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Abstract
Recent work in parts handling advocates the investigation

of a new generation of devices for parts feeding, sorting,
positioning, and assembly. Unlike robot grippers, conveyor
belts, or vibratory bowl feeders, these devices generate force
fields in which the parts move until they may reach a stable
equilibrium pose.

The development of the theory of programmable force
fields has yielded a number of strategies to uniquely position
and orient parts. Typically, more than one fields are applied
in sequence to achieve the desired result. In this paper we
show that unique part poses can be achieved with a single
field. In particular, we present a single field that positions
and orients any non-symmetric part into two stable equilib-
rium poses. Then we show that for any laminar part there ex-
ists a field in which the non-symmetric part reaches a unique
stable equilibrium pose. Our latter result leads to the design
of devices that can act as “universal parts feeders” proving
an earlier conjecture about their existence.

1. Introduction

Part manipulation is an important but also time-
consuming operation in industrial automation. Tradi-
tionally part feeding and orienting has been performed
with vibratory bowl feeders. These devices are cus-
tomly designed for the orientation of a single part or
a small number of parts and rely on mechanical filters
to reject parts in unwanted orientations. Despite their
widespread use, vibratory bowl feeders have several
disadvantages: they have to be redesigned when the
geometry of the part changes; they may damage parts
that repeatedly run through the mechanical filters, etc.

Recent work investigates alternative ways for feed-
ing parts in assembly workcells. Parts feeders that are
programmed, rather than mechanically modified, offer
an attractive solution since they can be used for a vari-
ety of parts [1, 2, 3, 4]. Practical considerations favor
feeding methods that require little or no sensing, em-

Figure 1: Sensorless parts orienting using a sequence of
squeeze fields: The arrows indicate the direction of the force
field.

ploy simple devices, and are as robust as possible. One
of the proposed alternatives is the use of programmable
force fields [2, 5, 6]. The basic idea is the following:
the field is realized on a planar surface on which the
part is placed. The forces exerted on the contact sur-
face of the part translate and rotate the part to an equi-
librium pose. The manipulation requires no sensing.

Current technology permits the implementation of
certain force fields in the microscale with actuator
arrays [5] built in micro electro mechanical system
(MEMS) technology, and in the macroscale with trans-
versely vibrating plates. The flexibility and dexter-
ity that programmable force fields offer has led re-
searchers to investigate the extent to which these fields
can be useful. The work in [5] analyzes the proper-
ties of force fields that are suitable for sensorless ma-
nipulation and proposes novel manipulation strategies.
These strategies typically consist of sequences of force
fields that cascade the parts through multiple equilibria
until a desired goal state is reached. Figure 1 shows
such a two-step sequence to orient a polygonal part
(Reprinted from [2]).

Programmable force fields allow us to shift the com-
plexity of parts feeding from the design of mechan-



ical tracks, and filters to control algorithms and cir-
cuitry. No sensors or feeder re-design is required.
However, the designs proposed in [5] require control
software, a clock, and, to some extent, synchronization
between distributed actuators. In this paper we show
that the device complexity can be further reduced, by
presenting two specific device architectures. Assuming
non-symmetric parts, the first design achieves exactly
two stable equilibria without sensor feedback, clock,
or control system. More precisely, unique position-
ing and orienting is reached modulo 180� in orienta-
tion. The second design overcomes this limitation and
for any non-symmetric part achieves unique position-
ing and orientation. We explain that our second result
demonstrates the first known instance of auniversal
feeder/orienter (UFO) device[2], i.e., a general pur-
pose device that can uniquely position and orient any
part without redesigning or reprogramming.

2. Related Work

An extensive survey of previous and related work in
the area of programmable force fields is offered in [7].
In this paper we only give a brief summary.

