additional faces by the point whereβ crosses out of
f . We call each such point anexit point. See Fig. 6(b).

Since f has already been constructed, we know for each exit point ofβ the line that
contains it (in fact we know a little more, we also know the two lines that bound the edge
from whichβ exits). We next explore one of the faces, sayf ′, into which the curveβ
crosses out off through an edge that we denote bye. Let v∗i be the line containing the
edgee. In terms of intersection of half-planes, to obtainf ′ the only half-plane that needs
to be modified is the half-plane supported byv∗i . More specifically to obtain the new set
H( f ′), we deletehi ( f ) from H and addhi ( f ′) which is the half-plane supported byv∗i
on the other side ofv∗i . (Some caution is needed ifβ crosses out off through a vertex.
However, since only two lines intersect at that vertex, the operations are similar to those
described for the case of crossing out of an edge, and their asymptotic running time is
the same.)

Thus we need to delete a half-plane fromD and insert a half-plane intoD. As a
result we obtain the new facef ′. The cost of the operation isO(log2 n+C( f ′)), where
C( f ′) is the number of edges on the boundary off ′. The insertion and deletion each
costsO(log2 n), and the cost of reporting the edges on the boundary of the new face
f ′ is proportional to the number of these edges [15]. We keep a data structure, say a
quad-edge structure [11], that describes all the faces ofA(V∗) that have already been
constructed so that we do not construct the same face twice. The cost of updating the
quad-edge structure with the new face is proportional toC( f ′).

We continue exploring the faces through whichβ passes by moving monotonically in
the positivex-direction. When the move in that direction has been completed, namely,
there are no more exit points to the right of the last exit point handled, we return to the
starting pointp and repeat the process in the negativex-direction. The algorithm stops
when we have identified all the intersection points ofβ with lines inV∗, and so we have
also identified thezoneof β in A(V∗), namely, all the faces ofA(V∗) crossed byβ.

Recall thatκ is the sum, over all facesf in the zone ofβ in A(V∗), of the number
of maximal connected componentsβ ∩ f . The overall running time of the algorithm
consists of the following components:

1. The initial construction of the structureD takesO(n log2 n).
2. For each exit point we payO(log2 n) to updateD, for a total ofO(κ log2 n).
3. For each newly visited facef we also payO(C( f )) to report its bounding edges

and keep them in the quad-edge structure.
4. For each edge on each explored face we compute its intersection withβ.

To estimate the cost of components 3 and 4, we need a bound on the sum ofC( f ) over
all faces f of the zone ofβ in the arrangementA(V∗). The following lemma bounds
the complexity of the zone of an arbitrary curve in an arrangement of lines. We make no
assumptions on the curve besides that it consists of a single connected component.

Lemma 6. Given a collectionL of n lines in the plane and a connected curveγ that
intersects the lines ofL in N points in total, then the complexity of the zone ofγ inA(L)
is O((n+ N)α(n)).

Proof. We modify the arrangementsA(L) as follows (by an idea borrowed from [9]).
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Whereverγ crosses a linè ∈ L, we make a small gap iǹ, splitting` into two segments
such thatγ passes between them. As a result we get a collectionSof n+ N segments,
andγ lies in a single face of the arrangementA(S). Since the complexity of a single face
in an arrangement oft segments isO(tα(t)) a bound ofO((n+ N)α(n+ N)) follows.
Har-Peled [13] showed that if all the segments lie on onlyn lines, then the complexity
of a single face isO((n+ N)α(n)).

Since the number of intersection points betweenβ and V∗ is κ − 1 we have the
following immediate corollary.

Corollary 7. The maximum combinatorial complexity of the zone ofβ in A(V∗) is
O((n+ κ)α(n)).

Thus component 3 of the running time isO((n + κ)α(n)) which is subsumed by
components 1 and 2. It remains to bound component 4, namely, the time to compute all
the intersection points ofβ with the edges of the zone ofβ. Let t denote the maximum
number of distinct slopes of edges ofP intersected by a single line. Also, letψ( j ) denote
the time to find the roots of a polynomial equation of degreej . (Asymptotically, the term
ψ( j ) subsumes the time to construct the polynomial.) For general polygons (of the type
defined in the Introduction) the time to compute all the intersection points ofβ with V∗

is obviously bounded byO((n+ κ)α(n)ψ(t)).
If P is c-oriented, then by Theorem 2(i) the equation describing the bisectors through

a given vertex and intersecting a fixed set of edges is a polynomial of constant maximum
degree and it takes constant time to find its roots. It follows that, in this case, the time
to compute the intersections ofβ with the linesV∗ is asymptotically dominated by the
time to compute the zone ofβ in A(V∗).