In 1994 Böhringer and Donald proposed that there
exist challenging algorithmic problems in MEMS
and programmable force fields, at the intersection of
combinatorial algorithms, geometry, dynamical sys-
tems, and distributed systems [5]. From 1993-1998,
Böhringer and Donald worked with Noel MacDon-
ald at the Cornell Nanofabrication Facility to develop
and test new arrays of MEMS microactuators for pro-
grammable force fields [2, 5, 8]. At the same time,
Böhringer and Donald worked with Greg Kovacs’
group at the Center for Integrated Systems at Stan-
ford, to develop a control system for MEMS organic
ciliary arrays, and to perform experiments with these
arrays to manipulate IC dice using array-induced force
fields [9]. In parallel, Böhringer and Donald worked
with Ken Goldberg at Berkeley and Vivek Bhatt at Cor-
nell to generalize the theory to macroscopic devices, by
developing algorithms for transversely vibrating plates
in order to implement programmable force fields [10].
Around this time, Lydia Kavraki explored the power
of continuous force fields, and demonstrated an ellip-
tical potential field capable of posing any part into one
of two equilibrium states [11], and investigated the
effect of control uncertainty on the stability of equi-
libria. Finally, Böhringer and Donald worked with
Dan Halperin, to develop new upper and lower bounds
and a precise analysis of the area bisectors arising in
squeeze-field algorithms [12].

Until recently, work on force fields for manipulation

has been dominated by the artificial potential fields pi-
oneered by Khatib, Koditschek, and Brooks. While
potential fields have been widely used in robot con-
trol [13, 14], micro-actuator arrays present us with the
ability to explicitly program the applied forceat every
point in a force field. Several groups have described ef-
forts to apply MEMS actuators to positioning, inspec-
tion, and assembly tasks with small parts [5, 6, 15, 16].
However, the fabrication, control, and programming
of micro-devices that can interact and actively change
their environment remains challenging.

Other groups have also been active in developing
new devices, analysis, and algorithms. John Canny and
Dan Reznik developed sophisticated dynamic models
and dynamic simulators for both MEMS devices and
macroscopic vibrating plates [17]. Peter Will and his
colleagues at USC-ISI have explored a number of dif-
ferent MEMS array designs, as well as algorithms and
analysis for programmable force fields [6, 18]. Andy
Berlin, David Biegelsen, and Warren Jackson at Xe-
rox PARC have developed a novel MEMS microac-
tuator array based on controllable air jets, with inte-
grated control and sensing circuitry [19]. Working at
CMU, Bill Messner and Jonathan Luntz developed a
small room whose floor is tiled with controllable, pro-
grammable, macroscopic wheels that can be driven and
steered to manipulate large objects such as boxes [20].
Their system employed distributed, local controllers
to implement programmable force fields. Together
with Howie Choset, they analyzed the resulting dy-
namical system to obtain interesting results on con-
trollability and programmable force field algorithms
based on conservative vs. non-conservative fields [21].
Working with the Berkeley Sensor & Actuator Center
(BSAC), Karl Böhringer and Ken Goldberg explored
how MEMS devices employing electrostatic fringing
fields can be used to implement programmable force
fields for parts manipulation and self-assembly [22].

In short, there has been an explosion of new and ex-
otic arrayed devices for both MEMS manipulation and
macroscopic manipulation. Despite advances, how-
ever, the conjecture [2] about the existence of a Univer-
sal Feeder-Orienter (UFO) Device has remained open
since 1995; the problem has been widely viewed as
resistant to solution. In this paper, we prove the con-
jecture is true.

3. Force Fields for Part Manipulation

In this section we summarize some of the basic re-
sults in the theory of programmable force fields that
are necessary for the remainder of the paper. In a
programmable force field, every point in the plane is



associated with a force vector in the plane. For ex-
ample, a unit squeeze field is defined asf(x; y) =
�sign(x)(1; 0). When a part is placed into a squeeze
field, it experiences a translation and re-orientation un-
til a predictable equilibrium is reached. This property
makes squeeze fields very useful for sensorless posi-
tioning and orienting strategies.

Given a polygonal partP with n vertices, it was
shown in [5] that there existO(n2k) stable equilib-
rium orientations forP when placed inf (k is the num-
ber of combinatorially distinct bisector placements for
P [12]. This result was used to generate strategies
for unique parts posing (up to symmetry) by reducing
the problem to a parts feeding algorithm developed by
Goldberg [4]. The strategies have lengthO(n2k) and
can be generated inO(n4k2) time.

In [2] this result was improved to plan lengths of
O(nk) and planning timeO(n2k2), by employing
combined squeeze and unit radial fields (unit radial
fields are defined asr(x; y) = (�1=

p
x2 + y2)(x; y)

and are described in more detail in Section 6.).

Using elliptic force fieldsf (x; y) = (��x;��y)
such that0 < � < �, this bound can be reduced to a
constant number (2) independent ofn [11]. We show
this result in Section 5..

It was conjectured in [2] that a field which com-
bines a radial and gravitational fieldr+ �g (g(x; y) =
(0;�1) and � is a small positive constant), has the
property of uniquely orienting and positioning parts.
We call this field the radial-gravity field and we prove
in Section 6. that for any non-symmetric part, there is
a radial-gravity field inducing exactly one stable equi-
librium. Our paper also includes a discussion on im-
plementation issues relating to the radial-gravity field.
Such a field could be used to build auniversal parts
feeder(inspired by the “universal gripper” as proposed
by Abell and Erdmann [23]1). In contrast to the uni-
versal manipulator fields proposed in [17], such a de-
vice could uniquely position a part without the need of
a clock, sensors, or programming.

4. Conditions for Equilibria

In this section we give some definitions and establish
the notation that will be used in the two following sec-
tions. We investigate the conditions for equilibrium for
a partw in the presence of a force fieldf : R2 ! R

2.
It is assumed thatw(x; y) � 0, for x; y 2 R, and

1In a universal gripper a part is free to rotate after being picked
up from an arbitrary initial state. Its center of mass will settle at
the unique minimum of potential energy, causing the part to reach a
unique, predictable equilibrium.

W =
R
R2
w(p)dp < 1. Herew can be seen as the

support (characteristic) function of the part, this func-
tion is 1 on the part and 0 elsewhere. We assume that
the support ofw is compact.

Without loss of generality, the origin of the reference
frame in the plane can be chosen as the center of mass
of w : Z

R2

pw(p)dp = 0:

When the part is in configurationq = (x; y; �), the
resultant force is given by

F =

Z
R2

w(p)f (A�p+ t) dp;

and the resultant torque at the center of mass is given
by

M =

Z
R2

w(p)(A�p)� f (A�p+ t) dp;

wheret = (x; y)>, and is the rotation matrix of angle
�. From now on, all integrals extend overR2 unless
otherwise stated.

A total equilibrium is achieved when the resultant
force and torque on the part is zero. For a total equilib-
rium the following two equations must hold:

F = 0 (1)

M = 0: (2)

5. Two Stable Equilibrium Orientations

In this section we show a force field that orients most
parts into two stable equilibria. The field derives from
an elliptic potential field and we call it theelliptic field:

f (x; y) = (��x;��y); (3)

where � and � are two distinct positive constants.
Without loss of generality let us assume that� < �.
Figure 2 displays one such force field with� = 1 and
� = 2. Note that this force field is the negative gradient
of the elliptic potential functionu(x; y) = �

2
x2+ �

2
y2:

This potential function is plotted in Figure 3, for� = 1
and� = 2.

5.1. Force Equilibrium

We first establish the condition for the force equilib-
rium. If (x; y) are the coordinates of the center of mass
of w in configurationq, (W is defined in Section 4.),
the total force exerted onw, is equal to

(��Wx;��Wy):
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Figure 2: Force field for� = 1 and� = 2.
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Figure 3: Elliptic potential for� = 1 and� = 2.

Condition (1) is thus equivalent to(x; y) = (0; 0).
Therefore, for the equilibrium configurationsq, we
only need to consider configurations of the typeq =
(0; 0; �).

5.2. Moment Equilibrium

We now proceed to the investigation of condition (2).
It turns out that, for “most” partsw and for whatever
distinct positive values of� and�, there are exactly 4
values of� for which (2) holds. This is shown below.