We summarize the discussion above in the following theorem.

Theorem 8. Given a nondegenerate polygon P(possibly with holes) with n vertices,
we can find a complete specification of its bisectors in time O((n + κ) log2 n + (n +
κ)α(n)ψ(t)), whereκ is the number of maximal connected algebraic pieces of the
bisector curveβ. If P is c-oriented, then the algorithm runs in time O((n+ κ) log2 n).

Remark. We assumed above that no three vertices of the polygonP are collinear. If
we relax this assumption the following situation may arise. As we explore the zone ofβ

in the arrangement,β crosses out of a facef through a vertexu at whichnu > 2 lines
are incident. We could reach the face into whichβ crosses out off by O(nu) update
operations to the structureD. However, the overall cost of operations at such degenerate
crossings is no longer as sharply related toκ as in the bounds above.

5. Conclusions and Open Problems

In this paper we have characterized the family of area bisectors of a polygon. We have
shown that a polygon withn vertices can have2(n2) combinatorially distinct area bisec-
tors, namely,2(n2) equivalence classes of bisectors, where two bisectors are equivalent
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if the lines containing them split the set of polygon vertices in the same fashion. We have
also presented an output-sensitive algorithm that produces an explicit representation of
all bisectors of a polygonP.

Our algorithm produces the bisector families ordered by slope. We have shown at the
end of Section 3 that there exist polygons for which, as we vary the slope of the bisector,
the same equivalence class can be entered and exitedÄ(n) times. This raises the following
problem: How many equivalence classes of bisectors can be encountered when we let
the slope of the bisector vary in the range [−π/2, π/2)? In the paper’s notation the
question is to obtain a bound on the valueκ(n). The lower boundÄ(n2) for K (n) shown
in Section 3 applies here as well. The best upper bound we can show at the moment
is O(n3) derived by the following argument, using the dual arrangement formulation.
Consider one edgee of the arrangementA(V∗). The bisectors whose dual points lie on
eare determined by the roots of a polynomial of degree at mostn (equation (4)), so their
number is at mostn, thus the bisector curve cannot cross an edge of the arrangement
more thann times. Since the arrangement hasO(n2) edges, the cubic bound follows. In
summary there is a gap of an order of magnitude between the lower bound and upper
bound onκ(n) and the problem is to tighten this gap.

Another open problem is raised by the motivating application. As explained in the
Introduction, area bisectors correspond to force equilibria of polygonal parts put on
certain part-orienting devices. We are in fact interested intotal equilibria which are
simultaneously force andmomentequilibria of polygonal parts. A lineλ crossing a
polygon P induces total equilibrium if (i)λ is an area bisector ofP, and (ii) the line
connecting the center of mass (area) ofP ∩ hl (λ) with the center of area ofP ∩ hr (λ)

is perpendicular toλ.4 The problems we propose are to bound the number of total
equilibria of a polygon, and to compute them efficiently. For the combinatorial problem
we have only trivial bounds: a lower boundÄ(n) for a regularn-gon and an upper
boundO(n3) which is obtained in a way similar to the upper bound forκ(n), namely,
for every equivalence class of area bisectors, the total equilibria are defined by the
roots of a polynomial of degree at mostn, wheren is the number of vertices of the
polygon. As for an algorithm, our way to obtain total equilibria is first to find all the
distinct bisectors and then solve the problem for each class of bisectors. Could the stage
of computing all bisectors be avoided when computing total equilibria? For example,
for a sufficiently largen, the part in Fig. 4 (Section 3) has only one stable (and one
unstable) total equilibrium, even though there existÄ(n2) distinct area bisectors.5 This
equilibrium is attained when the connecting bar between the outer circle segments and
the inner circle is parallel to the squeeze line, and for the unstable equilibrium, the
squeeze line is perpendicular. In both cases the squeeze line passes through the center
pointc. For more details on total equilibria and the motivating application, see [3].

4 The locations of the centers of area can be computed by an analysis similar to the derivation ofβ in the
proof of Theorem 2.

5 Small disturbances from astableequilibrium cause the part to return to this equilibrium. Slight distur-
bances in anunstableequilibrium are sufficient to move the part further away from equilibrium.
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