Taking into account the force equilibrium, the ex-
pression of the torque becomes now

M =

Z
w(p)(A�p)� f (A�p) dp:

After calculations

M = (���)
�
cos 2�

Z
xy w(x; y) dx dy

�
�k: (4)

In the above

smn = smn(w) =

Z
R2

xmynw(x; y) dx dy (5)

define moments ofw. Thus, since� 6= �, we
have M = 0 if and only if s20�s02

2
sin 2� +

s11 cos 2� = 0. Equivalently, we want the vectors
(cos 2�; sin 2�) and (s11;

1

2
(s20 � s02)) to be orthog-

onal. This leads to the following theorem:

Theorem 1 Letw : R2 ! Rbe a part with finitesij
with i + j � 2 and whose “center of mass” is at0,
and letf (x; y) = (��x;��y), with 0 < � < �, be
the underlying force field.

“SYMMETRY ” : If s11 = s20 � s02 = 0 the part
w(A�p+ t) is at total equilibrium whenevert = 0.

“A SYMMETRY” : Otherwise, the distributionw(A�p+
t) is in equilibrium only whent = 0 and for exactly4
distinct values of� 2 [0; 2�). These4 values of� are �

2

apart and only2 of them, say�0 and�0 + �, represent
stable equilibria, the others,�0+

�
2

and�0+
3�
2

being
unstable.

6. One Stable Equilibrium Orientation

We now exhibit a class of force fields that induce one
stable equilibriumfor most parts. These fields are com-
binations of a unit radial and gravity field and we will
call themradial-gravity fields:

� A unit radial field R is defined by: r(x; y) =
� 1p

x2+y2
(x; y).

� A unit gravity field g is given by g(x; y) =
(0;�1).

� For a given� 2 R, the radial-gravity fieldis de-
fined as the sum of a unit radial fieldr and a grav-
ity field g scaled by�: F� = r+ �g.

Figures 4 and 5 plot a radial-gravity field for which
� = 0:4.

Equilibrium through Potential Fields In this sec-
tion we reason with potential fields instead of using di-
rectly equations (1) and (2). First we notice thatF� de-
rives from the potential fieldu�(x; y) =

p
x2 + y2 �

�y and we define the following potential field over the
configuration spaceC of the part:

U�(q) =

Z
w(p)u�(A�p+ t)dp:

A configurationq is a stable equilibrium of the part if
and only ifq is a local minimum of the functionU�.

In order to take advantage of the radial symme-
try of r(x; y), we define a new system of coordinates
(X;Y; �) from the standard one by

X = x cos � + y sin �

Y = �x sin � + y cos �:
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Figure 4: Radial-gravity field with� = 0:4.
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Figure 5: Combination of a unit radial and a gravitational
potential field with� = 0:4.

The expression ofU� in this new system of coordinates
is obtained by a change of variable in the integral:

U�(X;Y; �) =Z
w(�; �)

p
(X + �)2 + (Y + �)2d�d�

��W (X sin � + Y cos �):

To establish the existence and uniqueness of a stable
equilibrium, we proceed in two steps. First we state the
existence and uniqueness of a local minimum of the
potential field for any fixed�. This partial minimum is
theforce equilibrium. Then we study the curve of force
equilibria when� describesS1 and reason about mo-
ment equilibria. For our discussion below, we define
the following functions:

U�;�(X;Y ) = U (X;Y; �; �) = U�(X;Y; �):

6.1. Force Equilibrium

A force equilibrium is a local minimum ofU�;�. Using
common results of the theory of integration, we find
thatU is of the classC2 and that its partial derivatives

with respect toX andY are obtained by differentiat-
ing under the integral. The following proposition es-
tablishes the existence and uniqueness of a stable force
equilibrium for a fixed� by proving that the function
U�;� is convex.

Proposition 2 If � < 1, U�;� has a unique local mini-
mum.

The proof of this proposition can be found in [7].

6.2. Moment Equilibrium

Having established the force equilibrium, we proceed
to express it as a function of�; �.

Equilibrium Curve We denote the unique force
equilibrium relative to� by (X�(�; �); Y �(�; �)) and
by (x�(�; �); y�(�; �)) its expression in the(x; y; �)
system of coordinates:

x�(�; �) = cos � X�(�; �)� sin � Y �(�; �) (6)

y�(�; �) = sin � X�(�; �) + cos � Y �(�; �): (7)

We call equilibrium curve of parameter� the curve
f(x�(�; �); y�(�; �)); � 2 S1g of force equilibria.

When � = 0 (pure radial field), due to the radial
symmetry of the field, the set of equilibrium configu-
rations is generated by the rotations of the part about
one of its points called thepivot point[5].

We have established in [7] thatX�; Y �; x�; y� are
continuously differentiable. Let us now denote by
U�

� (�) the minimum value of the potential function for
each�. Then it is straightforward that(X;Y; �) is a lo-
cal minimum ofU� if and only if � is a local minimum
of U�

� andX = X�(�; �) andY = Y �(�; �). The fol-
lowing proposition establishes a relation between the
derivative ofU�

� and the position in the plane of the
force equilibrium.

Proposition 3 For any� 2 S1,

dU�

�

d�
(�) = �Wx�(�; �):

The proof of this proposition can be found in [7].
Proposition 3 states that a stable equilibrium config-

uration corresponds to a value of� where the equilib-
rium curve crosses the y-axis fromx < 0 to x > 0.
We now proceed to establish the unique global equilib-
rium.

Theorem 4 (Unique Global Equilibrium) For any
compact partw , if (X�(�; 0); Y �(�; 0)) 6= (0; 0) (i.e.
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Figure 6: Decomposition of the equilibrium curve for� = 0
into four intervals.

the center of mass and the pivot point are distinct) then
there exists� > 0 such thatw has a unique stable equi-
librium configuration under the potential fieldU�.

Proof: First, let us notice that the curve
(X�(�; 0); Y �(�; 0)) is reduced to a point since when
� = 0, the potential fieldU� does not depend on�. Let
us express this point in polar coordinates

X�(�; 0) = R cos'

Y �(�; 0) = R sin':

Then if (X�; Y �) 6= (0; 0), from relations (6) and (7),
the curve(x�(�; 0); y�(�; 0)) is a circle centered on
(0; 0) (Figure 6).

x�(�; 0) = R cos(� + ')

y�(�; 0) = R sin(� + '):

The current proof is based on the continuity of the
functionsx� and y� and their derivatives. We pro-
ceed in two steps: near�=2� ' and3�=2� ', where
x�(�; 0) crosses 0, the variation of the tangent vector to
the curve(x�(�; �); y�(�; �)) can be made sufficiently
small in order to prevent the curve to cross twice the
y-axis. For the remaining values of�, the variation of
the position of the curve can be bounded in such a way
that the curve cannot cross the y-axis. The complete
proof follows.

Let us recall that@x�=@�(�; �) is a continuous func-
tion and that@x�=@�(�' + �=2; 0) = �R and
@x�=@�(3�=2 � '; 0) = R. Therefore there exists
�1 > 0 and �1 > 0 such that8� < �1; 8� 2
[�' + �=2 � �1;�' + �=2 + �1];

@x�

@�
(�; �) < 0

and8� < �1; 8� 2 [�' + 3�=2 � �1;�' + 3�=2 +
�1];

@x�

@�
(�; �) > 0:

These inequalities imply that the equilibrium curve
does not cross more than once the y-axis on the corre-
sponding intervals of�.

We are going now to show that for the remaining
values of�, there exists a� small enough such that the
corresponding part of the equilibrium curve does not
cross the y-axis. To make the notation clearer, let us
define the following compact set

I = [�'+ �=2 + �1;�'+ 3�=2� �1][
[�'+ 3�=2 + �1;�'+ 5�=2� �1]

Then for� = 0 and� 2 I, the equilibrium curve stays
at a strictly positive distance from the y-axis:

�2 = Inffjx�(�; 0)j; � 2 Ig > 0:

x� is continuous, thus its restriction to the compact set
I � [0; �1] is uniformly continuous. Therefore, there
exists a constant�2 > 0 such that

8� 2 I; 8� 2 [0; �2]; jx�(�; �) � x�(�; 0)j < �2:

This condition ensures that the equilibrium curves
does not cross the y-axis for� 2 I and� < �2.

Therefore, for any� < min(�1; �2), the equilibrium
curve crosses the y-axis at most twice, once in each
direction.

The previous computation shows that if a part has
a pivot point different from the center of mass, then
there exists a small value of� to uniquely orient this
part. However, this does not mean that there exists one
unique value of� orienting any part. In other words,
the combination of a radial unit field and a gravitational
field is a strategy that can orient almost any part, but for
each part the maximum� is different. For each part, the
value of�max can be computed numerically.

Figure 7 shows equilibrium curves for the ratchet
for different values of�. In this example, we can see
that for large�, the equilibrium curve crosses the y-
axis several times, and thus the minimum is not unique
anymore.

7. Simulation

We have implemented a sophisticated simulator for
programmable force fields in MATLAB . The system
is capable ofexactcalculation of the force acting on
polygonal parts in various fields, including squeeze,
unit radial, gravity fields, and combinations thereof. To
calculate the force acting on a polygon in the field, the
polygon is triangulated and the force field is integrated
over the individual areas. This is done without numer-
ical integration since there exist closed-form integrals



δ = 0.420 δ = 0.430 δ = 0.440

δ = 0.450 δ = 0.460 δ = 0.470

δ = 0.480 δ = 0.490 δ = 0.500

Figure 7: Detailed equilibrium curves for the ratchet: from
� = 0:42 to � = 0:50, increment 0.01. We observe that up
to � = 0:46 the curve has only two intersections with the
y-axis, hence the equilibrium is unique.

for all these fields. To predict the part motion in the
field, we have implemented a full dynamic simulator
that includes inertia, viscous damping, and Coulomb
friction. Force equilibria are determined numerically
by solving the constraintsF = 0 as given in equa-
tion 1. Pivot points are also determined numerically.

8. Device Construction

In Section 2. we have already mentioned some device
designs that implement programmable force fields.
Several designs may be possible.

Elliptic Fields The realization of elliptic fields could
be achieved with MEMS actuator arrays [8], or arrays
of motors [21], and possibly with vibrating plates. The
main challenge for vibrating plates will be to obtain a
surface that approximates the elliptic force profile with
sufficient spatial resolution. Microscopic (MEMS) or
macroscopic (motor) actuator arrays offer alternatives
[15, 16, 5, 6]. The main challenge for micro actua-
tors remains the generation and control of forces over
a sufficiently large range of force magnitudes.

Universal Fields A prototype unidirectional array
was built by Böhringer et al. [8] (see Figure 8). This ar-
ray can generate a unit gravity field. Its design could be
modified such that the actuators are arranged in a cir-
cular pattern, which would result in a unit radial field.
The variable gravity field could then be added simply
by tilting the arrayaccordingly (see Figure 9). Hence
such a device would be relatively easy to build. The

Figure 8: Unidirectional MEMS actuator array built on a sil-
icon wafer. Each actuator is� 0.2 mm in size.

Figure 9: Conceptual design of an actuator array that imple-
ments a combined radial-gravity field. Individual actuators
are tiled in a circular array pattern. The array is tilted be-
tween� = 0� and45� to add a gravity component�g with
� = tan �.

key observation is that with current MEMS technol-
ogy it is easy to build actuator arrays with high spatial
resolution (� 1mm) and constant force, but it is diffi-
cult to build actuators withvariableforce. In addition,
MEMS actuators can be easily arranged into arbitrary
patterns (in particular, a radial pattern). Hence it is
easy to build arrays that implement unit radial fields.
Alternatively, a resonating speaker, or a vibrating disk-
shaped plate that is fixed at the center, might be used
to create a radial force field.

9. Discussion

This paper proves the existence of devices for parts po-
sitioning and orienting that can bring arbitrary (non-
symmetric) parts into exactly one or two stable equi-
libria. These devices are extremely simple: they do not
require a feedback control, a clock, synchronization, or
programming. Their functioning principle is based on
force vector fields. Such a device could revolutionize
industrial and precision parts handling.
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